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Abstract
In this paper, we investigate semi-supervised training (SST)
method in various state-of-the-art acoustic modeling tech-
niques, using bottle-neck and corresponding tandem features.
These techniques include subspace GMM, tanh-neuron deep
neural network (DNN), and a generalized soft-maxout (p-norm)
DNN. We demonstrate that SST may lead up to 2% Word Error
Rate (WER) reduction using all these techniques in each case,
and the best one comes from tandem feature based p-norm DNN
system. In addition to recognition performance, effectiveness
of the SST on keyword search performance is also investigated.
Results on Actual Term Weighted Value (ATWV) are reported,
with an analysis on lattice density. It is shown that SST may not
necessarily increase ATWV due to the shrink of lattices size.
Index Terms: Semi-supervised training, Bottle-neck features,
Maxout Networks, keyword search, Speech recognition

1. Introduction
Semi-supervised training (SST) method is an important topic
for speech recognition, especially when transcription is limited
while unlabeled audio data is available [1–8].

Research work on SST was very successful for conven-
tional GMM-HMMmethod [1–3,5]. Using a stronger language
model and a large volume of unlabeled data, one may obtain sig-
nificant recognition performance improvements. Meanwhile,
data selection strategy on unsupervised data is also a primary
concern [4, 5]. Once remarkable recognition performance im-
provement is achieved by SST, iteration also plays a role [3].

Recently, Neural network (NN) based SST is surging [5–8].
In [6], Deep Neural Network (DNN) is employed as a front-end
feature extractor and a GMM-HMM acoustic model is trained
using the obtained Bottle-Neck Feature (BNF). In [7] stacked
bottle-neck (SBN) NNs are also shown as an effective front-end
feature extractor for SST. Alternatively, [8] shows that combi-
nation of frame-weighted data selection for SST and sequence-
discriminative DNN training [9] yields remarkable recognition
performance improvement.

In this paper we make a further step to investigate BNF
based SST approach using various acoustic modeling tech-
niques such as Subspace GMM (SGMM) [10], tanh-neuron
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based DNN, and a recently proposed generalized maxout DNN,
called p-norm DNN [11]. That is, SST training is conducted
on stacked BN NNs [7, 12] to get robust front-end BNFs and
acoustic models are still trained with supervised data. We inves-
tigate cases using BNF, and corresponding tandem features by
combining BNF with PLP together. As keyword search (KWS)
performance [13–15] is also a primary concern, we investigate
the effectiveness of the SST on KWS performance.

Section 2 reviews the prior related work and our contribu-
tions. Section 3 introduces our experimental setup. Section 4
and 5 report supervised and semi-supervised recognition results
respectively. Section 6 presents SST based keyword search re-
sults and analysis. Section 7 concludes.

2. Prior related work
The idea of using BNF to address the SST problem has been
popular [6, 7] recently, but one used to be concerned with us-
ing BNF or corresponding tandem features to train conventional
GMM-HMM system. In this paper we extend the previous work
to train SGMM, tanh-neuron DNN, and p-norm DNN acous-
tic models using semi-supervised (SS) learned BNF and corre-
sponding tandem features. Our work is also distinct from the
direct use of sigmoid-neuron DNN approach to SST [8] in that
we compare different feature and classifiers respectively.

In addition to these, the keyword search performance con-
cerned with the SST is also studied. Recognition accuracy and
keyword search performance are two closely related metrics,
but we may still run into cases when lower WER does not give
better ATWV [16]. It is shown in [17] that ATWV is improved
by SST, while details such as lattice oracle error rate or density
are not given.

3. Experimental setup
All the experiments in this paper are conducted on
babel107b-v0.7 Vietnamese telephony data set, using
KALDI toolkit [18]. The original data is released for
OpenKWS13 1 by IARPA Babel program. It contains three
packs: Full Language Pack (FullLP), Limited Language Pack
(LimitedLP) and scripted pack. In this paper, only FullLP and
LimitedLLP are used for training. Data is preprocessed by re-
moving silence-dominated and noise-contaminated utterances.
We also restrict endpoint silence length for each utterance. Ta-
ble 1 shows the size of data after preprocessing. In Table 1,
LimitedLP is used for supervised training and FullLP for semi-
supervised training. Dev data is for evaluation of recognition

1http://www.nist.gov/itl/iad/mig/upload/OpenKWS13-EvalPlan.pdf
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Table 1: Size of data before/after preprocessing (hours)
FullLP LimitedLP Dev

Original release 158.7 20.1 20.0
Preprocessed data 42.3 5.4 9.9

and KWS performance. Dictionary and trigram Language Mod-
els (LM) are built using LimitedLP resource.

The work flow of SST proceeds as below: 1) baseline sys-
tem is trained from supervised training data (LimitedLP); 2)
decoding for unlabeled data (from FullLP) is conducted using
baseline system; 3) SBN NN is trained with the mixture of
supervised and unsupervised training data; 4) so-called semi-
supervised BNF for supervised training data is generated; 5)
acoustic models are retrained using the semi-supervised BNF
or semi-supervised BNF+PLP feature.

3.1. Stacked bottle-neck NN training

Details of training SBN NNs refer to [7, 12]. Original feature
for training is 18-dim: 15 Mel filter-bank log energies plus 3
KALDI pitch features [19]. Hamming window and DCT trans-
formation are applied on 11 contextual features. The first BN
NN is configured as 108-1500-1500-80(BN)-1500-884 and the
second 400-1500-1500-30(BN)-1500-884. All BN layers em-
ploy linear-neurons while the other hidden-layers are sigmoid-
neurons. Networks are trained on GPU using gradient descent
cross-entropy criterion without pre-training.

Note that we used monophone state labels as SBN output.
To obtain better alignment triphone system was used to con-
duct forced-alignment instead, and then phone conversion is
performed.

3.2. GMM-HMM system

Three baseline GMM-HMM systems are trained with differ-
ent features: PLP plus KALDI pitch, BNF, and BNF+PLP2.
Features are transformed using LDA+MLLT within three-frame
context before SAT training for the former two systems, while
no LDA+MLLT transformation is used for the BNF+PLP tan-
dem feature system. All the three systems have 2500 states with
10 Gaussian mixtures for each state on average. For decoding
unsupervised fMLLR method is employed.

3.3. Subspace GMM system

In this paper, SGMM systems are built on top of corresponding
GMM-HMM systems in previous section. The UBM has 400
Gaussians. The state number is 2500 with around 4 sub-states
for each. We followed the standard procedure in KALDI to train
SGMM system, and speaker vector training is also enabled [10].

3.4. Tanh-neuron DNN system

Recently, KALDI is upgraded to support new DNN training
recipes and parallel training in KALDI can be conducted across
external and internal machines with or without GPU support.
As a baseline, we trained various tanh-neuron DNNs with three
sets of features as stated in 3.2. All DNNs have 7 hidden layers
with 1000 neurons in each layer, and neurons in output layers
correspond to tied triphone states. Details of this DNN training
method are stated in [11].

2The PLP feature here means PLP+ΔPLP+ΔΔPLP in all tandem
scenarios.

3.5. P-norm DNN system

Inspired by the idea of maxout network [20] with y=maxi xi as
activation function, [11] proposed a p-norm nonlinear activation
function written as y=(

∑
i |xi|

p)
1

p and showed that p=2 and
input group size being 10 can yield the best performance. In
this paper we adopt this novel DNN framework to show its ef-
fectiveness under SST circumstance. We keep p=2, but change
the input group size to 6 in this paper.

4. Supervised experiments
This section investiges various front-end feature and acoustic
modeling methods using limited supervised training data (see
Table 1).

4.1. PLP plus pitch features

Table 2 reports WER from various acoustic modeling methods
using PLP plus KALDI pitch features.

Table 2: WER with various acoustic modeling methods using
PLP+Kaldi pitch features

acoustic modeling methods WER(%)
PLP+GMM-HMM+fMLLR 77.3

PLP+pitch+GMM-HMM+fMLLR 71.8
PLP+pitch+fMLLR+SGMM 69.8

PLP+pitch+fMLLR+tanh-neuron DNN-HMM 68.5
PLP+pitch+fMLLR+p-norm DNN-HMM 66.6

Table 2 shows that: (1) KALDI pitch feature is very ef-
fective in improving recognition performance (5.5% absolute
WER reduction), (2) stat-of-the-art acoustic modeling recipes
are consistently better than conventional GMM-HMM, (3) p-
norm DNN is better than tanh-neuron DNN, giving a 1.9% ab-
solute WER reduction.

4.2. Bottle-neck features

Bottle-neck features (BNFs) are generated after training stacked
bottle-neck neural networks. Table 3 shows WER in various
acoustic models. Compared with Table 2, results in Table 3

Table 3: WER with various acoustic modeling methods using
BNFs

acoustic modeling methods WER (%)
BNF+GMM-HMM+fMLLR 67.0
BNF+fMLLR+SGMM 66.4

BNF+fMLLR+tanh-neuron DNN-HMM 67.0
BNF+fMLLR+ p-norm DNN-HMM 65.8

clearly demonstrate the effectiveness of using BNFs for acous-
tic modeling. Also, we notice that GMM-HMM system gets the
largest improvement(71.8%-67.0%). Taking BNFGMM-HMM
as baseline, p-norm DNN-HMM gives an additional 1.2%WER
reduction, while tanh-neuron DNN-HMM yields no benefits.
This again demonstrates the effectiveness of p-norm DNNmod-
eling technique.

4.3. Tandem features

In this section, WERs using BNF+PLP tandem features are re-
ported, Table 4 indicates our results. As is shown in Table 4,
a marginal WER reduction could be obtained by combing BNF
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Table 4: WER with various acoustic modeling methods using
BNF+PLP (69 dim) tandem features

acoustic modeling methods WER (%)
tandem+GMM-HMM+fMLLR 66.8
tandem+fMLLR +SGMM 66.3

tandem+fMLLR +tanh-neuron DNN-HMM 66.5
tandem+fMLLR + p-norm DNN-HMM 65.7

with PLP features. We tried various tandem methods, however,
no obvious advantage from one over the other is observed.

5. Semi-supervised experiments
Based on experimental results in Section 4, we conduct SST
recognition experiments with two feature sets: BNF and
BNF+PLP tandem features.

5.1. Overall unsupervised data selection

Experiments in [7,8] already show that SST can improve speech
recognition performance even when no confidence measure is
employed, so we start off using all unsupervised data. Ta-
ble 5 shows results of various modeling methods using semi-
supervised trained BNFs. WERs shown in Table 5 are about 2

Table 5: WER with various acoustic modeling methods using
semi-supervised trained BNFs

acoustic modeling methods WER (%)
tandem+GMM-HMM+fMLLR 64.7
tandem+fMLLR +SGMM 64.3

tandem+fMLLR +tanh-neuron DNN-HMM 64.6
tandem+fMLLR + p-norm DNN-HMM 63.6

point lower then those in Table 3 and 4 respectively, indicating
the effectiveness of SST.

Table 6 further presents results using semi-supervised
trained tandem features (only the BNF part is related to SST). In

Table 6: WER with various acoustic modeling methods using
semi-supervised trained tandem features

acoustic modeling methods WER (%)
tandem+GMM-HMM+fMLLR 64.8
tandem+fMLLR +SGMM 64.3

tandem+fMLLR +tanh-neuron DNN-HMM 64.5
tandem+fMLLR + p-norm DNN-HMM 63.0

general, comparison between Table 6 and Table 5 is consistent
with those corresponding experiments without SST. Simply put,
DNN-HMM based recipes still give a slight WER improvement
using tandem features, while GMM-HMM and SGMM systems
don’t. Particularly, p-norm DNN-HMM shows better WER im-
provement (0.6% absolute). These might be due to that DNN
is more insensitive to feature diversity, in addition to taking ad-
vantage of higher dimensional features.

5.2. Confidence based data selection

In this section we investigate how much benefit can be ob-
tained by using utterance based confidence score to select
machine transcribed data. To this end we define Cw =
maxendw

t=startw:wi=w Cwi
as word confidence in lattice, and

Tw = endw − startw as corresponding duration, then utter-
ance confidence score is computed as Cu = 1

T

∑
w∈lat

TwCw.
These are similar to what is advocated in [7, 21].

Since the unsupervised data has ground-truth transcripts in
our experiments, we can use these transcripts as reference to
verify if our confidence estimate method is working. Figure 1
plots absolute WER reduction versus confidence on unsuper-
vised data. From Figure 1, we can observe that the confidence
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Figure 1: Confidence score versus Word Error Rate reduction
on unsupervised data using tandem+fMLLR+p-norm DNN-
HMM recipe in supervised case

score is strictly correlated with the WER reduction, demonstrat-
ing the method is working. Note that the best WER on the un-
supervised data from our supervised tandem+fMLLR+p-norm
DNN-HMM is 69.1%.

Once the confidence score for each utterance is estimated,
we vary threshold to select machine transcribed data to merge
with the supervised data, and SST is started on SBN NNs ac-
cordingly. To visualize how much WER will be affected by
confidence based data selection method, Figure 2 illustrates the
details. First of all Figure 2 shows confidence score in BNF
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Figure 2: Confidence score versus various acoustic model
performance with semi-supervised trained BNF based tandem
method

based SST is not crucial, probably due to too many errors within
the machine transcribed data (about 70%WER). The best abso-
lute WER reductions are only around 0.2 with confidence score
being about 0.4, compared with no confidence score used at all.
Secondly, It also shows the performance of the SST is getting
worse once the confidence threshold is larger (over 0.4) because
of less data being utilized. Actually, what we observed from
Figure 2 is basically consistent with ones in [7].
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6. Keyword search experiments
One of the primary goals in Babel program is to conduct key-
word search (KWS) using corresponding SR system. In this
section we are investigating several aspects regarding to lat-
tice density, lattice oracle error rate, and Actual TermWeighted
Value (ATWV) change before and after SST, within the three
acoustic modeling methods. This is worthwhile since WER and
ATWV are two disjoint performance metric, and better WER
does not always mean better ATWV as shown in [16]. We also
note though it is clearly shown SST can improve recognition
and KWS performance with similar data in [17], no other de-
tails are given there.

6.1. Task description

We use OpenKWS13 eval keyword list to conduct KWS exper-
iments on the dev data in Table 1. The list contains 4065 KW
instances, 2180 of which have OOV words to the decoding dic-
tionary, resulting 53.6% OOV rate in terms of detection. How-
ever such a higher OOV issue is irrelevant with our concern.

6.2. Lattice density versus decoding beam

Figure 3 illustrates lattice density versus decoding beam. From
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Figure 3: Lattice decoding beam versus density in various
acoustic modeling methods

Figure 3 we can infer feature discrimination ability is improved
and thinner lattices are generated with corresponding models af-
ter SST. This also implies models after SST generally generate
lattice faster.

6.3. Lattice oracle error versus density

Denser lattice normally means lower oracle error. However be-
sides this common sense it is also meaningful to know how
much oracle error reduction can be achieved by SST. Figure
4 plots lattice oracle error rate versus lattice density for the
three systems. From Figure 4 we observe that there is no ob-
vious difference in lattice oracle error rate for SGMM and tanh-
DNN systems before and after SST. This might be due to there
is only limited WER reduction with SST. However the p-norm
DNN clearly demonstrates lattice oracle error rate reduction af-
ter SST.

6.4. ATWV versus lattice density

Figure 5 plots ATWV KWS performance versus lattice den-
sity. From Figure 5 SGMM and tanh-DNN systems have no
ATWV improvement with SST. On the contrary the ATWV
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Figure 4: Lattice density versus oracle error rate in various
acoustic modeling methods
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Figure 5: Lattice density versus ATWV in various acoustic
modeling methods

of the SGMM system is degraded after SST. However the p-
norm DNN system can make ATWV improvement with SST.
We guess that ATWV is more closely correlated with lattice
oracle error rate than one-best WER from Figure 5. Surpris-
ingly SGMM system yields much worse ATWV than thanh-
DNN overall. This is beyond our expectation since it has better
oracle error rate than thanh-DNN system from Figure 4. We are
suspecting SGMM has much different recognition pattern style
compared with DNN system and they should be well comple-
mentary.

7. Conclusions and future work
In this paper, we investigated bottle-neck feature based semi-
supervised training using SGMM, tanh-neuron DNN and a
generalized maxout p-norm DNN acoustic modeling methods.
WER improvements are achieved using SST in all scenarios.
We also found p-norm DNN consistently yields the best per-
formance in terms of both SR and KWS tasks with or without
semi-supervised training. Future work will be aimed at model
based SST training, and hopefully it is complementary to the
feature based SST.
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