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Introduction
Motivation
An ideal AI agent for speech

Joint modeling of speech and speaker

The brief idea
Automatic speech recognition (ASR)

translate speech to text automatically
Speaker recognition or speaker identification

identify speakers from characteristics of voice
Combining speech and speaker recognition

capture speech and speaker characteristics together

Hang Su Dissertation Talk 4 / 71



Introduction and Motivation
Backgrounds on Speech and Speaker Recognition

Connecting Speech and Speaker Recognition
Joint Modeling of Speech and Speaker

Conclusion and Future Work

Introduction
Motivation
An ideal AI agent for speech

Why speech / speaker recognition

Application of speech & speaker recognition
Human-Computer Interface
Automatic speech recognition

In-car system, smart home, speech search...
Speaker recognition

Authentication, safety, personalization...
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Motivation
An ideal AI agent for speech

A problem

They are handled separately
Different datasets / evaluations
Different models / methods

But they are closely related to each other
Take speech as input
Similar features / models

(Same group of researchers :)
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Automatic Speech Recognition (ASR)

Transcribe speech into texts
Frame-by-frame approach (10 ~30 ms)
Components∗:

Feature extraction
Acoustic modeling (GMM-HMM)
Lexicon
Language modeling (LM)

Or use end-to-end approach: discard HMM, optionally
discard lexicon or language model

∗For a traditional ASR system.
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Gaussian Mixture Model - HMM[9, 3]
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Speaker Recognition

Speaker Recognition: Identify speakers from speech
Components:

Feature extraction
Acoustic modeling
Speaker modeling
Scoring

Make utterance-level predictions
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Text-independent speaker recognition
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Factor analysis approach [2]

xt ∼
K∑
k
πk N (µk + Akzi ,Σk)

zi ∼ N (0, I)
K∑

k=1
πk = 1

(1)

xt is p-dim speech feature for frame t
πk is prior for mixture k
zi : a q-dim speaker specific latent factor (i.e. i-vector)
Ak : a p-by-q projection matrix for mixture c
µk and Σk are Gaussian parameters
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Post-processing of i-vectors

The factor-analysis model is an unsupervised model.
Supervised methods could be used to improve i-vectors.

Linear Discriminant Analysis [6]
Probabilistic Linear Discriminant Analysis [6, 5]
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Speaker recognition using ASR cont.

Substitute UBM with DNN model [7]
Substitute UBM with Time-delay DNN [13]
Use DNN initialized GMM acoustic model [13]
Proposal: Use better DNN models for ASR †

Trained with raw MFCC feature
Trained with LDA transformed feature
Trained with LDA + fMLLR transformed feature
Trained with Minimum Phone Error (MPE) method

†Factor Analysis Based Speaker Verification Using ASR.
Hang Su and Steven Wegmann. Interspeech 2016
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Data description

Speaker recognition evaluation (SRE) data set
Training data (SRE 2004-2008)

18,715 recordings from 3,009 speakers
1,000+ hours of data, 360,000,000 frame samples

Test data (SRE 2010)
387,112 trials (98% non-target)
11,983 enrollment speakers, 767 test speakers
2 ~3 mins per speaker

ASR data set
Training data (Switchboard)
Testing data (Eval2000)
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Metric – DET curve and EER
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Metric – Word Error Rate (WER)

WER = S + D + I
R (2)

S : number of substitutions
D : number of deletions
I : number of insertions
R : number of words in references
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Experimental results

Eval2000 WER SRE2010 EER
UBM – 6.31
DNN-MFCC 19.4 6.39
+ LDA + MLLT 16.3 4.84
+ fMLLR∗ 14.9 4.55
+ MPE∗ 13.5 4.38

Table 1: EER for speaker recognition systems in different settings

∗ASR decoding needed
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Experimental results

Figure 1: DET curve for systems in different settings
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Speaker Adaptation

How to handle speaker-specific characteristics during
recognition?

Adapt speaker-independent systems to different speakers
(model-space)
Normalize speech features to compensate speaker
characteristics (feature-space)
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Speaker adaptation for DNN systems

Existing methods:
Feature-space transformations (fMLLR) [4]
Model-space transformations [15]
Adapting model parameters via regularization [16]
Learning hidden unit contributions (LHUC) [14]
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Speaker adaptation using i-vectors[10]

h = Wax + Wsz
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Speaker adaptation using i-vectors

Benefits of using i-vectors
Does not require model re-training or ASR decoding
Single DNN model for all speakers

Potential drawback:
Tend to overfit
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Problem of speaker adaptation using i-vector

I-vectors are extracted for every recordings
Frames 100 million, 4,800 recordings
Acoustic feature dim ~440, i-vector dim 100~400
Better objective on training data does not translate into
WER improvement
Overfitting occurs
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Treatment for overfitting

Mitigate overfitting by
Reducing i-vector dimension[10]
Using utterance-based i-vectors[12]
Extract i-vectors using sliding window (in Kaldi)
L2 regularization back to baseline DNN[12]
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Regularization on i-vector sub-nnetwork

Lre = Lce + β‖wivec‖2
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Data description

Switchboard data set
Clean telephone speech, English
~300 hours transcribed data (~108,000,000 samples)
~4,800 recordings

Eval2000 hub5 test set
Switchboard portion + CallHome (family members)
40 + 40 speakers
2 hours + 1.6 hours
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Experimental results

feature MFCC +fMLLR
data Swbd Callhome Swbd Callhome
acoustic feature 16.0 28.5 14.9 25.6
+ i-vector 15.2 27.1 14.4 25.7
+ regularization 14.6 26.3 14.3 24.9
Table 2: WER on i-vector adaptation using regularization

Hang Su Dissertation Talk 40 / 71



Introduction and Motivation
Backgrounds on Speech and Speaker Recognition

Connecting Speech and Speaker Recognition
Joint Modeling of Speech and Speaker

Conclusion and Future Work

Speaker Recognition using ASR
Speaker Adaptation
Conclusion

Conclusion

A brief summarization:
Speech and speaker recognition are two tasks that are
closely related
Speaker information can be used to improve speech
recognition performance
Acoustic models trained for ASR can be used to assist
speaker recognition
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Existing Tools for Speech

Kaldi:
Popular speech recognition tool
Supports GMM, HMM, DNN, LSTM ....
State-of-the-art recipes

Tensorflow (TF)
Flexible deep learning research framework
Tensorflow Lite: esay to deploy on embedded devices
Tensor Processing Unit (TPU)
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TIK

Bridge the gap between Tensorflow and Kaldi
It supports acoustic modeling using Tensorflow
It integrates with Kaldi decoder through a pipe
It covers both speech and speaker recognition tasks
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System Design of TIK
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ASR performance using TIK

Swbd CallHome All
Kaldi GMM 21.4 34.8 28.2
Kaldi DNN 14.9 25.6 20.3
TIK DNN 14.5 25.5 20.0

TIK BLSTM 13.6 24.3 19.0
Table 3: WER of ASR systems trained with Kaldi and TIK
(Eval2000 test set)
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Speaker recognition performance using TIK

Cosine LDA PLDA
Kaldi UBM 6.91 3.36 2.51
Kaldi DNN 4.00 1.83 1.27
TIK DNN 4.53 2.00 1.27

Table 4: EER of speaker recognition systems trained Kaldi and TIK
(SRE2010 test set)
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X-vector approach

Figure 2: Structure of x-vector approach for speaker recognition
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JointDNN model

Figure 3: Structure of JointDNN model
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Loss function

L(θ) = −
S∑

s=1

sT∑
t=1

hs,t logP(hs,t |os,t)− β
S∑

s=1
xs logP(xs |os) (4)

Interpolation of two cross-entropy losses
β is the interpolation weight
hs,t denotes the HMM state for frame t of segment s
os,t is the observed feature vector
xs is the correct speaker
os is speech features for segment s

Hang Su Dissertation Talk 52 / 71



Introduction and Motivation
Backgrounds on Speech and Speaker Recognition

Connecting Speech and Speaker Recognition
Joint Modeling of Speech and Speaker

Conclusion and Future Work

TIK: An Open-source Tool
JointDNN for speech and speaker recognition
Conclusion

Data description

Training data
Switchboard data set
~300 hours transcribed data (~108,000,000 samples)
~520 speakers

Testing data
Eval2000 hub5 test set for speech recognition
SRE2010 test set for speaker recognition
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Performance of speaker recognition

EER
Baseline i-vector 4.85
Kaldi x-vector 8.94
TIK x-vector 8.81

TIK jd-vector (beta0.01) 4.75
Table 5: EER of JointDNN model for speaker recognition
(SRE2010 test set)
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Performance of speaker recognition

Figure 4: DET curve of JointDNN model for speaker recognition
(SRE2010 test set)
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Performance of speech recognition

Swbd Callhome All
Baseline DNN 16.1 28.4 22.3

JointDNN (beta 0.01) 16.8 29.0 22.9
Table 6: WER of JointDNN model for speech recognition
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Adjusting Interpolation Weight β

Development (%) Evaluation (%)
Beta ASR acc Speaker acc SRE EER Swbd WER
0.1 39.07 97.22 5.10 16.7
0.01 39.20 94.10 4.75 16.8
0.001 38.60 85.36 9.19 17.2
0.0001 38.59 41.95 13.25 17.0

Table 7: EER of JointDNN model with different β
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Conclusion

Summary of JointDNN model
JointDNN can be used for ASR and SRE simultaneously
ASR part helps guide speaker recognition sub-network
Effective in using a limited amount of training data
Uses less memory compared to i-vector approach (better
for embeded device)
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Conclusion and Future Work

Conclusion of the talk
Speech and speaker recognition are beneficial to each
other
A joint model helps exploit both speech and speaker
information
Effective in using limited amount of training data
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Future work

Future work on joint modeling
Use a larger data set or data augmentation techniques
Introduce recurrent structures into joint model
End-to-end approaches for joint modeling
Towards an all-around speech AI agent
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Reference I

Herve A. Bourlard and Nelson Morgan.
Connectionist Speech Recognition: A Hybrid Approach.
Kluwer Academic Publishers, Norwell, MA, USA, 1993.
Najim Dehak, Patrick J Kenny, Réda Dehak, Pierre
Dumouchel, and Pierre Ouellet.
Front-end factor analysis for speaker verification.
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