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ABSTRACT
This paper investigates a weighted finite state transducer
(WFST) based syllable decoding and transduction method
for keyword search (KWS), and compares it with sub-word
search and phone confusion methods in detail. Acoustic con-
text dependent phone models are trained from word forced
alignments and then used for syllable decoding and lattice
generation. Out-of-vocabulary (OOV) keyword pronuncia-
tions are produced using a grapheme-to-syllable (G2S) sys-
tem and then used to construct a lexical transducer. The
lexical transducer is then composed with a keyword-boosted
language model (LM) to transduce the syllable lattices to
word lattices for final KWS. Word Error Rates (WER) and
KWS results are reported for 5 different languages. It is
shown that the syllable transduction method gives compara-
ble KWS results to the syllable search and phone confusion
methods. Combination of these three methods further im-
proves OOV KWS performance.

Index Terms— Speech Recognition, Keyword Search,
OOV Keywords, Syllable Transduction, WFST

1. INTRODUCTION

KWS for multilingual speech is challenging because of the
presences of novel speech sounds, agglomerative morphol-
ogy and the lack of transcribed data for training. The IARPA
Babel program [1] aims to solve these problems by provid-
ing a limited amount of transcribed training data and lexicons
for words and syllables in several minority languages. In a
resource limited setting like this, spotting OOV keyword be-
comes essential for high performance measured by the metric
Actual Term Weighted Value (ATWV) [2].
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One way to handle OOV keywords is to find IV words
which are closest in pronunciation to the OOV keywords [3,
4]. Confusion matrices can be used [5–8] to generate al-
ternative words or strings of words to stand as proxies for
OOV keywords. Another method is to use sub-word units
like phones, syllables or morphs for representing OOV words.
Subword lattices are created either by performing subword
decoding [9–12] or by converting the word lattice into a sub-
word lattice [13,14]. Hartmann et al. compare different strate-
gies and report best performance by carrying out separate de-
codings for each subword type [15]. Our method uses syl-
lables as the decoding subword unit, and generates syllable
lattices first. Instead of searching subword lattices, we trans-
duce syllable lattices to word lattices, using a G2S system to
produce syllable pronunciations for the OOV keywords. Syl-
lables produced by the G2S system which do not appear in
the training data and therefore do not have pronunciations are
replaced by the perceptually nearest in vocabulary syllable.
Syllable lattices are then transduced to word lattices using the
lexical transducer and a boosted language model.

This work covers 5 different languages and compares syl-
lable transduction with the other two OOV handling methods
mentioned above. Both recognition WER and ATWV are re-
ported and the pros and cons of these three methods are dis-
cussed in detail. Our experiments also show that these meth-
ods combine well. Section 2 describes the WFST framework
for lattice transduction, Section 3 discusses related work. Sec-
tion 4 describes our experimental setup and Section 5 gives
the recognition and KWS results on 5 different Babel lan-
guages. Section 6 gives analysis and Section 7 presents our
conclusion.

2. SYLLABLE TRANSDUCTION FRAMEWORK

2.1. Syllable decoding

The typical WFST decoding framework in speech recognition
[16] is represented as

H ◦ C ◦ L ◦G (1)



where H , C, L and G are WFSTs for a state network of tri-
phone HMMs, a context-dependent transducer of phones, a
pronunciation lexicon for words, and an n-gram word LM,
respectively; ◦ represents the composition operator. To per-
form a syllable decoding, substituting syllable transducers for
word transducers gives

H ◦ C ◦ Lphn2syl ◦Gsyl (2)

where Lphn2syl denotes a lexical transducer for syllable-
phone pronunciations and Gsyl is a syllable LM.

Lphn2syl can be constructed using the syllable lexicon
given by the BABEL program. For a syllable language model
Gsyl, we need to decompose word transcriptions to syllable
transcriptions. Since each word may have multiple pronunci-
ations, we first align word sequences with acoustics using the
trained acoustic models, and then map words to syllable se-
quences that match the phone alignments. Consider the word
record in English, it can be pronounced r i k o r d or r E k er d
depending on whether it is a verb or noun. For good trisylla-
ble modeling knowing which syllables were produced is im-
portant. Preliminary experiments showed that a syllable lan-
guage model trained on aligned syllable transcriptions gives
better performance than randomly picking word-to-syllable
pronunciations during decomposition.

2.2. Handling OOVs via G2S

Our pronunciation prediction utilizes the Phonetisaurus G2P
system [17] trained on IV pronunciations. There is too little
data to train an accurate G2S system for an average of 2000
syllables per language. It is better to use the better accuracy
of G2P and find a way to put in syllable boundaries. We ex-
ploit the fact that Phonetisaurus is WFST-based, and impose
additional constraints on the output of the system to produce
syllables. We collect statistics over which phones can appear
in onset, nucleus, or coda positions; and also statistics over
the different kinds of syllable structures found in the data.
Languages are very specific on which consonents are allowed
in onset and coda positions as well as what syllable structure
is allowed. Then two transducers are created: one that maps
phones to the same phone with possible syllable positions,
and another that maps the phone/syllable position pairs to the
syllable position. We also create an acceptor that provides a
unigram language model over valid syllable structures. These
three constraints are composed and used as a constraint to be
composed with the original Phonetisaurus G2P system. We
can then read off the syllable structure of the predicted phone
pronunciation easily, selecting the most likely syllable bound-
ary.

For OOV syllables predicted by the G2S system described
above, we match them to nearest IV syllables using a metric
over phone pronunciations which weights the vowel identity
highest, the onset consonants the next highest and the coda

consonants the lowest. This weighting is justified by per-
ceptual experiments which show humans perceive the vowel
and prevocalic consonants better than the postvocalic conso-
nants [18].

2.3. Syllable to Word Transduction

After generating syllable lattices and OOV pronunciations,
we construct a syllable to word lexical transducer Lsyl2wrd

and then compose it with syllable lattices to get word lattices.
For KWS, words in the lattices are aligned to states using the
lexicon to retrieve time information.

2.4. Boosted Language Model

To exploit knowledge of the keywords, a unigram language
model is trained on all the keywords and then interpolated
with original word language model. This boosted language
model is compiled into a grammar WFST and then composed
with the syllable to word lexical transducer. To use the com-
posed lexical transducer, we first remove syllable sequence
language model scores in syllable lattices, and then transduce
to word lattices via composition, i.e.

L̂atsyl ◦ Lsyl2wrd ◦Gboost (3)

where L̂atsyl denotes syllable lattices without language
model score, Lsyl2wrd denotes lexical transducer for word-
syllable pronunciations and Gboost is boosted LM.

The use of keyword information in this routine satisfies
the so-called ”No test audio re-use” (NTAR) condition in BA-
BEL program because decoding is done before keyword in-
formation are used.

3. OTHER KWS METHODS

3.1. Direct Search for Keywords in Syllable Lattices

Direct search for OOV keywords in subword lattices serves as
a baseline in this paper, following the pipeline in [10]. How-
ever, instead of doing mixed word and subword decoding, we
decode with syllables only. We create a syllable-based index
from the lattices, tracking all the syllables in the lattices, their
start and end times, and their lattice posterior probabilities.
Keywords can be searched from the index with their corre-
sponding syllable representation. For multiword keywords,
their representation would be the cross product of all the rep-
resentations of each word.

3.2. OOV Keyword Proxy using Phone Confusion

Using phone confusions for proxy keyword generation serves
as another baseline in this paper. The general framework is
described in [6]. Specifically, a list of proxies for each OOV
keyword K is generated using the following procedure:

K ′ = Project(ShortestPath(K ◦ L2 ◦E ◦ (L∗1)−1)) (4)



where L1 is the original pronunciation lexicon, L2 is L1 aug-
mented with phone pronunciations of OOV words, E is the
phone-to-phone confusion transducer and K ′ are the proxies
of K. The OOV pronunciations are automatically obtained us-
ing the G2P tool [19].

The phone confusion model E reflects the error patterns
of ASR system. Thus it is necessary to estimate E on devel-
opment data. For each utterance of the dev set, the reference
phone string (from forced-alignment) is aligned with the ASR
phone hypothesis (best decoding path) to obtain confusion
statistics. These statistics are then encoded into transducer
E. Because the composed transducer K ◦ L2 ◦ E′ ◦ (L∗1)−1
can be very large, we prune it using the ShortestPath algo-
rithm with beam 5, and then select the top 500 proxies for
each OOV keyword.

4. EXPERIMENTAL SETUP

4.1. Data

BABEL data shown in Table 1 are used for the recognition
and KWS experiments. Each language pack divides into sub-
sets of full language pack (FLP) and the limited language
pack (LLP). Around 10 hours of development data is pro-
vided for parameter tuning, and test sets are used for final
evaluation. In this work, WER and ATWV are reported all
based on eval-part1 data, which is a subset of evaluation
set. Table 2 records actual speech time (after segmentation).

version keyword list
Assamese IARPA-babel102b-v0.5a conv-eval.kwlist4
Bengali IARPA-babel103b-v0.4b conv-eval.kwlist4
Creole IARPA-babel201b-v0.2b conv-eval.kwlist4
Zulu IARPA-babel206b-v0.1e conv-eval.kwlist4
Tamil IARPA-babel204b-v1.1b conv-eval.kwlist5

Table 1. Babel data for OP1 languages

LLP-training dev evalp1
Assamese 10.03 8.67 3.69
Bengali 10.32 8.83 4.81
Creole 11.36 9.63 4.27
Zulu 10.38 9.95 4.22
Tamil 11.77 10.33 13.11

Table 2. Babel audio data in hours

4.2. Recognition System

The Kaldi toolkit [20] was used for speech recognition in
this work. The standard 13-dim PLP features, together with
3-dim Kaldi pitch feature [21], were extracted and used for
maximum likelihood GMM model training. Features are
then transformed using LDA+MLLT before the SAT training.
After a standard GMM training recipe is performed, a tanh-
neuron DNN-HMM hybrid system is trained using the same

features. Details of DNN training are documented in section
2.2 in [22]. The major difference between our setup and
default Kaldi setup is that we use word position-independent
phones for acoustic models. This is necessary for syllable
transduction because position-dependent phones make the
lexicon too large for lattice word alignment.

4.3. KWS System

The KWS experiments for syllable transduction and syllable
lattice search generally follow the method described in [23].
Tuning of the KWS parameters (i.e. LM scale, posterior scale
and fraction) are done on development data using the Nelder
Mead optimization method [24]. For the phone confusion
word proxy method, we use the Kaldi toolkit for proxy gen-
eration and OOV search. KST score normalization [25] was
used in all our scoring methods.

5. EXPERIMENTS

Table 3 shows language pack and keyword list statistics. In
general, #Words-to#Syls ratio is between 2 to 10, and OOV
rate varies from 16% to 22%1.

#Words #Syls #KWs #OOV KWs
Assamese 7661 1679 1608 259
Bengali 7933 2082 1594 283
Creole 4897 1981 1533 287
Zulu 13674 1345 1412 380
Tamil 14265 2620 2188 500

Table 3. Statistics for language packs

5.1. Syllable Transduction

After transducing the syllable lattices to word lattices, we
compute WER based on word lattices and compare them with
word based recognition systems. Table 4 shows WER com-
parison for all 5 languages. We see that the syllable trans-
duction method is able to produce good speech recognition
performance. In general, transduced lattices do give a higher
WER than the original word based lattices, but they help spot
OOV words.

WER S2W ER
Assamese 68.8 72.3
Bengali 66.5 72.3
Creole 64.0 70.1
Zulu 72.8 78.0
Tamil 78.9 80.9

Table 4. WER with Lattice Transduction

1OOV are counted with regard to eval-part1



Fig. 1. OOV ATWV for different languages

5.2. Keyword Search

Figure 1 shows OOV ATWV for all 5 languages. We see
that syllable transduction (SylT) generally gives compara-
ble results to the other two methods, i.e. phone confusion
(PhoneConf) and syllable search (SylS), and a combination
of these methods improves the overall performances.

To get a feeling for the characteristics of these three meth-
ods, we present miss rate and false alarm rate on Assamese in
Table 5. It shows that the syllable transduction method tends
to give lower false alarm rate, indicating more accurate hy-
potheses.

PhoneConf SylS SylT
PMiss 0.853 0.827 0.859
PFA 0.00006 0.00006 0.00003

Table 5. PMiss and PFA for Assamese

Although the primary focus of this paper is on OOV
KWS, IV ATWV is also an important metric. Table 6 shows
IV ATWV for baseline word system (Word), syllable search
(SylS) and syllable transduction (SylT). It shows that the

Word SylS SylT
Assamese 0.3064 0.2539 0.2958
Bengali 0.3094 0.2523 0.2914
Creole 0.3759 0.3367 0.3640
Zulu 0.3139 0.2401 0.2572
Tamil 0.2595 0.2123 0.2203

Table 6. IV ATWV

syllable transduction method gives reasonable IV ATWV, in-
dicating that the transduction method is effective in spotting
both IV and OOV keywords.

6. ANALYSIS

The phone confusion method usually generates many more
hypotheses than the other two methods, giving a higher hit
rate as well as false alarm rate. The generated index file is
usually much bigger than the other two methods, and it slows

down the KWS. In addition, it uses the dev set for confusion
matrix estimation, which makes tuning of hyper-parameters a
bit complicated.

Syllable search usually generates a reasonable amount of
hypotheses and gives good search results on OOV keywords.
This method does not require post-processing for syllable lat-
tices. On the other hand, searching syllables in lattices usually
takes more time than searching in word lattices, especially
when lattices are dense.

Compared with the above methods, syllable transduction
usually gives fewer but more accurate hypotheses, and is good
at spotting both IV and OOV keywords. It has been shown
that combination of a word system and a syllable transduction
system gives better results than combining the word system
with syllable search [26]. This method also provides word lat-
tices that are useful for OOV recognition. While it does not
require any modification of the KWS template, this method
requires a G2S system and a boosted language model for bet-
ter performance.

In general, these three methods combine well in terms of
ATWV. This combination strategy does not require training
multiple acoustic models, which reduces the training time and
computation greatly.

7. CONCLUSION

We show that syllable transduction is an effective way of deal-
ing with OOV issue for KWS. It does not require modification
on KWS template and is good at spotting both IV and OOV
keywords. Analysis on miss rate and false alarm is presented,
along with KWS results on 5 different languages. Experi-
ments show that it is complimentary to syllable search and
phone confusion method, and they can give much better OOV
ATWV in combination.
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