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Abstract

Semi-supervised and cross-lingual knowledge transfer learn-

ings are two strategies for boosting performance of low-

resource speech recognition systems. In this paper, we pro-

pose a unified knowledge transfer learning method to deal with

these two learning tasks. Such a knowledge transfer learning

is realized by fine-tuning of Deep Neural Network (DNN). We

demonstrate its effectiveness in both monolingual based semi-

supervised learning task and cross-lingual knowledge transfer

learning task. We then combine these two learning strategies to

obtain further performance improvement.

Index Terms: Multilingual, cross-lingual, semi-supervised

training, deep neural network

1. Introduction

To build an automatic speech recognition (ASR) system for

a low-resource language, two additional resources apart from

transcribed training data are often used, namely, which are un-

labeled audio data of the same language, and multilingual re-

source from other languages. The strategy using unlabeled data

is called semi-supervised learning (SSL), while the other one is

called cross-lingual knowledge transfer learning.

Semi-supervised learning is an effective way to improve

performance of ASR systems developed with limited tran-

scribed data [1–4]. In this case, a preliminary acoustic model

(seed model) and plenty of unlabeled acoustic data are available

for a specific language. The task is to exploit unlabeled data to

boost performance of the model. In the framework of Deep

Neural Network (DNN), we can use either Bottle-neck feature

(BNF) pipeline [1, 3, 5, 6] or DNN-HMM hybrid acoustic mod-

els [2, 4] to perform semi-supervised learning. In practice, we

first use a seed model to transcribe unlabeled data. Then we

select the transcribed data based on confidence score of ASR

outputs [1, 2]. Finally these selected data are merged with hu-

man transcribed data to update BNF extractor or DNN-HMM

acoustic model.

On the other hand, when human transcribed data in other

languages (i.e. multilingual data) are available, it is natural to

find ways to take advantage of these data. In this scenario, mul-

titask (i.e. multilingual) learning [7] and cross-lingual knowl-

edge transfer come into play. DNN based multilingual train-

ing and cross-lingual knowledge transfer learning have been

widely studied under low-resource conditions [8–15], where
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both BNF pipeline and DNN-HMM hybrid approach are used.

For bottleneck feature (BNF) approach [12–15], a BNF extrac-

tor is trained to extract BNFs for target low-resource language.

Shared hidden layers (SHL) are trained with multilingual data

while softmax layers of the BNF extractor are language depen-

dent [8, 12, 14]. Once multilingual BNF extractor is trained, it

can be tuned using target language to realize cross-lingual trans-

fer learning [12, 13]. For DNN-HMM hybrid approach, cross-

lingual transfer learning is done using SHL directly [8–11, 16].

The benefit of this recipe lies in its simplicity and shorter feature

extraction pipeline.

While semi-supervised and cross-lingual knowledge trans-

fer learnings1 are widely studied for low-resource acoustic mod-

eling, one rarely examines their relationship. In this paper,

we view semi-supervised learning and cross-lingual knowledge

transfer learning as the same problem. Both of them are done

using simple DNN “fine-tuning” method in practice. Further-

more, we proposed a word segment based data selection method

to improve semi-supervised learning. We also attempt to gain

additional improvement by combining cross-lingual knowledge

transfer and semi-supervised learnings.

2. Prior work and contributions

It was reported in [5, 6, 17] that semi-supervised and cross-

lingual knowledge transfer learnings could be used simultane-

ously to address low-resource language acoustic modeling is-

sue. However, only BNF pipeline is well-investigated in these

works. In this paper, we study semi-supervised and cross-

lingual knowledge transfer learnings using DNN hybrid frame-

work instead. While we hope to improve performance of these

two tasks in two separate attempts, we address them with the

same knowledge transfer learning approach.

We note that data selection method plays a role in semi-

supervised learning. This is because low resources ASR sys-

tems tend to give higher word error rate (WER). In [1,17], utter-

ance based data selection method was used for a BNF pipeline

based semi-supervised learning. The confidence of each utter-

ance is calculated as average of posteriors over all the words in

the utterance. In [4], we tried a similar data selection method

for DNN hybrid system, unfortunately, no improvement was

obtained. Alternatively, a frame based data selection method

was proposed in [2], and it was suggested that data selection

at frame level is more effective than at utterance level. In this

1In this paper, cross-lingual knowledge transfer learning is implic-
itly based on multilingual training.



paper, we propose a word segment based data selection method

using word confidences and time boundaries estimated with the

method proposed in [18]. This strategy benefits from both ut-

terance and frame based techniques.

As for cross-lingual knowledge transfer learning, [8] pro-

posed a two-step framework including softmax training and en-

tire network tuning. It was shown that the overall tuning with

very limited data (3 hours) does not help. In this paper, we

propose a one-step DNN fine-tuning approach to accomplish

knowledge transfer learning, i.e. we conduct softmax training

and shared-hidden layer tuning jointly. In this way, we don’t

need to change learning rate in a separate tuning step. We show

it achieves better results even with very limited target language

data (3 hours), in terms of both cross-entropy (CE) and state-

level sequence based Minimum Bayesian Risk (sMBR) [19]

trainings.

3. Resource description

The data for experiments in this paper are from NIST

OpenKWS15 evaluation program2 . Different from previous

evaluation program [20, 21], OpenKWS15 allows participants

to adopt multilingual training for acoustic modelling. Swahili

is the target low-resource language in this program. To this

end, Cantonese, Pashto, Turkish, Taglog, Vietnamese and Tamil

data from previous OpenKWS challenges are released to partic-

ipants. In addition to Limited Language Pack (LLP) and Full

Language Pack (FLP), NIST also defines Very Limited Lan-

guage Pack (VLLP) as low-resource task. In this work, low-

resource refers to LLP data and VLLP data to align with previ-

ous works [2,4,16]. All results are reported on 10-hour Swahili

dev data. Table 1 describes data statistics.

Apart from acoustic data, NIST also provides out-of-

domain text data to build language model (LM) [22]. These

data are collected from diversified sources include websites like

Wikipedia, Wiktionary and open-subtitles of movies and TV

shows. Overall, there are 84M words for background trigram

LM training. The background LM is interpolated with vari-

ous in-domain LMs built with different (VLLP, LLP, FLP) tran-

scriptions during testing. We use trigram LMs for all experi-

ments in this paper.

During evaluation, no manual lexicon is provided, and we

use grapheme lexicons in all cases. Lexicons used for decoding

contains both out-of-domain data mentioned above, and corre-

sponding language pack transcriptions. The vocabulary is about

200k depending on specific language pack categories. We note

that after evaluation NIST also released a manual lexicon in the

FLP. We compared ASR performance using these two lexicons,

and the WER difference is less than 1% absolute. This indicates

that Swahili is very regular in terms of pronunciation.

4. Semi-supervised learning

For effective semi-supervised learning, three factors are criti-

cal, namely, a good seed model, an appropriate data selection

method, and an effective model adaptation method.

4.1. Seed model

In this work, we use DNN hybrid acoustic models trained with

sMBR criterion as the seed model. Two types of seed mod-

els are used in the experiments – one is for monolingual semi-

supervised training, which might be trained using VLLP or

2http://www.nist.gov/itl/iad/mig/openkws15.cfm

Table 1: Overall experimental data distributions

Language (Babel Id) Data set Data length (hours)

Source language (Multilingual data)

Cantonese (101) FLP 141.3

Pashto (104) FLP 78.4

Turkish (105) FLP 77.2

Tagalog (106) FLP 84.5

Vietnamese (107) FLP 87.7

Tamil (204) FLP 69.4

Target language (Swahili)

Swahili (202)

FLP 55.4

LLP 10.8

VLLP 3.1

dev 10.7

LLP; the other is for multilingual experiments, which contains

models trained using human transcribed data set. Once seed

models are ready, they are used to decode unlabeled data, and

generate ASR transcripts.

4.2. Data selection method

Since ASR transcripts always contain errors, it is necessary to

select data that have higher confidence according to seed acous-

tic models. We choose to use word-segment based data selec-

tion method in this work. Technically, this is similar to the

frame-based data selection method proposed in [2] since we use

the same method advocated in [18] to estimate word confidence

and time boundaries in Kaldi3. However, our method does not

affect the actual DNN training, and it is much simpler to im-

plement. Besides, since our method is explicitly based on word

segments, it is easier for us to filter out unwanted words like

non-speech or noise. Finally, we merge those selected machine

transcribed data and supervised data to form “semi-supervised”

data.

4.3. Semi-supervised knowledge transfer learning

In this paper, we treat semi-supervised learning as a knowledge

transfer learning process. In brief, we first use human tran-

scribed data to train a DNN as seed model, and then we per-

form semi-supervised learning using seed model as initializa-

tion (with softmax layer randomly initialized). In other words,

we don’t do semi-supervised training from scratch, but rather

based on seed model that has already been trained using limited

amount of human transcribed data. We update the entire neu-

ral network during semi-supervised training phase. All semi-

supervised data are used for cross-entropy DNN training, while

for sMBR DNN training, only supervised data are used.

5. Cross-lingual knowledge transfer

5.1. Multilingual training

We use all 6 multilingual language data summarized in Table

1 to conduct multilingual training. Briefly, our training recipe

is the same as those in [8, 16]. Practically, we first construct a

multilingual DNN, which is topologically composed of shared

hidden layers and parallel softmax layers with 6 sets of context-

dependent (CD) tied-states as targets. Training of this multi-

lingual DNN requires an additional utterance-to-language map-

3https://github.com/kaldi-asr/kaldi



Table 2: Baseline WER (%) results on dev data with different

monolingual supervised training methods

System VLLP LLP FLP

GMM-HMM (SAT) 67.2 60.2 53.4

DNN (CE) 67.3 57.4 47.4

DNN (sMBR) 64.7 54.5 44.5

ping to indicate which language and softmax layer speech sam-

ple belongs to during mini-batch model update.

5.2. Cross-lingual knowledge transfer learning

As the shared hidden layers are multilingually trained, they are

forced to learn common characteristics of different languages.

Such characteristics are supposed to be shared by unseen lan-

guages, realizing possibility of cross-lingual knowledge trans-

fer. The process of cross-lingual transfer learning is the same as

that described in Section 4.3. We notice that our recipe is dif-

ferent from what was advocated in [8], where softmax training

and entire network tuning are conducted separately. Instead, we

do them simultaneously.

6. Experimental setup

Experiments in this work are developed using the Kaldi toolkit.

We use PLP+pitch features [23] as GMM-HMM front-end.

The GMM-HMM system is trained up to the Speaker Adap-

tive Training (SAT) stage with 40 dim LDA+MLLT transformed

features. Numbers of context-dependent states are set as 2k, 3k

and 5k for the VLLP, LLP and FLP respectively (number of

actual physical context-dependent states depends on language

pack distribution).

All DNNs have 5 hidden layers with 2048 neurons in each

layer. Input features are 25 dim composed of 22 dim filter-banks

and 3 dim pitch features. They are stacked using a 21-frame

window (10-1-10) before being passed into Hamming window

and DCT transformation for DNN training.

7. Results

7.1. Baseline

Table 2 reports our monolingual decoding results of SAT based

GMM-HMM system, DNN with trained with cross-entropy and

sMBR criteria respectively. From Table 2, we see that VLLP

and LLP systems perform about 20% and 10% worse than those

of FLP systems. Our goal is to bridge the performance gap

with our proposed semi-supervised and cross-lingual knowl-

edge transfer learning methods. We also notice from Table

2 that cross-entropy DNN system doesn’t perform better than

GMM-HMM system for VLLP data, while the best result comes

from sMBR DNN system. This suggests that cross-entropy

DNN system is rather sensitive to the size of training data.

7.2. Monolingual based semi-supervised learning

Table 3 reports our monolingual based semi-supervised learn-

ing results with different word confidence thresholds for unsu-

pervised data selection. A confidence threshold of zero (in the

first row of Table 3) means all unsupervised data are selected,

which is about 34.33 hours for VLLP and 26.60 hours for LLP

(as is indicated in the first column in Table 4). We notice that

less data are selected for LLP case than for VLLP case, which

Table 3: WER (%) results on dev data for different DNN-HMM

acoustic models with monolingual based semi-supervised learn-

ing

Word conf.
VLLP LLP

CE sMBR CE sMBR

- (Baseline) 67.3 64.7 57.4 54.5

0.0 69.0 63.8 54.3 52.2

0.5 68.5 63.5 53.8 51.9

0.7 67.7 63.4 53.5 51.7

0.9 66.2 62.7 53.3 51.5

1.0 65.7 62.7 53.7 51.9

is because there are more unsupervised data available for VLLP

(unsupervised data are FLP data that do not appear in LLP or

VLLP).

In contrast to Table 2, we only see 2.0% or 3.0% absolute

WER reduction for semi-supervised learning in VLLP and LLP

“sMBR” cases respectively, with 0.9 set as confidence thresh-

old. Figure 1 summarizes the percentage of selected data as

a function of word confidence thresholds, where VLLP and

LLP are denoted as “Mono (VLLP)” and “Mono (LLP)” respec-

tively. When word confidence threshold is set to 0.9, about 40%

and 50% of data are selected for these two cases respectively.

Comparing row one (threshold is 0) with row four (thresh-

old is 0.9) in Table 3, we see that data selection method may

contribute up to 1.1% and 0.7% absolute WER reductions in

VLLP and LLP case respectively.

Figure 2 shows actual averaged word accuracy versus word

confidence threshold. It suggests that the bigger threshold we

use, the smaller word accuracy gaps we have between VLLP

and LLP systems. This indicates some word confidences are

overestimated. When word threshold is set 1.0, only marginal

WER gaps between the systems are observed, regardless of

whether it is a monolingual or multilingual system (multilingual

systems are marked with “ML (VLLP)” and “ML (LLP)”). This

suggests that raw word posteriors calculated from ASR lattice

are far from optimal for effective word confidence estimate.

Table 4: Overall data size (hours) in different cases after all non-

content words are removed from the decoded FLP data, when

word confidence threshold is set zero

Data Monolingual Multilingual

VLLP 34.33 32.98

LLP 26.60 25.12

7.3. Cross-lingual knowledge transfer

Table 5 shows effectiveness of our proposed cross-lingual

knowledge transfer learning method. The best absolute WER

reductions for VLLP and LLP cases are 8.6% and 5.8%,

respectively, which are pretty significant. Besides, we see

the proposed cross-lingual knowledge learning method (repre-

sented as “Overall-tuning” in Table 5) consistently outperforms

“Softmax-tuning”. Even if there are only 3 hours of training

data (VLLP case), “Overall-tuning” still works well. This is

different from what was observed in [8], where an extra tun-

ing with 3 hours of training data on the entire network does not

help.

While we understand that we cannot directly compare Table

5 and Table 3, it is quite clear that multilingual training works
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Figure 1: Data selected ratio versus word confidence threshold

for the selected unsupervised data under varieties of conditions,

in which “Mono-VLLP” and “Mono-LLP” represent the cases

where seed acoustic models are monolingual-trained. Simi-

larly, “ML-VLLP” and “ML-LLP” represent the cases where

seed acoustic models are trained with cross-lingual knowledge

transfer learning

better in these scenarios. This can be attributed to two factors.

Firstly. multilingual training benefits from more data. We only

have about 30 hours of unsupervised monolingual data (see Ta-

ble 4) while about 600 hours of multilingual data are available

(see Table 1). Secondly, data selection method is actually inef-

fective as is shown in Figure 2. Even with 1.0 threshold, our

average word accuracy is less than 80%.

Table 5: WER (%) results on dev data for the DNN-HMM

hybrid acoustic models with different cross-lingual knowledge

transfer learning methods

System
VLLP LLP

CE sMBR CE sMBR

Monolingual 67.3 64.7 57.4 54.5

Softmax-tuning 58.0 56.1 51.3 50.0

Overall-tuning 57.6 55.9 50.5 48.7

7.4. Combination

As is shown in Sections 7.2 and 7.3, a better seed model is crit-

ical for effective knowledge transfer learning. In this section

we adopt best systems in Table 5 as seed systems for semi-

supervised learning. We would like to see if further perfor-

mance improvement can be achieved over Table 5. We sum-

marize the results in Table 6. From Table 6, we only observe

marginal improvements, particularly in the VLLP case. VLLP

DNN cross-entropy system even gets worse. We notice that an

obvious improvement is reported in [5] by combining these two

methods with more unsupervised data.

Referring to Figure 1 again, where four different seed mod-

els are used, we observe that a better seed model leads to more

selected unsupervised data. We also observe in Figure 2 that

better seed models offer higher performance. However, when

looking at the threshold segment between 0.9 and 1.0 in Figure

2, we can see the difference of average word accuracy of se-

lected data diminish dramatically. This explains why our semi-

supervised training has limited benefit from the data selection

method even for the best seed model.
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Figure 2: Average word accuracy versus word confidence

threshold for the selected unsupervised data under varieties of

conditions, where an accuracy for a hypothesis word means the

hypothesis and reference words should be the same and their

time overlap should be over 85% of the reference word dura-

tion as well. “Mono-VLLP” and “Mono-LLP” represent the

cases where seed acoustic models are monolingual-trained, for

the VLLP and LLP respectively. Similarly, “ML-VLLP” and

“ML-LLP” represent the cases where seed acoustic models are

trained with cross-lingual knowledge transfer learning respec-

tively

Table 6: WER (%) results on dev data with semi-supervised

learning using cross-lingual knowledge transferred systems in

Table 5 as seed systems

Word conf.
VLLP LLP

CE sMBR CE sMBR

- (Baseline) 57.6 55.9 50.5 48.7

0.0 59.6 56.6 50.0 48.7

0.5 59.3 56.2 49.9 48.5

0.7 58.8 56.0 49.6 48.3

0.9 58.2 55.4 49.3 48.1

1.0 57.7 55.7 49.5 48.3

8. Conclusions

In this paper, we proposed to use knowledge transfer learning

framework for both semi-supervised and cross-lingual knowl-

edge transfer learning. Transfer learning is done by tuning DNN

parameters using semi-supervised data or supervised data re-

spectively. We demonstrated its effectiveness in these two learn-

ing tasks. We also attempted to combine these two techniques

to get better performance improvement. Due to limited unsu-

pervised data available, semi-supervised learning yields limited

performance improvement over baseline system trained with

cross-lingual transfer learning in both VLLP and LLP cases re-

spectively.
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