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Abstract
In this paper we propose a Shared Hidden Layer Multi-
softmax Deep Neural Network (SHL-MDNN) approach for
semi-supervised training (SST). This approach aims to boost
low-resource speech recognition where limited training data
is available. Supervised data and unsupervised data share the
same hidden layers but are fed into different softmax layers so
that erroneous automatic speech recognition (ASR) transcrip-
tions of the unsupervised data have less effect on shared hid-
den layers. Experimental results on Babel data indicate that
this approach always outperform naive SST on DNN, and it can
yield 1.3% word error rate (WER) reduction compared with su-
pervised DNN hybrid system. In addition, if softmax layer is
retrained with supervised data, it can lead up to another 0.8%
WER reduction. Confidence based data selection is also studied
in this setup. Experiments show that this method is not sensitive
to ASR transcription errors.
Index Terms: Semi-supervised training, Low resources, Deep
Neural Networks.

1. Introduction
Semi-supervised training (SST) in low-resource condition is an
important topic. When labeled data is limited, the performance
of speech recognizer training may benefit a lot from automati-
cally transcribed data. However, SST could be hard when there
is no enough supervised data for baseline seed system train-
ing. In this case, transcriptions for unlabeled data obtained from
ASR may contain so many errors that they even hurt acoustic
model training.

DNN has been shown to be effective for SST in low-
resource condition. In a hybrid DNN approach [1] where DNN
are directly used for decoding after SST [2], it is shown that
a 2.2% absolute WER reduction could be achieved by setting
a threshold for dropping frames from unsupervised data. In a
bottle-neck NN approach [3] where semi-trained DNN are used
as feature extractor for other acoustic models [4], more than 2%
absolute WER reduction is achieved for several different acous-
tic models. Research into confidence measure [5–7], data selec-
tion [8,9], SST sequence-training [10] and bootstrapping [11] in
the framework of SST have shown to be successful as well, and
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other research on combining multilingual training with semi-
supervised training [12,13] also show their effectiveness in dif-
ferent settings.

Comparing SST on bottle-neck and hybrid approach, we
find that the bottleneck approach tends to produce better results
when labeled data and unlabeled data are blent together and no
confidence threshold is set for data selection. We suppose this
is because alignment errors tend to influence top most layers of
neural networks. Deep neural network could be seen as a con-
catenation of feature extractor and log-linear classifier where
lower layers are responsible for feature extraction and a soft-
max layer for classification. In this sense, unlabeled data will
help more in lower layers training while it may hurt classifica-
tion layers due to its error in alignments. SST on bottle-neck
NN thus utilizes this property by removing top layers in neural
network and preserve lower layers for feature extraction.

However, the disadvantage of bottle-neck approach is that
it involves more parameters, and makes the training pipeline
longer. Acoustic models such as Gaussian Mixture Model
(GMM) or DNN need to be retrained after bottle-neck features
are extracted. So, it would be better if we could combine the
benefits of these two approaches to mitigate the alignment issue
in hybrid approach.

Shared Hidden Layer Multilingual DNN (SHL-MDNN)
proposed in [14] is shown to be effective in utilizing training
data from different languages. In this setup, multilingual train-
ing data share the same hidden layers but use different soft-
max layers to do senone classification. Similar structures are
also used in [15–18] for multilingual speech acoustic model-
ing. Multilingual stacked bottle-neck neural network is used
in [19–21] for feature extraction. This approach solves the prob-
lem of training DNN using data with different alignments mod-
els. In this paper, we introduce the same model to SST task to
mitigate the alignment issue for unsupervised data. 1

The rest of this paper is organized as follows: Section 2
introduces SHL-MDNN based semi-supervised training. Sec-
tion 3 describes the experimental setup. Section 4 analyze base-
line DNN SST results. Section 5 reports experiments on semi-
supervised training, together with results on several different
languages. Section 6 concludes our work.

2. SHL-MDNN based semi-supervised
training

Figure 1 shows the structure of the SHL-MDNN. In this ap-
proach, supervised data and unsupervised data share the same
hidden layers, while the softmax layers are not shared.

1The meaning of ”M” in SHL-MDNN is changed from ”multilin-
gual” to ”multi-softmax” to fit the topic.



Figure 1: SHL-MDNN for semi-supervised training

Input layers covers a long contextual window of acoustic
feature. In this paper, we use PLP feature transformed by lin-
ear discriminative analysis (LDA), maximum likelihood linear
transformation (MLLT) and speaker adaptive training (SAD).
Since supervised and unsupervised data use the same models for
transformation estimation, it is reasonable to mix those trans-
formed feature together and send them into shared hidden layers
2.

We train the SHL-MDNN using supervised data and unsu-
pervised data simultaneously, using mini-batch stochastic gra-
dient descent (SGD). Each mini-batch may contain different
number of supervised and unsupervised frames. This can be
effectively done by frame randomization.

The SHL-MDNN are pre-trained layer-wisely, using Con-
trastive Divergence algorithm for Restricted Boltzmann Ma-
chines (RBM) [22, 23]. Both supervised and unsupervised data
are used for pretraining. The second stage of model training is
carried out by backpropagation (BP) algorithm. In each pass,
the gradient of supervised frames and unsupervised frames are
used to update softmax layers respectively. For shared hidden
layers, however, the gradients are combined for weight and bias
update.

After training, the softmax layer for unsupervised data is
thrown away and only softmax for supervised data is preserved.
Since the gradient for updating softmax layer and shared hid-
den layers are different, it helps to fine-tune the neural network
using supervised data only for a few iterations.

3. Experimental Setup
In this paper, we report detailed experimental results on the
Vietnamese dataset provided by the IARPA Babel program 3,
together with final results on several OP1 languages including
Tamil, Assamese, Bengali and Zulu.

BABEL data in Table 1 are used for experiments. Each lan-
guage pack provides lexicons and a limited amount of training
data which has been transcribed at the word level. The data
is divided into subsets called the full language pack (FLP) and

2This is different from the multi-lingual task where feature sent into
shared hidden layers are not transformed

3This is consistent with related works that have been published

the limited language pack (LLP) which have approximately 65
hours and 10 hours of training data respectively. Development
data sets (10 hours) are provided for performance testing and
parameter tuning. In this work, we used the LLP as supervised
training data, and FLP data that does not appear in LLP as un-
supervised data. Dev set is used for evaluating the performance
of SST. Language pack statistics are summarized in Table 2.

version
Vietnamese IARPA-babel107b-v0.7
Assamese IARPA-babel102b-v0.5a
Bengali IARPA-babel103b-v0.4b

Zulu IARPA-babel206b-v0.1e
Tamil IARPA-babel204b-v1.1b

Table 1: Babel data for different languages

vocab FLP(h) LLP(h)
Vietnamese 3205 87.7 11.0
Assamese 7661 60.8 10.0
Bengali 7933 61.7 10.3

Zulu 13674 62.1 10.4
Tamil 14265 69.4 11.7

Table 2: statistics for Babel data

The Kaldi toolkit [24] is used for speech recognition frame-
work. Standard 13-dim PLP feature, together with 3-dim Kaldi
pitch feature [25], is extracted and used for maximum likeli-
hood GMM model training. Features are then transformed us-
ing LDA+MLLT before SAT training. After GMM training is
done, a tanh-neuron DNN-HMM hybrid system is trained us-
ing the the 40-dimension transformed fMLLR (also known as
CMLLR [26]) feature as input and GMM-aligned senones as
targets. This DNN serves as a baseline system in this paper, and
is used for decoding / ASR of unsupervised data to do semi-
supervised training. fMLLR is estimated in an EM fashion for
both training data, unsupervised data and test data. Despite the
high WER in Babel setup, we still find it helpful to use fMLLR
feature on top of LDA and MLLT transformations.

Details of DNN training follows Section 2.2 in [2]. In this
paper, we use 6 hidden layers, where each hidden layer has 2048
neurons with sigmoids. Input layer is 440 dimension (i.e. the
context of 11 fMLLR frames), and output layer for Vietnanmese
is 1921 dimension. Mini-batch SGD is used for backpropaga-
tion. The training starts with an initial learning rate of 0.008
and halves the rate when the improvement in training objec-
tive (cross-entropy) on a cross-validation set between two suc-
cessive epochs falls below 0.01%. The optimization terminates
when the objective improves by less than 0.0001%. Cross vali-
dation is done on 10% of supervised data only.

4. Analysis on supervised experiments
4.1. Supervised Experiments

In order to get an idea how much semi supervised data may help
in DNN acoustic modeling, we train GMM models using LLP
and FLP data separately. Both models are then used to align
LLP and FLP data for DNN model training. WERs of these
DNN models on dev set are reported in Table 3.

As is shown in the table, 64.4% is the baseline supervised
experiment where only LLP data is used. When LLP is used



DNN \ alignment model LLP FLP
LLP 64.4 59.5
FLP 57.0 51.5

Table 3: WER for supervised experiments

for GMM training and FLP is aligned and used for DNN train-
ing, the WER for DNN system is 57.0%, which we would
like to consider as upper bound of semi-supervised training
for DNN. The WER 51.5% is the upper bound in theory for
semi-supervised training on all the models (including GMM flat
start).

4.2. The problem of ASR transcription

It is reasonable to expect a GMM model trained on FLP data
helps DNN training (compared with a GMM trained on LLP),
because it can provide better alignments. As is shown in Ta-
ble 3, the difference between these GMMs result in a 5% WER
reduction (from 64.4% to 59.5%). On the other hand, semi-
supervised training uses the same GMM for alignment gener-
ation for supervised and unsupervised data, but the transcrip-
tions for these data are different – supervised data are tran-
scribed manually while unsupervised data are transcriped by
ASR. Thus, it is also necessary to check the difference between
these alignments.

We compare the alignments for unsupervised data produced
by ground truth transcription and ASR. Because unsupervised
channels need to be segmented into utterances before decoding,
the timing information may not match the ground truth segmen-
tation. We summarized statistics using both the ground truth
segmentation and VAD in Table 4. Here, ’total’ denotes the to-
tal number of frames of the alignments and ’matched’ denotes
the number of frames that have the same alignment senone from
decoded text and manual transcription.

segments # total (106) # matched (106)
ground truth 27.5 10.1 (36.9%)

VAD 20.0 5.0 (24.9%)

Table 4: Alignment analysis for unsupervised data

As is shown in Table 4, the percentage of aligned frames
between decoded best-path alignments and ground truth text
alignments is 24.9%. Even with ground truth segmentation,
the percentage of matched frames is just around 1/3, of which
many of them are silence. Admittedly, these statistics does not
necessarily show the decoded text alignments are bad for SST,
because alignments from ground truth text may not be correct
anyway, and different alignment may still give similar decoding
result because words may have different pronunciations. But
these numbers show that alignments from human transcription
and ASR usually do not agree with each other, which may make
the acoustic model confused during semi-supervised training.

5. Semi-supervised Training
Our baseline bottleneck based SST follows the work in [4],
where stacked bottle-neck neural network is trained using both
supervised and unsupervised data with alignments generated by
the seed GMM. With a semi-trained bottleneck feature extrac-
tor, we start the whole acoustic training pipeline (with GMM
flat start) again using bottleneck features extracted for super-

vised data only. The final acoustic model for decoding is a bot-
tleneck feature based deep neural network. This approach has
been proven to be effective for SST under low-resource condi-
tion [4, 27, 28], but the disadvantage of this approach is that the
training pipeline is longer and the model contains more param-
eter.

Our SST pipeline for DNN generally follows the work in
[2]. After the seed GMM is trained, we align supervised data
against ground truth, and decode unsupervised data to get align-
ments from the lattice. Then supervised data and unsupervised
data are mixed together and send to train DNN. We did not
use DNN for alignment, because we found it influences semi-
supervised training results only a little, but it makes the train-
ing pipeline longer. Using GMM as seed system makes semi-
supervised training pipeline shorter, but also more difficult. For
naive semi-supervised DNN training, we blend supervised and
unsupervised data together, and perform standard DNN train-
ing pipeline on the mixed data. We do not perform any data
selection or frame weighting. As is shown in Table 7, the naive
semi-supervised training degrades the WER of the recognizer.

To mitigate the issue of poor alignment for unsupervised
data, we throw away the top softmax layer after the naive SST
DNN is trained, and add a new randomly initialized layer. Then,
we train the whole network using supervised data only, using
the naive SST DNN as an initialization. This approach is similar
to the fine-tuning step in [28]. Our experiments show that this
generally give better performance than directly using the semi-
trained DNN – 1.5 WER improvement.

5.1. SHL-MDNN for SST

As is stated in Section 2, SHL-MDNN is trained using su-
pervised and unsupervised data collectively. After the SHL-
MDNN is trained, we remove the semi-supervised branch and
remain the supervised one. This method gives a WER of 63.1,
i.e. 1.3 WER improvement.

Furthermore, we throw away the softmax layers from SHL-
MDNN, add a new randomly initialized layer and train the
whole network using supervised data only, this gives us an ad-
ditional 0.8 WER improvement, making it comparable to the
bottle-neck approach. Table 7 shows the experimental results
for different settings.

Systems WER (%)
Baseline DNN 64.4

Baseline SST bottle-neck 62.5
Naive SST DNN 66.2

SST DNN soft-retrain 62.9
SST SHL-MDNN 63.1

SST SHL-MDNN soft-retrain 62.3

Table 5: WER of Vietnamese DNN system

5.2. Confidence based data selection

Confidence based data selection has been widely used in semi-
supervised training [2, 4, 10] for better acoustic modeling. In
this section, we try to explore how data selection affect SHL-
MDNN based SST.

We follow the sentence level confidence measure proposed
in [2], i.e.

csent =
1

N

N∑
i=1

cwi (1)



where cwi is the posterior probability of word wi obtained by
Minimum Bayes Risk decoding [29]. The confidence evalua-
tion produced by NIST scoring tool SCLite is shown in Fig-
ure 2.

Figure 2: Decode confidence score v.s. WER

As is shown in the figure, the correlation between decoding
word confidence and WER are consistent.

To evaluate how confidence-based data selection affects the
performance of SST, we sort the utterance by the sentence con-
fidence scores, and select top/bottom 20% of them to mix with
supervised data for STT 4. The number ’20%’ is set to make
sure supervised data and unsupervised data are of similar size.
Table 6 shows the WER for different settings.

Systems \ conf. score top 20% bottom 20%
Baseline DNN 64.4

Baseline SST bottle-neck 62.5
Naive SST DNN 64.7 66.2

SST DNN soft-retrain 64.1 64.6
SST SHL-MDNN 64.3 65.3

SST SHL-MDNN soft-retrain 63.2 63.3

Table 6: WER of Vietnamese using data selection

Comparing columns in row ’Naive SST DNN’ and ’SST
SHL-MDNN’, we can see that unsupervised sentences with dif-
ferent confidence scores do make a difference in SST. But if we
apply softmax layer retraining on top of SST, the difference is
largely covered. This shows that this method makes SST less
sensitive to alignment errors. Comparison between Table 6 and
Table 7 also show that the benefit of data selection are counter-
weighed by the benefits of more data.

5.3. Results over languages

To show the effectiveness of our approach, we apply the method
to 4 other languages, Assamese(AS), Bengali(BE), Zulu(ZU),
Tamil(TA), and the WER results are shown in Table 7. As we

4To ensure the amount of data are of similar size, the 20% here refers
to number of frames.

Languages AS BE ZU TA
Base DNN 65.3 68.3 70.8 77.9

Base SST BN 64.6 67.3 69.8 75.4
Naive SST DNN 67.5 69.4 71.0 78.4
SST DNN retrain 66.0 68.5 70.6 76.7
SST SHL-MDNN 66.2 69.0 70.8 77.8

SST SHL-MDNN retrain 64.5 67.1 69.7 76.1

Table 7: WER of DNN systems on 4 other Babel languages

can see in the figure, SHL-MDNN based SST with softmax re-
training always have better results compared with naive DNN
SST. It gives comparable results against bottleneck based SST,
but with less model parameter and a shorter training pipeline.

5.4. Other refinement experiments

We tried to combine SHL-MDNN SST with bottle-neck ap-
proach, using bottle neck feature with/out STT to do SHL-
MDNN based SST. But both experiments show little improve-
ment in terms of WER. We also tried to bootstrap the perfor-
mance by realignment, but no significant improvement is ob-
served.

6. Conclusions and future work
In this paper, we apply SHL-MDNN to semi-supervised train-
ing to treat alignments for un/supervised data differently. To-
gether with softmax layer retraining, we achieve an 2% absolute
WER improvement on Babel Vietnamese LLP task. Recogni-
tion results on 4 other languages are provided, and they show
SHL-MDNN based SST consistently outperforms naive DNN
SST. Confidence based data selection experiments show that
transcribed utterances with higher confidence score tend to
yield better SST results, but it becomes unnoticeable when we
perform softmax layer retraining. It would be interesting to see
if this SHL-MDNN based SST also works on languages with
thousands hours of untranscribed training data.
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