
Combining Speech and Speaker Recognition - A Joint Modeling
Approach

by

Hang Su

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Nelson Morgan, Chair
Doctor Steven Wegmann
Professor Keith Johnson

Professor Jerome Feldman

Summer 2018

Combining Speech and Speaker Recognition - A Joint Modeling Approach

Copyright c© 2018

by

Hang Su

1

Abstract

Combining Speech and Speaker Recognition - A Joint Modeling Approach

by

Hang Su
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley
Professor Nelson Morgan, Chair

Automatic speech recognition (ASR) and speaker recognition (SRE) are two
important fields of research in speech technology. Over the years, many efforts have
been made on improving recognition accuracies on both tasks, and many different
technologies have been developed. Given the close relationship between these two
tasks, researchers have proposed different ways to introduce techniques developed for
these tasks to each other.

In the first half of this thesis, I explore ways to improve speaker recognition per-
formance using state-of-the-art speech recognition acoustic models, and then research
alternative ways to perform speaker adaptation of deep learning models for ASR us-
ing speaker identity vector (i-vector). Experiments from this work shows that ASR
and SRE are beneficial to each other and can be used to improve their performance.

In the second part of the thesis, I aim to build joint model for speech and speaker
recognition. To implement this idea, I first build an open-source experimental frame-
work, TIK, that connects well-known deep learning toolkit Tensorflow and speech
recognition toolkit Kaldi. After reproducing state-of-the-art speech and speaker
recognition performance using TIK, I then developed a unified model, JointDNN,
that is trained jointly for speech and speaker recognition. Experimental results show
that the joint model can effectively perform ASR and SRE tasks. In particular, ex-
periments show that the JointDNN model is more effective in speaker recognition
than x-vector system, given a limited amount of training data.

i

To my parents and my girlfriend.

ii

Contents

Contents ii

List of Figures v

List of Tables vi

1 Introduction 1

2 Background 3
2.1 Automatic Speech Recognition . 3

2.1.1 Introduction . 4
2.1.2 Feature Extraction . 5
2.1.3 Lexicon . 5
2.1.4 Language Modeling . 6
2.1.5 Acoustic Modeling . 6
2.1.6 Speech Corpora . 10
2.1.7 Metric for Performance Measurement 10

2.2 Speaker Recognition . 11
2.2.1 Introduction . 12
2.2.2 Feature Extraction . 12
2.2.3 Acoustic modeling . 13
2.2.4 Speaker modeling . 13
2.2.5 Scoring methods . 14
2.2.6 Deep learning approaches . 14
2.2.7 Speech Corpora . 16
2.2.8 Metric for Performance Measurement 17

2.3 Conclusion . 17

3 Speaker Recognition Using ASR 19
3.1 Introduction . 19
3.2 Related Work . 20
3.3 Factor Analysis applied to Speech . 20

iii

3.3.1 GMM supervector approach 20
3.3.2 Gaussian Mixture Factor Analysis Model 21
3.3.3 Model Estimation and Other Details 22
3.3.4 PLDA model for scoring . 24

3.4 Neural Networks for Speaker Recognition 26
3.4.1 General Framework . 26

3.5 Experiments . 27
3.5.1 Data . 27
3.5.2 Setup . 27
3.5.3 Results and Analysis . 28
3.5.4 Using ASR features for speaker verification 29

3.6 Conclusion . 30

4 Speaker Adaptation Using I-vectors 31
4.1 Introduction . 31
4.2 Related work . 33
4.3 Speaker adaptation using i-vectors . 34

4.3.1 Regularization for i-vector sub-network 35
4.4 Experimental Setup . 36
4.5 Results and Discussion . 36

4.5.1 Effects of regularization . 36
4.5.2 Comparing with feature space adaptation method 37

4.6 Conclusion . 38

5 TIK: An Open-source Toolkit Connecting Tensorflow and Kaldi 39
5.1 Introduction . 39
5.2 Related Work . 40
5.3 A Tensorflow framework . 41

5.3.1 Network trainer . 42
5.3.2 Data Preparation . 42
5.3.3 Model and proto file . 42
5.3.4 Training and scheduler . 43
5.3.5 Connection to Kaldi . 45

5.4 Experiments and Results . 45
5.4.1 DNN and LSTM for ASR . 45
5.4.2 DNN + i-vector for Speaker Recognition 46
5.4.3 X-vector for Speaker Recognition 47

5.5 Multi-GPU training . 49
5.5.1 Introduction . 49
5.5.2 Multi-GPU training in Tensorflow 51
5.5.3 Experiments and Analysis . 51

5.6 Conclusion . 52

iv

6 Joint Modeling of Speaker and Speech 53
6.1 Introduction . 53
6.2 Related Work . 54
6.3 Joint Modeling of Speaker and Speech 56

6.3.1 General Design of JointDNN 56
6.3.2 Data preparation . 57
6.3.3 Loss function . 58
6.3.4 Making predictions . 58
6.3.5 Buckets for training and testing 58

6.4 Experimental Setup . 59
6.5 Results and analysis . 60

6.5.1 SRE performance . 60
6.5.2 ASR performance . 60
6.5.3 Adjusting Beta . 60

6.6 Conclusion . 62

7 Conclusions 64
7.1 Contributions . 64
7.2 Future Work and Beyond . 65

Bibliography 65

v

List of Figures

2.1 Decoding pipeline for ASR . 4
2.2 Graphical Model for GMM . 7
2.3 Updated Graphical Model for GMM 8
2.4 Graphical Model for HMM . 9
2.5 Pipeline for speaker recognition systems 12
2.6 Graphical model for LDA . 15
2.7 Graphical model for PLDA . 15
2.8 DET curve and EER . 18

3.1 Graphical Model for Factor Analysis Applied to GMM Supervector . 21
3.2 Graphical Model for Gaussian Mixture Factor Analysis Model 22
3.3 Graphical Model for simplified PLDA 25
3.4 Framework for Speaker verification using Neural Network 26
3.5 DET curve for speaker ID performance 29

4.1 Adaptation of DNN using i-vectors 34
4.2 Comparing systems with different regularization weights 37

5.1 System Design of TIK . 41
5.2 Sample Tensorflow graph for an LSTM model 44
5.3 Structure of x-vector model in Kaldi 48
5.4 Structure of x-vector model in TIK 49
5.5 DET curve for i-vector, Kaldi’s x-vector and TIK’s x-vector systems . 50
5.6 Multi-GPU training of deep learning models 51

6.1 Structure of j-vector model . 55
6.2 Structure of multi-task recurrent model 56
6.3 Structure of JointDNN model . 57
6.4 Histograms of utterance lengths and utterances per speaker 59
6.5 DET curve for speaker recognition performance 61

vi

List of Tables

3.1 EER of speaker recognition systems trained with different posteriors . 28
3.2 fMLLR posteriors with different feature front-end 30

4.1 Statistics for training and test set . 36
4.2 WER of systems trained on 10-hour training set 37
4.3 WER of systems trained on full training set 38

5.1 Speech Recognition Performance . 46
5.2 Speaker Recognition Performance using Kaldi and TIK 47
5.3 Comparing TIK and Kaldi’s x-vector EER 49
5.4 Multi-GPU training speed up and ASR performance 52

6.1 EER of JointDNN model for speaker recognition 60
6.2 WER of JointDNN model for speech recognition 62
6.3 EER of JointDNN model with different interpolation weight 62

vii

Acknowledgments

This section of my thesis probably took me the longest to finish writing. When I look
back on my PhD studies, I feel so blessed to have a great many people helping me
along the way.

I am honored to have two advisors in ICSI during my PhD studies. My advisor,
Nelson Morgan, is a gentleman with all virtues I would expect from a PhD mentor.
He is very nice and open, and allows me to explore my research interests the way I
like. My second advisor, Steven Wegmann, is also very nice and he shares a great
many merits with Morgan. His background in mathematics and engineering makes
him both theoretical and practical, and has the ability to grisp the in-depth nature
of problems. Morgan and Steven are both great mentors and have been fun to work
with.

Apart from my official advisors, I also received a great deal of help from other
mentors. Here, I would like to thank Haihua Xu, who guided me greatly during
my first year of PhD. His extensive knowledge and experience in developing speech
recognition systems let me realize the importance of mastering the tools and infras-
tructure for system building. I feel very lucky to collaborate with him on a variety of
ASR projects. Also, I would like to thank Jim Hieronymus, who guided me through
the first paper in my PhD studies and instructed me on linguistic knowledges. Also
I would like to thank Frank Seide, who enrolled me twice as a research intern and
introduced the whole field of speech recognition to me.

Thanks to Arlo, Shuoyiin, Suman, and TJ Tsai, for setting role models for me
to learn from. Every time when I felt frustrated or anxious, I would look up their
works and learn from them, and gradually gain peace of mind. Arlo and Shuoyiin
are extremely helpful when I consult them regarding PhD studies. Adam and Chuck,
together with Arlo, also helped me greatly during my PhD, and they gave me many
useful suggestions on the dissertation talk.

Thanks to Misa Zhu and Frank Rao, who introduced me to Rokid Alab / Rlab.
The easy access to massive parallel computing resources allowed me to conduct ex-
tensive experiments, without which I could never finish what I have planned to do.
During my time there, Aiden Fang and Lichun Fan also helped me a great deal setting
up the infrastructure. Discussions with Chenghui and Yuanhang on speaker recog-
nition related topics are both enlightening and beneficial. Thanks to all members in
Rokid Alab and Rlab - the time I spent there are memorable and priceless.

Lastly, and certainly not least, I would like to thank my parents, Fengquan Su
and Xiangge Liu, and my girlfriend, Qing Zhao, for their unconditional support and
deep love. I could not imagine how I would accomplish this without them standing
by my side and keep me motivated. I will always cherish the whole process.

1

Chapter 1

Introduction

Automatic Speech Recognition (ASR) and Speaker Recognition (SRE) are two
basic tasks in the speech community. Both of the tasks are of great interest in the
speech community, and scholars have conducted extensive research on them. The
focus of this thesis is to explore connections between these two tasks and to seek
ways to improve one’s performance with the help of the other. Generally speaking,
ASR and SRE share many similarities in that they are dealing with same kind of data
and they use similar statistical / deep learning models. Therefore, much research has
been done on introducing techniques developed for them to each other. These include
speaker adaptation, speaker adaptive training and universal background model for
SRE.

Most previous work on this topic focuses on improving evaluation performance on
one of the two tasks. Speaker adaptation and speaker adaptive training are techniques
for developing speaker-dependent acoustic models so that better ASR performance
could be achieved. Some other research exploits ways to improve SRE performance
using acoustic models trained for ASR tasks.

The work presented in this thesis consists of two parts. First, I show that
ASR and SRE are beneficial to each other. This part extends existing research on
introducing ASR models to SRE tasks and speaker adaptation using i-vectors. I
will first show that ASR models trained with better speech features can be used to
improve baseline SRE models. Then I show that speaker-specific information is useful
for acoustic modeling in ASR with a proper regularization method.

The second part of the work is on building a joint model for speech and speaker
recognition. To achieve this, I first build an experimental framework on top of Ten-
sorflow and show that state-of-the-art ASR and SRE performance can be reproduced.
Then I develop a neural network joint model that is trained in a multi-task way, and
show that this model can perform both ASR and SRE tasks with reasonable accura-
cies. I further explore ways to fine-tune the model so that better performances could
be achieved. These two parts together form the main contribution of the thesis, and
the descriptions of each chapter are as below:

CHAPTER 1. INTRODUCTION 2

Chapter 2 provides introductions to automatic speech recognition and speaker
recognition. Both traditional and state-of-the-art deep learning approaches are cov-
ered, together with common data sets and evaluation metrics.

Chapter 3 first introduces the theory of factor analysis for speaker recognition
and then describes research on combining neural-network and i-vector framework for
speaker recognition using ASR.

Chapter 4 proposes to use i-vector for neural network adaptation, and introduces
a new way of regularization to mitigate the overtraining problem. Experiments show
that speaker vectors can be helpful for improving ASR performance.

Chapter 5 describes an experimental framework, TIK, that is designed for speech
and speaker recognition. This framework connects the existing deep learning toolkit
Tensorflow and the ASR toolkit Kaldi, and supports flexible deep learning models
for ASR and speaker recognition. State-of-the-art experimental results are presented
and multi-GPU training is covered.

Chapter 6 then proposes a joint-model for speech and speaker, JointDNN, that
is trained using multi-task learning. Experiments on speech and speaker recognition
are presented and the results are compared with baseline systems. It is shown that
this JointDNN model is effective in utilizing limited amount of training data for ASR
and speaker recognition.

Chapter 7 concludes the thesis and provide some ideas on possible future work.

3

Chapter 2

Background

Automatic speech recognition (ASR) and speaker recognition are two major
fields of research in speech technology. Over the years, much effort has been made
to improve recognition accuracies on both tasks, and many different technologies
have been developed. In this chapter, I will give some requisite details of both tasks,
including basic modeling approaches, state-of-the-art research directions, typical data
sets, and evaluation metrics.

2.1 Automatic Speech Recognition

Automatic speech recognition is an artificial intelligence task that requires trans-
lation of spoken language into text automatically. The first ASR system probably
dates back to the 1950s when Bell Labs researchers built a system for single-speaker
digit recognition. Since then, several waves of innovation have taken place in this
area, which led to great progress in both research and industry. After all these years,
the focus of research has gone from single speaker to speaker independent systems,
and also from isolated word system to large vocabulary continuous speech recognition.
With the progress made in this area, people are able to build systems that produce
reasonable recognition results for clean conversational speech, with word error rate as
low as 5.8%-11% [125], achieving human parity. Though these performance results are
encouraging, they do not mean that the problem has been solved: the best-performing
system may not be applicable for real life application because of computation or real-
time requirement. Also, standard datasets on which state-of-the-art performances
are achieved often do not represent speech collected in real life scenarios, such as
common acoustic environments in restaurants or cars. Both of these indicates that
more efforts are needed to bring current technologies to a higher level.

In this work, I will focus on continuous-time speaker-independent speech recog-
nition, especially for a large vocabulary task. Also I will restrict my experiments to
use standard conversational speech datasets.

CHAPTER 2. BACKGROUND 4

Figure 2.1. Decoding pipeline for ASR

2.1.1 Introduction

Just as the way humans learn to understand speech, building a speech recognizer
require extensive amount of speech data called training data. By exploring patterns
and characteristics of these training data, we build models that can learn from training
data to perform transcriptions of unseen data (called test data). The former part of
the process is called training, and the latter part is called testing (or decoding).

In a machine learning approach for speech recognition, models are essentially
parameters to be estimated from the training data. Estimation of these parameters
could be done by setting an objective function over the training data and optimizing
the target. For testing, we perform recognition of test data using the trained model,
and compare the outputs with ground-truth transcriptions to get an evaluation metric.

In general, a typical speech recognition system consists of feature extraction,
acoustic model, lexicon and language model. Each of these modules could be built
separately and then integrated together to perform speech recognition (decoding).
Figure 2.1 shows the decoding pipeline for such a system.

From a statistical point of view, ASR is the task of finding the most probable
sequence of words W that matches our observation O. Following formula using Bayes
rule, we have

P (W |O) =
p(O|W)P (W)

p(O)
(2.1)

which breaks our model into two parts: acoustic model p(O|W) and language model
P (W). Here P (W) is the probability of the word sequence W , and p(O|W) is the
value of the posterior probability density function (p.d.f). Thus, the task of ASR

CHAPTER 2. BACKGROUND 5

becomes
arg max

W
P (W |O) = arg max

W
p(O|W)P (W) (2.2)

assuming p(O) being constant. We could further decompose the first part by intro-
ducing a sequnce of phones Q as hidden variables:

arg max
W

P (W |O) = arg max
W

∑
Q

p(O|Q)P (Q|W)P (W) (2.3)

and these three components correspond to acoustic model, lexicon and language mod-
eling respectively.

Though the focus of this work is on acoustic models p(O|Q), we will first cover
the other three components before introducing acoustic modeling techniques.

2.1.2 Feature Extraction

Feature extraction itself is a broad research area in the speech community. Basic
approaches in this area target the extraction of frequency information from raw wave
files so that the speech recognizer will be less influenced by the presence of noise or
reverberaation. Some approaches also consider extracting temporal information from
speech. For better performance of ASR systems, several kinds of features have been
proposed, including filterbank features, mel-scaled cepstral coefficients (MFCC) [23],
perceptual linear prediction (PLP) [46] and Power-normalized cepstral coefficients
(PNCC) [58]. Of all these proposed features, MFCC is probably the most widely-
used feature in real applications.

A standard feature extractor generally processes segments of speech every 10 ms
using a sliding window of 25 ms. These segments (called frames) are then converted
into feature vectors using signal processing techniques. The feature vectors X are
concatenated and used to represent our observation O, so that the acoustic model
becomes p(X|Q).

In this dissertation, MFCCs will be used as default features for all experiments.

2.1.3 Lexicon

A lexicon, also called a dictionary, is a map from written words to their pro-
nunciations in phones. This component helps to bridge the gap between words in
written form and their acoustics. The use of a lexicon makes it possible to recognize
words that do not appear in the training set. Even for words that do not appear in
the lexicon, we can use another technique called “grapheme to phoneme” (G2P) to
predict pronunciation for them using their written form.

A phones is a speech segment that possesses distinct physical or perceptual
properties [122] and serves as the basic unit of phonetic speech analysis. For a typical
spoken language, number of phones may range from 40 to a few hundreds. Phones

CHAPTER 2. BACKGROUND 6

are generally either vowels or consonants, and they may last 5 to 15 frames (50 to
150ms).

During testing, the lexicon is used to restrict the search path so that phone
strings are valid, and to convert phone strings to words.

2.1.4 Language Modeling

A language model (LM) is a probability distribution over sequences of words,
P (W), which may be decomposed as

P (W) = P (w1, w2, ..., wn) = P (w1)P (w2|w1) · · ·P (wn|w1, . . . , wn−1) (2.4)

And each of these probabilities could be estimated using maximum likelihood methods
by checking counts of word sequences c(w1, . . . , wn) in the training corpus.

P (wn|w1, . . . , wn−1) =
c(w1, w2, . . . , wn)

c(w1, w2, ..., wn−1)
(2.5)

Due to sparsity of training data, typical language modles for ASR make a k-order
Markov assumption, i.e.

P (wn|w1, . . . , wn−1) = P (wn|wn−k, . . . , wn−1) (2.6)

In real ASR applications, k = 2 and k = 3 are the most common settings, and
corresponding LMs are called “bigram model” and “trigram model” respectively.

To make sure the recognition outputs may contain n-grams unseen in the train-
ing data, many smoothing techniques are developed [17, 59]. Of all these methods,
Kneser-Ney (KN) smoothing usually works particularly well on ASR task. In this
dissertation, I will also use KN smoothing as my default setup.

2.1.5 Acoustic Modeling

Acoustic modeling is a critical componentfor speech recognition systems. Simply
put, acoustic modeling is the task of building statistical models or deep learning mod-
els to estimate output likelihoods p(X|Q). Over the years, roughly three generations
of acoustic modeling methods have been proposed for continuous speech recognition.
In a generative approach, the joint distribution of X and Q, p(X,Q) is modeled. In
a discriminative approach, posterior distribution p(Q|X) is directly modeled. In a
hybrid approach, both a generative model and a discriminative model are used. We
will introduce them in turn in the following subsections.

CHAPTER 2. BACKGROUND 7

2.1.5.1 GMM-HMM - A Generative approach

The Hidden Markov Model for continuous time speech recognition dates back to
mid-1970s [8, 51]. Later in 1985, Gaussian Mixture Models were introduced to gener-
ate HMM output distributions [86]. In this approach, HMMs are used for transition
modeling and GMMs are used for frame classification. The acoustic model is thus
broken into two parts under the Markov assumption:

p(X|Q) =
∑
S

p(X|S)P (S|Q)

=
∑
S

∏
t

p(xt|st)P (st|st−1,Q)
(2.7)

where S is a sequence of sub-phone units, xt and st are frame feature and sub-phone
unit at frame t.

Figure 2.2. Graphical Model for GMM

The first part, p(xt|st), is modeled by Gaussian Mixture Models (GMM):

xt ∼
∑
k

πk N (µk,Σk) (2.8)

where xt denotes p-dim speech feature for frame t, πk is weight for mixture k, µk and
Σk are mean and variance for multivariate Gaussian distribution. Here it is required
that 0 ≤ πk ≤ 1, and

∑
k πk = 1.

Parameters of GMMs are estimated using maximum likelihood estimation (MLE).
For GMM, the log-likelihood function could be written as:

log p(X|θ) = log
∏
t

p(xt|θ) =
∑
t

log
(∑

k

πkp(xt|µk,Σk)
)

(2.9)

CHAPTER 2. BACKGROUND 8

where θ = {π, µ,Σ} denotes model parameters. This function is difficult to optimize
because it contains the log of a summation term. This leads to the use of expectation
maximization (EM) algorithm where we introduce a hidden variable ct that indicates
which mixture “generated” each data sample xi. Figure 2.3 shows the updated GMM
graphical model.

Figure 2.3. Updated Graphical Model for GMM

By introducing the hidden variable ct, the log-likelihood function is simplified
and used to derive the formula for model update:

πk =
1

T

∑
t

P (ct = k|xt, θ)

µk =

∑
t xtP (ct = k|xt, θ)∑
t P (ct = k|xt, θ)

Σk =

∑
t P (ct = k|xt, θ)(xt − µk)(xt − µk)>∑

t P (ct = k|xt, θ)

(2.10)

Here T is the total number of frames for this GMM.
For the second part in Equation 2.7, P (st|st−1,Q), it is modeled by Hidden

Markov Models (HMM). The standard GMM-HMM approach models each context
dependent tri-phone [60] with an HMM model with 3 to 5 hidden states. Figure 2.4
shows graphical model representation of such an HMM with 3 hidden states. Here,
α denotes the transition probability distribution, sp,1, sp,2 and sp,3 denote 3 hidden
states of the HMM, and c1,t, c2,t and c3,t corresponds to the mixture hidden variables in
Figure 2.3. The GMM is then cascaded to the HMM to model emission probabilities.

For HMM, EM is also used for MLE. Here, hidden variables sp,n are estimated
by aligning speech features to transcriptions. Details of the derivation and update
formula can be found in [51, 30].

CHAPTER 2. BACKGROUND 9

Figure 2.4. Graphical Model for HMM

2.1.5.2 Hybrid Approach

An early hybrid Neural network approach for speech recognition was explored
by H. A. Bourlard and N. Morgan[12] in 1990s. In this approach, a neural network
is used to predict frame posterior P (st|xt) at each time step, and these posteriors are
converted to likelihoods P (xt|st) before sending to the decoder using

P (xt|st) ∼
P (st|xt)
P (st)

(2.11)

In this approach, an HMM is still used to model transition probability. Following
the same hybrid philosophy, recurrent neural networks also showed great potential
in the 1990s [94, 95]. In 2010s, a new way of initializing deep neural networks was
proposed[47] and then applied to continuous time speech recognition [21, 99]. Since
then, researchers have been exploiting massive amount of data and computation to
train deep neural networks models for ASR.

2.1.5.3 End-to-end Approaches

Third generation of ASR models were proposed in 2006 when Connectionist
Temporal Classification (CTC) was introduced by A. Graves[37]. This method was
later explored and improved in other research projects [43, 67, 15, 38].

In this approach, a neural network is used to perform end-to-end speech recog-
nition, i.e. it no longer relies on an HMM model or lexicon, and just leaves transition
modeling to a Recurrent Neural Network (RNN). The model is trained with segments
of speech as input and CTC loss as its training target. Most of these systems do not
even use language model to perform decoding.

In this work, such end-to-end approaches are not covered. I will primarily use
the hybrid HMM/neural network approach for my ASR systems.

CHAPTER 2. BACKGROUND 10

2.1.6 Speech Corpora

To evaluate different technologies developed for speech recognition and facili-
tate exchange of research ideas, many speech corpora have been prepared and made
public by various parties, with a focus on different scenarios. These includes digit
sequences (TIDIGITS), broadcast news, spontaneous telephone speech (Switchboard
/ CallHome), meetings (ICSI meetings) etc. In this section, three standard speech
corpora for training / test are introduced and statistics on these datasets are reported.

2.1.6.1 Switchboard

Switchboard dataset[35] is a collection of about 2,400 two-sided English tele-
phone conversations among 543 speakers. It consists of approximately 300 hours of
clean telephone speech. This is dataset is one of the most widely used speech dataset
for large vocabulary continuous speech recognition (LVCSR) task.

2.1.6.2 Fisher

Fisher English dataset[20] is another telephone conversation dataset for LVCSR.
It contains time-aligned transcript data for 5,850 complete conversations (around
2000 hours).

2.1.6.3 Eval2000 dataset

2000 HUB5 English Evaluation Speech [29] is a collection of conversational tele-
phone speech collected by LDC for evaluation of ASR systems. It consists of 20
unreleased telephone conversations from the Switchboard studies and 20 telephone
conversations from CALLHOME American English Speech.

2.1.7 Metric for Performance Measurement

By comparing automatic recognition outputs and human transcription, we can
evaluate and compare different ASR systems. Word error rate (WER) is a metric
introduced to evaluate recognition accuracy [121]. WER measures the rate of word
errors in ASR outputs, which is computed as:

WER =
S +D + I

N
(2.12)

where S is the number of substitutions, D is the number of deletions, I is the number
of insertions, and N is the number of words in the reference. Computation of WER
requires aligning each hypothesized word sequence with the reference using dynamic
programming.

CHAPTER 2. BACKGROUND 11

Although WER might not be a good metric for tasks like speech to speech
translation or spoken language understanding[120], in this work, we will stick to this
metric, as it is the most widely accepted one, and poor performance on WER often
has a major effect on downstream measures.

2.2 Speaker Recognition

Speaker recognition, also called speaker identification (SID), is the task of iden-
tifying a person from characteristics of voices. As a sub-task of speaker recogni-
tion, speaker verification is about verifying if a speech segment comes from a specific
speaker. Since speaker recognition and speaker verification share the same evaluation
process under the metric EER (introduce later in 2.2.8), we will just use - ”speaker
recognition” (or SRE) for simplicity. Also, the terms are sometimes used interchange-
ably in referenced papers.

Depending on contents underlying speech segments, speaker recognition systems
can be classified into two categories: text-dependent and text-independent. In fact,
methods developed for a text-independent task can be applied to text-dependent
tasks without much change. In this work, I will primarily focus on text-independent
speaker recognition.

The core task of all speaker recognition systems is to extract vectors that repre-
sents speaker voice characteristics. This idea dates back to the 1960s when the first
generation of speaker recognition systems were developed. In this approach, several
statistics are computed over the set of training reference utterances provided by each
speaker to form a speaker vector for decision making[44, 22]. In the 1970-1980s, pat-
tern matching approaches became more popular as Dynamic Time Warping (DTW)
and HMM were introduced to this field [74]. These approaches shared many simi-
larities with those applied to ASR. In late 1990s, Gaussian mixture models (GMMs)
have became the dominant approach for text-independent speaker recognition [91]
and speaker recognition began sharing methodologies with research in speaker adap-
tation.

Around 2007, the use of joint factor analysis for speaker modeling showed great
recognition performance in NIST speaker recognition evaluations [55, 27]. Later, in
2011, a new model with a similar philosophy was proposed where factor analysis
is used to define a low-dimensional space that models both speaker and channel
variabilities. The new speaker vector extracted from this model, called “i-vector”,
has shown better performance compared to old methods[26]. Since then, the i-vector
approach became the state-of-the-art technique for speaker recognition.

In this work, factor analysis serves as the baseline system for speaker recognition.
The following section will give an introduction for this approach.

CHAPTER 2. BACKGROUND 12

Figure 2.5. Pipeline for speaker recognition systems

2.2.1 Introduction

Similar to the way that researchers develop ASR systems, building speaker recog-
nition systems requires the use of recorded speech data called training data. Depend-
ing on methods used for building the system, these training data are not necessarily
transcribed into words. In some approaches, even speaker labels are not required, i.e.
the system is trained in an unsupervised way. However, supervised models generally
improve system performance so they may be cascaded to unsupervised models. Dur-
ing the evaluation phase, two more sets of speech data with speaker information are
required: enrollment data and test data. Here enrollment data are used to register
specific speakers and test data are used to test the system and compare prediction
outputs with ground-truth labels.

Modern factor analysis approach for speaker recognition usually has 4 modules:
feature extraction, acoustic modeling, speaker modeling and scoring. The acoustic
model, usually a Gaussian mixture model, is built to model speech features. Once
this model is trained, speaker models could be estimated using speaker-dependent
data and the acoustic model. Scoring is done afterwards when speaker models are
used to extract speaker dependent vectors, i.e. speaker embeddings. Figure 2.5 shows
the full pipeline of developing such a system. In this approach, acoustic modeling

2.2.2 Feature Extraction

Similar to the feature extraction module in ASR, speaker recognition systems
process speech frame by frame (10 ms) using a sliding window of 25 ms, and generate
speech features using standard signal processing techniques. Two popular acoustic

CHAPTER 2. BACKGROUND 13

features are MFCC and PLP, which were initially developed for ASR and then applied
to speaker recognition [89]. Even though the settings of parameters might be different
from those used for ASR (typically higher order models are used, to capture more
acoustic characteristics of each speaker’s voice), the general framework for feature
extraction is about the same.

In this dissertation, MFCC will be used as default feature for i-vector systems.

2.2.3 Acoustic modeling

In the standard factor analysis approach, Gaussian mixture models (GMM) are
used for acoustic modeling. Differing from a GMM-HMM system for ASR, here a
single, speaker-independent background model (called a universal background model,
or UBM) is used to represent the speech feature distribution. The reason for this
setup is two-fold: 1. training data for speaker recognition does not necessarily come
with transcriptions, so HMM alignments will not be available; 2. GMM-HMM system
have separate models for phone or sub-phone units so as to discriminate them, while
here we focus more on discriminating different speakers. A GMM model with hidden
variable is repeated in Equation 2.13.

xt|ct ∼ N (µct ,Σct)

P (ct) = πct ,
K∑
k=1

πk = 1
(2.13)

Here xt denotes p-dim speech feature for frame t, ct is a hidden variable that indicates
the mixture that generates xt, µ and Σ are mean and variance for Gaussian. K is the
total number of mixtures. Historically, UBM with 512-2048 mixture components have
been used for modeling speech feature vector distributions [91]. Model parameters
are estimated using the expectation maximization (EM) algorithm. Once this model
is in place, it could later be used for speaker modeling.

2.2.4 Speaker modeling

As is mentioned earlier, the core part of speaker recognition systems is to extract
vectors that represents speakers. In a statistical view, this procedure can be seen as
speaker modeling.

A straight-forward way to get speaker-dependent models is to align data to the
UBM, and collect first and second order statistics. This is equivalent to fitting a
GMM using speaker data with a UBM as seed model [56]. Another way is to perform
maximum a posteriori (MAP) adaptation of a UBM [90]. Both methods will create
speaker-dependent GMM models. By concatenating the means of these Gaussian
mixtures, GMM supervectors could be generated to represent different speakers.

CHAPTER 2. BACKGROUND 14

Once GMM supervectors are gathered, factor analysis could be used to learn
a speaker subspace from the supervector space. In the classic joint factor analysis
(JFA) approach [56], a supervector for a speaker is decomposed into speaker inde-
pendent, speaker dependent, channel dependent, and residual components. While in
the i-vector approach [26], a conversation side supervector is decomposed into side
independent and side-dependent component 1. Both approaches enable us to extract
a low-dimensional vector to represent each speech segment (in the latter approach,
the low-dimensional vector is called i-vector). Once this vector is extracted, it could
be used to compare against enrolled speaker vectors to make a recognition decision.

2.2.5 Scoring methods

The process of comparing test vectors against enrollment speaker vectors is called
scoring. A basic scoring method for speaker vectors is cosine scoring. Given v1 and
v2 as the speaker vectors for enrollment and test speech segments, respectively, the
score for the trial is computed as:

score(v1, v2) =
〈v1, v2〉
‖v1‖‖v2‖

(2.14)

This method is easy to use and deploy, and it is shown that consine scoring
yields reasonable recognition performance [25].

Since the i-vector model is an unsupervised model, it is natural to apply dis-
criminative methods as a post-processing step so that speaker vectors can better
distinguish different speakers. A basic discriminative model for this task is linear
discriminant analysis (LDA). This model assumes vectors from each speaker follows
a multivariate Gaussian distribution, and these Gaussians share the same covariance
matrix. Figure 2.6 shows the graphical model for LDA.

A Bayesian version of LDA, called probabilistic linear discriminant analysis
(PLDA), is also widely used. This model was initially proposed for face recogni-
tion [50]. It was then introduced to the field of speaker recognition in 2011 [33]. In
addition to original LDA assumptions, this model assumes a Gaussian prior for each
speaker’s mean vector. Figure 2.7 shows the graphical model for PLDA.

Both models are trained using maximum likelihood estimation. For PLDA,
the EM algorithm is necessary as it introduces hidden variables 2. Experiments have
shown that both models improve speaker recognition performance effectively [33, 109].

2.2.6 Deep learning approaches

In recent years, using deep neural network to capture speaker characteristics has
become more and more popular. A common method of applying neural networks

1Details of i-vector approach will be introduced in Chapter 3
2Details of the derivation will be covered in Chapter 3

CHAPTER 2. BACKGROUND 15

Figure 2.6. Graphical model for LDA

Figure 2.7. Graphical model for PLDA

CHAPTER 2. BACKGROUND 16

to speaker recognition is to import frame posteriors from a DNN to the i-vector
framework [62]. This method makes use of as ASR acoustic model to gather speaker
statistics for i-vector model training. It has been shown that this improvement leads
to a 30% relative reduction in equal error rate.

The d-vector is proposed in [114] to tackle text-dependent speaker recognition
using neural network. In this approach, a DNN is trained to classify speakers at
the frame-level. During enrollment and testing, the trained DNN is used to extract
speaker specific features from the last hidden layer. “d-vectors” are then computed
by averaging these features and used as speaker models for scoring. This method
shows 14% and 25% relative improvement over an i-vector system for clean and noisy
conditions respectively.

In [106], a time-delay neural network is trained to extract segment level “x-
vectors” for text-independent speech recognition. This network takes in features
of speech segments and passes them through a few non-linear layers followed by a
pooling layer. Activations from this pooling layer are then sent to some non-linear
layers to classify speakers at segment-level. X-vectors extracted by this model later
serve as speaker models for enrollment and testing. It is shown that an x-vector DNN
can achieve better speaker recognition performance compared to traditional i-vector
approach, with the help of data augmentation.

End-to-end approaches based on neural network are explored in [45, 132, 130,
118]. In these papers, a neural network usually takes in a tuple or a triplet of speech
segments, and train against a specially designed loss function or binary labels (match
/ mismatch). These methods all exploit large amounts of training samples for better
performance, and are shown to be effective for speaker recognition, especially on short
utterances.

2.2.7 Speech Corpora

2.2.7.1 SRE datasets

The NIST Speaker Recognition Evaluation (SRE) is a series of evaluations de-
signed for text independent speaker recognition research [27]. This series dates back
to 1997 and has performed 14 evaluations over the years. Data we used in this work
includes SRE 2004, SRE 2005, SRE 2006 and SRE 2008 3.

2.2.7.2 SRE 2010 test set

2010 NIST Speaker Recognition Evaluation Test Set [2] was collected as part of
the NIST Speaker Recognition Evaluation [2]. It contains 2,255 hours of American En-
glish telephone speech and speech recorded over a microphone channel. The telephone

3LDC ids for these data sets are LDC2006S44, LDC2011S01, LDC2011S04, LDC2011S09,
LDC2011S10, LDC2012S01, LDC2011S05 and LDC2011S08

CHAPTER 2. BACKGROUND 17

speech segments are approximately 10 seconds and 5 minutes, and the microphone
excerpts are 3-15 minutes in duration. In this work, speaker recognition experiments
use SRE 2010 test set for performance evaluation. Both the “core condition” and one
“optional condition” are used. For the core condition, both enrollment data and test
data are two-channel telephone conversational excerpts of approximately five min-
utes total duration. For the optional condition we pick, both enrollment data and
test data are two-channel excerpts from telephone conversations estimated to contain
approximately 10 seconds of speech.

2.2.8 Metric for Performance Measurement

Each test utterance and enrollment speaker comparison is referred to as a trial.
For a binary classification task like speaker verification, true positive rate and false
positive rate can be used to evaluate performance of classifiers. A receiver operating
characteristic (ROC) curve can then be created by plotting the true positive rate
and false positive rate at various thresholds. Alternatively, a detection error tradeoff
(DET) curve could be created by plotting the false negative rate versus false positive
rate. For DET curve, the x- and y-axes are scaled by logarithmic transformation so
that comparison between different DET curves become clearer. Figure 2.8 shows a
sample DET curve plot (blue line).

Sometimes, comparing two curves can be complicated. This is especially true
when two systems perform well in different regions (e.g. one is good at picking correct
hits, while the other is better at rejecting false candidates). To avoid this problem,
another metric called equal error rate (EER) is introduced. EER corresponds to the
point on DET curve where false negative rate and false positive rate equal. The
red point shown in Figure 2.8 is such an example. This meric has the advantage
of condensing an entire curve to a single, well understood number, while it has the
disadvantage of corresponding to an equal weighting of the 2 types of errors, which
rarely corresponds to the concerns of any particular application.

2.3 Conclusion

In this chapter, the fundamentals for both ASR and speaker recognition are
covered, which form the basis for the research described in this thesis. The neural
network, being the building block for most state-of-the-art systems, is also intro-
duced. The following chapters will then present my thesis research on ASR, speaker
recognition and joint modeling.

CHAPTER 2. BACKGROUND 18

Figure 2.8. DET curve and EER

19

Chapter 3

Speaker Recognition Using ASR

3.1 Introduction

Factor analysis has become a dominant methodology for speaker verification in
the last few years. This model is trained to learn a low-dimensional subspace from
high-dimensional Gaussian Mixture Model (GMM) supervector space. The projected
low-dimensional vector is used to represent different identities, thus denoted as i-
vector (identity vector). I-vectors are usually transformed using a probabilistic linear
discriminant analysis (PLDA) model to produce verification scores, which could be
seen as a score normalization step. It has been shown that this could improve speaker
verification performance significantly.

While deep learning has been successfully used for acoustic modeling in speech
recognition, it is harder to apply it to speaker verification. The reason for this is
two-fold: 1. speaker verification is not a standard classification task where targets
are defined during training – unknown speakers may show up during the enrollment
phase or the testing phase; 2. training data for speaker models are limited, e.g., each
recording may only be used to extract one i-vector for the speaker. Despite all these
difficulties, a novel scheme is proposed in [62] where a DNN is introduced to perform
frame alignment in GMM supervector generation. This method opens up a new way
of using ASR models for speaker recognition, which serves as the basis for the work
presented here.

In this chapter, I first introduce the theory of applying factor analysis to speaker
recognition, with a focus on comparing two different modeling ideas. In this part,
I will give a derivation of factor analysis for speaker verification using a variational
Bayesian framework, with a bias term included in hidden variables as is done in
Kaldi. Implementation details of factor analysis and PLDA in the Kaldi toolkit are
also discussed.

I then further investigate the effectiveness of incorporating ASR acoustic model
into factor analysis. Following the scheme in [62], we collect posterior statistics from
Deep Neural Networks (DNN) trained with raw MFCC and MFCC with different

CHAPTER 3. SPEAKER RECOGNITION USING ASR 20

feature transformations, including Linear Discriminant Analysis (LDA), Maximum
Likelihood Linear Transformation (MLLT) and feature-space Maximum Likelihood
Linear Regression (fMLLR). We also perform decoding for speech utterances and try
to use decoded lattice posteriors for speaker verification. All these methods have
shown improvement over a naive DNN trained with MFCC features. This also opens
up a basic question for factor analysis based speaker verification: what is the best
way to generate posteriors for i-vector extraction?

3.2 Related Work

In Section 2.2.1 it is mentioned that GMM supervector generation serves as the
first step for building a traditional i-vector system. To integrate deep learning into
the i-vector framework, Lei et al. proposed to use a DNN trained for ASR to collect
alignment statistics for GMM supervector estimation [62]. This approach is shown to
be effective for speaker verification, where a 30% relative reduction on equal error rate
(EER) was achieved. The authors reasoned that this approach allows the system to
make use of phonetic content information for speaker recognition. The same method
was further investigated in [57] and similar performance is achieved.

Another way to incorporate deep learning into the i-vector framework is by using
bottle-neck features. This feature is first proposed in [39] to perform ASR tasks. It is
then used as inputs for a GMM-UBM system for speaker recognition in [127]. Later
in 2015, bottleneck features were combined with the i-vector framework to perform
speaker and language recognitions [92, 93]. The authors show that this method gives
better performance than the DNN + i-vector approach proposed in [62].

My work in this chapter mainly focuses on extending the DNN + i-vector ap-
proach by using “better” acoustic models trained for ASR. This includes using better
features for model training and sequence-discriminative training. On the theory side,
I present comparison between two different i-vector modeling ideas, and discuss the
implementation details of the i-vector system in Kaldi.

3.3 Factor Analysis applied to Speech

3.3.1 GMM supervector approach

As is mentioned in Section 2.2.1, factor analysis is an unsupervised learning
method that is usually used for dimension reduction.

xi = µ+ Azi + εi, zi ∼ N (0, I), εi ∼ N (0,Ψ) (3.1)

where xi is data samples (GMM supervectors) i to be analyzed, µ is global mean of
the data, A is an p by q projection matrix where p > q, zi is a q-dimensional latent

CHAPTER 3. SPEAKER RECOGNITION USING ASR 21

Figure 3.1. Graphical Model for Factor Analysis Applied to GMM Supervector

factor (i.e. i-vector) for sample i, and εi is Gaussian noise. Ψ is usually assumed to be
diagonal, assuming independence between different dimensions of the error. Factor
analysis could thus be seen as an extension to principal component analysis (PCA)
where εi are assumed to have equal variance[113].

In the context of speaker recognition, factor analysis could be used to model
GMM supervectors for each speaker or conversation [54]. Here we write it in terms of
GMM mean vectors rather than a single supervector so that it is better formulated.

µi,c = µc + Aczi + εi,c, zi ∼ N (0, I) (3.2)

εi,c ∼ N (0,Ψi,c) Ψi,c = n−1i,c Ψc (3.3)

µi,c is mean of Gaussian mixture c, and ni,c =
∑

t p(c|xi,t) is total number of ”counts”
for that mixture from speaker i. These are accumulated by aligning each frame t
from speaker i to UBM components c using acoustic model. Figure 3.1 shows the
graphical model representation for this approach.

Model parameters are estimated using Expectation Maximization (EM), and the
auxiliary function is

Q(θ|θ(t)) =
∑
i

Ezi|µi,θ(t) log p(µi, zi|θ) (3.4)

p(µi, zi|θ) = p(µi|zi)p(zi) (3.5)

3.3.2 Gaussian Mixture Factor Analysis Model

The previous GMM supervector approach is straight-forward to implement.
However, it assumes an equal prior for each speaker or speech segment depending
on the way we feed in our data, which may not make sense if speech data for each
speaker / segment is not equally distributed. Also, this model treats GMM means as
observed data and use GMM and factor analysis separately, which is not a staight-
forward statistical model. To build a Gaussian Mixture Factor Analysis model, we

CHAPTER 3. SPEAKER RECOGNITION USING ASR 22

Figure 3.2. Graphical Model for Gaussian Mixture Factor Analysis Model

may want to take speech frames into consideration and incorporate factor analysis
into the GMM. Here, I propose to preserve the GMM structure and mixture priors
of the model, and derive training formulas using variational Bayes inference. This
is different from the model used in [54] where fixed frame alignments are used for
model formulation. Our approach is in line with what was mentioned in [62] when
alignments are replaced by priors. This derivation makes it clear how we perform EM
for mixture factor analysis.

In this model, speech features are modeled by as

xi,t|ci,t, zi ∼ N (Aci,tzi,Ψci,t)

zi ∼ N (ν, I), ci,t ∼ pc(k)
(3.6)

where xi,t is p-dimensional feature vector for frame t of conversation i. ci,t
indicates the mixture that generates xi,t. zi is a q-dimensional latent factor (i.e. i-
vector) for this conversation. Aci,t is a p by q projection matrix for mixture ci,t that
projects i-vector to feature space, and Ψci,t is covariance matrix for mixture ci,t. pc(k)
is prior distribution of Gaussian mixtures, with

∑
k pc(k) = 1. The graphical model

for this approach is shown in Figure 3.2, and model parameters θ = {Ac,Ψc|∀c}.

3.3.3 Model Estimation and Other Details

To perform maximum likelihood estimation (MLE), we use likelihood function
as our objective

p(x|θ) =
∏
i

p(zi)
∏
t

∑
c

p(xi,t|ci,t, zi, θ)pc(ci,t) (3.7)

CHAPTER 3. SPEAKER RECOGNITION USING ASR 23

and it is maximized using EM algorithm with auxiliary function

Q(θ|θt) = Ec,z|x,θt log p(x, c, z|θ) (3.8)

= Ez|x,θt
[
Ec|z,x,θt log p(x, c, z|θ)

]
(3.9)

log p(x, c, z|θ) ∝ log p(x, c|z, θ) +
∑
i

log(p(zi)) (3.10)

log p(x, c|z, θ) =
∑
i

∑
t

log(p(xi,t|ci,t, zi)p(ci,t|zi)) (3.11)

where x = {xi,t|∀i, ∀t}, c = {ci,t|∀i, ∀t}, z = {zi|∀i}. Here, both z and c are considered
as latent variables in EM framework.

Since z and c are conditionally dependent given x because of the ”Explaining
Away” effect, there is no closed form solution to update them in a joint fashion.
However, we could approximate an auxiliary function and a posterior distribution
assuming conditional independence between z and c

Q(θ|θt) ≈ Ez|x,θt
[
Ec|x,θt log p(x, c, z|θ)

]
(3.12)

Following the derivation of EM for GMM in [11], the auxiliary function could
be simplified as

Q(θ|θt) ∝ Ez|x,θt
∑
i

[
log p(zi) +

∑
t

∑
k

log p(xi,t|k, zi)γki,t
]

(3.13)

where γki,t denotes the posterior distribution of ci,t given xi,t, i.e. pc|x(k|xi,t).
From here we need the posterior distribution of z given x to proceed.

p(zi|xi) ∝ p(zi)p(xi|zi)

∝ p(zi)
∏
t

∑
c

p(xi,t|ci,t, zi)p(ci,t) (3.14)

Here xi = {xi,t|∀t}, and similarly ci = {ci,t|∀t}.
The analytical solution for this is also intractable. However, we could use a

variational Bayes method[6] to approximate it by

p(zi|xi) ≈ p(zi)e
Eci|xi log p(xi,ci|zi,θ)

≈ p(zi)
∏
t

∏
k

p(xi,t|k, zi)γ
k
i,t (3.15)

So the E-step gives

Ezi|xi = Varzi|xi ·
(∑

k

A>k Ψ−1k
∑
t

γki,txi,t + ν

)
Varzi|xi =

(∑
k

(
A>k
∑
t

γki,tΨ
−1
k Ak

)
+ I

)−1 (3.16)

CHAPTER 3. SPEAKER RECOGNITION USING ASR 24

and maximizing the auxiliary function w.r.t. zi gives

Ak =

[∑
i

∑
t

γki,txi,tEzi|xizi
][∑

i

∑
t

γki,tEzi|xiziz>i
]−1

Ψk =
1∑

i

∑
t γ

k
i,t

Ez|x
∑
i

∑
t

γki,t(xi,t − Akzi)(xi,t − Akzi)>
(3.17)

These formulas are consistent with those derived in [54] using posteriors in the
model formulation.

After updating the projection matrix and the covariance matrix, a Minimum-
Divergence (MD) [13] step could be used to speed up model learning, which includes
an extra step to update the prior ν. An extra transformation (Householder trans-
formation) [1] is used to complete the update of the priors. These steps are already
included in the open-source toolkit Kaldi.

3.3.4 PLDA model for scoring

Several formulations of PLDA have been proposed by researchers, and they can
be unified as the same one[102]. Kaldi’s PLDA follows the formulation proposed in
[50].

xi,j = µg + Aui,j, ui,j ∼ N (vi, I), vi ∼ N (0,Ψ) (3.18)

where xi,j is sample j from speaker i (in this case, they are i-vectors extracted from
previous step), µg is global mean of the data sample. ui,j is sample-specific latent
vector in transformed space, and A is the transformation. vi is speaker specific latent
vector for speaker i, and its variance Ψ is a diagonal matrix. This model assumes
equal variance for different identities, which could be seen as score normalization
model.

Though this model could be trained by EM directly, the training process becomes
easier if we convert it to two-covariance form [14]

yi ∼ N (0,ΣB)

xi,j|yi ∼ N (µg + yi,ΣW)
(3.19)

Here, yi is the latent vector for speaker i. ΣB is between-class variance and ΣW

is within-class variance. The graphical model for this simplified model (shown in
Figure 3.3) is only slightly different from what we introduced in Section 2.2.5.

The conversion is done by setting

yi = Avi, ΣB = A>ΨA, ΣW = A>A (3.20)

µg is estimated as global mean of training data and is fixed during model training.

CHAPTER 3. SPEAKER RECOGNITION USING ASR 25

Figure 3.3. Graphical Model for simplified PLDA

Kaldi uses an EM algorithm that is slight different from what was described in
[102]. Model learning is speeded up by introducing mi = 1

ni

∑
j xi,j, so the model

becomes

yi ∼ N (0,ΣB)

mi|yi ∼ N (µg + yi, n
−1
i ΣW)

(3.21)

and auxiliary function is

Q(θ|θt) =
∑
i

Eyi|mi,θt log p(mi, yi|θ)

p(mi, yi|θ) = p(mi|yi)p(yi)
(3.22)

In E-step, conditional expectation are derived using conjugate prior

Eyi|mi
= (niΣ

−1
W + Σ−1B)−1niΣ

−1
W (mi − µg)

Varyi|mi
= (niΣ

−1
W + Σ−1B)−1

(3.23)

and the M-step model update formulae is

ΣW =
1

N

∑
i

Eyi|mi
ni(mi − µg − yi)(mi − µg − yi)>

ΣB =
1

N

∑
i

Eyi|mi
yiy
>
i

(3.24)

The model is then converted back to the form shown in Equ. (3.18) by performing
Cholesky decomposition of ΣW and eigenvalue decomposition of transformed ΣB.

Once a model is trained, transformed vectors ui,j could be extracted from i-
vector xi,j, and then used for inference against enrollment data. This part is covered
in Section 3.1 in [50].

CHAPTER 3. SPEAKER RECOGNITION USING ASR 26

Figure 3.4. Framework for Speaker verification using Neural Network

3.4 Neural Networks for Speaker Recognition

3.4.1 General Framework

A general speaker verification framework using a neural network (shown in Fig-
ure 3.4) was proposed in [62]. In this approach, a DNN trained for ASR is used
to produce frame alignments. These alignments are used as γki,t in equation 3.16 in
our formulation. It was stated that this pipeline integrates information from speech
content directly into statistics. To better understand how neural networks could be
used to improve speaker recognition performance, we investigate the effectiveness of
better senone posteriors.

Many techniques that improve ASR performance are based on transformation
of feature / model, and another family of methods called sequence-discriminative
training[80] analyzes conditional dependence between frames and optimizes objectives
defined with regard to whole utterances.

3.4.1.1 Linear Discriminant Analysis for speech recognition

LDA is a well-known technique for speech recognition[41, 123]. In general, we
seek to obtain a transformation so that it maximizes the separability of transformed
data. This is usually done by solving a generalized eigen-value decomposition prob-
lem. In Kaldi, LDA transformation matrix is computed to project MFCC features
(with delta and acceleration) into a 40-dim subspace with triphone senones as class
labels.

CHAPTER 3. SPEAKER RECOGNITION USING ASR 27

3.4.1.2 Maximum Likelihood Linear Transformation

MLLT (also known as Global Semi-tied Covariance) is another important tech-
nique for speech recognition[31, 32]. It is a global transformation matrix used to
maximize frame log-likelihood with respect to some constraint. This is usually done
using Expectation Maximization. In Kaldi, MLLT is performed on top of LDA fea-
tures and is performed in feature space.

3.4.1.3 fMLLR transforms

fMLLR (also known as CMLLR) is a useful technique for speaker-adaptive train-
ing (SAT) of speech recognition[61]. It is a speaker-specific feature-space affine trans-
formation that maximize frame log-likelihood, estimated using EM. Kaldi performs
SAT on top of LDA and MLLT.

3.4.1.4 Sequence discriminative training

Sequence discriminative training was developed to address the sequential nature
of speech. In brief, it tries to optimize objectives that are closely related to sequence
classification accuracy[80]. Popular objectives include Maximum Mutual Information
(MMI) [7], boosted MMI [82], Minimum Phone Error [83] and state-level Minimum
Bayes Risk [36].

3.5 Experiments

3.5.1 Data

In this chapter, we use the 300-hour Switchboard-I Training set for ASR model
training.

The UBM and i-vector model training data consists of SWB and NIST SREs.
The SWB data contains 21,254 utterances from 6,820 speakers of SWB 2 Phases I, II
and III. The SRE dataset consists 18,715 utterances / channels from 3,009 speakers
of SREs from 2004 to 2006. PLDA model is trained using NIST SREs from 2004 to
2008, which consists of 28,579 utterances from 5,321 speakers.

We evaluate our systems on the condition 5 extended task of SRE10[2]. The
evaluation consists of conversational telephone speech in both enrollment and test
utterances. There are 387,112 trials, over 98% of which are non-target comparisons.

3.5.2 Setup

The Kaldi toolkit[81] is used for both speech and speaker recognition. For the
speech recognition system, the standard 13-dim MFCC feature is extracted and used

CHAPTER 3. SPEAKER RECOGNITION USING ASR 28

for maximum likelihood GMM model training. Features are then transformed using
LDA+MLLT before SAT training. After GMM training is done, three tanh-neuron
DNN-HMM hybrid systems are trained using different kinds of features: 1. MFCC; 2.
LDA + MLLT transformed MFCC; 3. LDA + MLLT + fMLLR transformed MFCC.
Details of DNN training follows Section 2.2 in [116].

For the speaker verification system, we follow the setup in [103]. The front-end
consists of 20 MFCCs with a 25ms frame-length. The features are mean-normalized
over a 3 second window. Delta and acceleration are appended to create 60 dimensional
frame-level feature vectors. I-vector dimension is set to 600.

To get fMLLR transformations, we need to perform ASR for all speaker veri-
fication data and also a pre-ASR Voice Activity Detection (VAD). VAD is done by
performing phone decoding with a limited search beam, and speaker independent
decoding and fMLLR decoding are done in an iterative fashion. These steps are time-
consuming in practice, making it impractical for real-time scenarios at this time.

3.5.3 Results and Analysis

Table 3.1 shows EERs of factor analysis systems trained with different posteriors
1, and Figure 3.5 plots the corresponding DET curve for these systems. All the
experiments in this table use standard speaker ID MFCC features 2. As is shown,
significant improvements are achieved when we use posteriors from a DNN trained
with transformations 3. We could also see that improvements on EER aligns with
speech recognition performance of ASR systems, and the best performance is from
sequence discriminative training with LDA, MLLT and fMLLR transformation.

eval2000 EER
WER male female all

UBM (4096) – 5.92 6.80 6.36
UBM (8192) – 5.83 6.80 6.31
DNN-MFCC (8824) 19.4 5.63 7.05 6.39

+ LDA + MLLT 16.3 4.07 5.43 4.84
+ SAT (fMLLR)* 14.9 3.98 5.02 4.55
+ MPE* 13.5 3.58 4.75 4.38

GMM-fMLLR-latpost* 21.8 4.50 5.99 5.45
DNN-fMLLR-latpost* 15.0 4.16 5.00 4.66

Table 3.1. EER of speaker recognition systems trained with different posteriors

1EERs in these experiments are worse than those reported in [103] because we use less data for
UBM, FA and PLDA model training. Specifically, we left out Switchboard Cellular, SRE 2005 test
set, SRE 2006 test set and SRE 2008 due to computation issue.

2where a higher model order is used compared with ASR
3Asterisk (*) indicates experiments require decoding of speech

CHAPTER 3. SPEAKER RECOGNITION USING ASR 29

Figure 3.5. DET curve for speaker ID performance

We also try to incorporate phonetic content using posteriors from decode lattices.
We could see from Table 3.1 that these posteriors give comparable results as those
come right out of acoustic models. However, they do require more computation, so
in general these are not good alternatives for this task.

3.5.4 Using ASR features for speaker verification

We learn from Section 3.5.3 that posteriors generated from fMLLR-DNN benefit
speaker verification a lot. This is somewhat surprising because fMLLR transformation
is believed to remove speaker specific information. However, it gives better posterior
estimates, and thus help speaker verification.

In this section, we would like to use transformed features for speaker verification
directly. Table 3.2 compares different features front-end for factor analysis, where
they all share the same posteriors from fMLLR based DNN. “Default” denotes the
standard MFCC feature used in previous experiments, “ASR LDA+MLLT” denotes
the MFCC feature transformed by LDA and MLLT, and “ASR fMLLR” denotes the

CHAPTER 3. SPEAKER RECOGNITION USING ASR 30

MFCC feature transformed by LDA, MLLT and fMLLR. We could see from the table
that both LDA+MLLT and fMLLR features degrade system performances, which
is consistent with our knowledge. Meanwhile, it is interesting to note that these
features, though transformed to remove speaker specific characteristics, still contain
speaker information and can be used for speaker ID. This might raise an issue when
one wants to protect speaker information by applying an fMLLR transform on speech
features and transmit them over the Internet.

Speaker recog feats
EER

male female all
Default 3.98 5.02 4.55
ASR LDA+MLLT 5.43 7.24 6.35
ASR fMLLR 7.85 9.42 8.84

Table 3.2. fMLLR posteriors with different feature front-end

3.6 Conclusion

In this chapter, I study the effectiveness of state-of-the-art ASR techniques for
speaker verification. It was found that speaker verification performance aligns with
speech recognition performance when posteriors are imported from acoustic models
trained for ASR. Out of all the systems, the one using a DNN trained with fMLLR
features and MPE objective produces posteriors that benefit factor analysis most. I
also presented a derivation of factor analysis in the framework of GMM with mixture
priors, using variational Bayes inference, and explain some of the implementation
details for the Kaldi toolkit.

31

Chapter 4

Speaker Adaptation Using
I-vectors

4.1 Introduction

Speaker adaptation refers to methods whereby a speech recognition system is
adapted to the acoustics of specific speakers. The need of such techniques arises since
differences between training and testing speakers usually introduce recognition errors.
Even for human, listening to strangers speaking with unknown accent or dialect may
take much efforts. To mitigate this problem, several approaches may be taken:

1. Use large amounts of training data that covers different kinds of accents /
dialects.

2. Build separate speaker-dependent ASR systems.

3. Adapt speaker-independent system to different speakers.

4. Normalize speech feature before sending them into ASR systems.

Adding training data that covers various speakers make sense in that it forces
models to generalize to different speaker characteristics. However, this does require
more efforts spent on collecting data, and it usually requires an increase in model
complexity. Moreover, out-of-sample test speakers will always introduce some incon-
sistency, so this method may not cure the whole problem. Building speaker dependent
ASR systems would certainly improve recognition accuracy given the same amount of
data, but it requires labeled speech from target speakers, which may not be possible
for out-of-sample speakers.

Methods that fall into the 3rd and 4th approaches generally do not require large
amounts of speaker data, nor do they increase model complexity too much. These
methods are considered to be speaker adaptation techniques. Depending on whether

CHAPTER 4. SPEAKER ADAPTATION USING I-VECTORS 32

transcriptions of speaker data are given, these methods could be either supervised
or unsupervised. Some unsupervised normalization techniques even do not require
training on speaker data, e.g., cepstral mean variance normalization (CMVN) [42]
and vocal tract length normalization (VTLN) [28]. Methods that require the use of
speaker data can be divided into the maximum a posteriori (MAP) adaptation family
and transformation-based adaptation family [124]. Of these methods, constrained
maximum likelihood linear regression (CMLLR), also know as feature-space MLLR
(fMLLR) is one of the most widely used method [31].

Speaker adaptation is also closely related to the concept of speaker adaptive
training [4, 30]. During the model training phase, speaker independent systems nec-
essarily processes data from a large number of speakers. As was mentioned earlier,
this may make the acoustic model waste a large number of parameters encoding dif-
ferences between speakers rather than differences between words / phones. Thus, we
may also normalize speech before sending it into the system during training time,
and this is referred to as speaker adaptive training (SAT) [5]. Oftentimes people use
these two words interchangeably in research papers.

The use of neural networks for ASR opens up a new area for speaker adaptation.
Traditional feature-space speaker adaptation methods developed for GMM-HMM sys-
tems could be applied to neural network ASR systems naturally. Apart from these,
adaptation technologies within the framework of neural network are also developed,
including using transformations [128], adjusting hidden activation states [111] or re-
train part of the model with some regularization on a loss function [64, 129]. These
methods result in a new model, or part-model, for each speaker which adds significant
complexity and storage for cloud-based applications [101].

Recent research on using the i-vector for speaker recognition points to a new
direction of speaker adaptation. Within the framework of deep learning, one may
easily incorporate speaker information by introducing i-vectors to acoustic modeling.
Various ways of incorporating i-vectors have been studied in different research papers
[96, 101, 40, 71], and they all show improvements over baseline speaker-independent
systems.

My work in this chapter adds to the research on using i-vectors for speaker
adaptation of DNN acoustic models. By studying the characteristics underlying this
approach, I proposed a new regularization idea that helps solve the data scarcity issue
for i-vectors. This method is shown to be effective in improving speaker adaptation
performances. Also, I compare the proposed idea with the traditional feature-space
maximum likelihood linear regression (fMLLR) method, and find that these two meth-
ods show a similar effect in ASR performance.

In this chapter, I will first introduce speaker adaptation using i-vectors in gen-
eral, and then go on to describe my proposal of using channel i-vectors with regu-
larization for speaker adaptation. Experimental setup and results will be presented
in Section 4.4 and Section 4.5 respectively. And then I will conclude this chapter in
Section 4.6.

CHAPTER 4. SPEAKER ADAPTATION USING I-VECTORS 33

4.2 Related work

Using i-vectors for speaker adaptation of DNN based ASR systems serves as a
convenient way to avoid system design complexity [96, 101, 40]. In this approach,
i-vectors are fed into neural networks during training as as additional source of infor-
mation, and this makes the neural network use these speaker-specific characteristics
to perform phone state classification. Another similar approach uses a sub-network
for i-vector inputs and adds hidden activations of this sub-network to the original
speech features in hope they help normalize them [70, 71]. Both of these approaches
show promising results on improving ASR performances.

The first approach mentioned above appears to be much easier to implement
and straight-forward to understand, thus attracting great attention. This work also
follows this idea where i-vectors are appended to the original speech features before
being used for neural network training. An inherent problem with using i-vectors this
way is that i-vectors are usually of a higher dimension compared with speech features.
Even if one performs context expansion of the speech feature, i-vector dimension
usually appears similar to that of expanded features. However, the number of data
samples for an i-vector is significantly lower than for speech features. For example, on
the Switchboard dataset [35], there are around 520 speakers in 4800+ recording sides,
totaling 100+ million frames of data. A neural network structure, which exploits huge
amount of data to learn the non-linear relationship between feature and targets, may
not have enough i-vector samples for training compared with their high dimension.
This is called the curse of dimensionality in machine learning research [49]. This
problem may cause a neural network to be over-trained on training samples, and
perform badly on test data.

This problem is closely studied in [101]. It is shown that adding 300-dimention
utterance i-vectors directly as input features does not improve ASR performance.
Also, statistics collected along the training progress shows the neural network is over-
fitting to the i-vector and is unable to use this information during decoding. The
author tries reducing the dimension of the i-vectors, and a slight improvement over
baseline system can be got when the dimension is set to 20. Though dimension reduc-
tion can help avoid curse of dimensionality, it also reduces the i-vectors’ capability for
speaker modeling 1. Another method proposed in this paper is to perform regular-
ization. It begins with a network trained without any i-vector information, and the
input layer of the network is augmented with weights for i-vectors. Then the network
is trained with i-vector inputs, but with L2 regularization back to the original weights.
This methods shows similar performance improvement using a tuned regularization
parameter.

A similar approach for using i-vectors is explored in [96]. Different from the
one just covered, this research uses speaker based i-vectors for adaptation. The au-

1Standard i-vector speaker recognition systems uses dimension 400-600

CHAPTER 4. SPEAKER ADAPTATION USING I-VECTORS 34

Figure 4.1. Adaptation of DNN using i-vectors

thors show better performance with higher dimensional speaker i-vectors (100-200).
They also demonstrated that i-vectors combined well with a conventional CMLLR
adaptation techniques.

The Kaldi toolkit [81] also has an implementation that utilizes i-vectors for ASR.
It differs from the previous two approaches in that it extract i-vectors in an online
fashion. To be specific, the i-vector is estimated in a left-to-right way, meaning that at
a certain time t, it sees input from time 0 to t. This recipe is implemented to address
the online decoding task, where traditional transformation based speaker adaptation
methods cannot be applied effectively.

4.3 Speaker adaptation using i-vectors

My work in this section shares the same model structure as the previous ones,
but uses channel-based ivectors. The reason for this is two-fold: 1. channel i-vectors
are more stable than utterance i-vectors / online i-vectors (when they are available).
This is because longer segments tend to cover different ranges of phones that can
help i-vector estimation. 2. it does not require speaker information being recorded
beforehand, which makes it more applicable to different scenarios. On the other hand,
I introduce a new method for regularization to mitigate the curse of dimensionality
issue. This method avoids reducing the i-vector dimension so as to preserve speaker
information, and also it does not require another model to regularize back to.

Figure 4.1 shows the model structure. The inputs to the neural network are split
into two parts: acoustic features and i-vectors. For the acoustic feature, I use MFCC
transformed by linear discriminative analysis (LDA) and maximum likelihood linear

CHAPTER 4. SPEAKER ADAPTATION USING I-VECTORS 35

transformation (MLLT). These transformations are learned from a baseline GMM-
HMM system. For i-vectors, I extract them using a standard factor analysis model
trained on MFCC features. Input features are passed through several layers of affine
transformation followed by sigmoid nonlinear activations. The final layer is a softmax
layer that predicts HMM states. We denote i-vector inputs and weights associated to
them as “i-vector sub-network”.

During training, we first exclude the “i-vector sub-network” and initialize the
model as a deep belief network. Evidence has shown that a deep belief network
pre-training algorithm will help speed up convergence of deep learning models [47].
This model is pre-trained layer-wise, using gradient-based Contrastive Divergence
algorithm for Restricted Boltzmann Machines (RBM) [47, 72]. After the pre-training,
speech features and i-vectors are combined and sent into the network to perform the
backpropagation (BP) algorithm. Model is updated using stochastic gradient descent
(SGD). I use the “newbob” learning rate schedule, which is to start with a fixed
learning rate for the first few iterations, and began halving the learning rate when
relative improvement of loss on cross-validation set is less than 1%. The training goes
on until relative improvement of loss becomes less than 0.01%.

During decoding, channel i-vectors are extracted for each side of the recordings.
Together with MFCC features, these inputs are passed into the neural network for
frame posterior prediction. These posteriors are then converted to likelihoods before
being sent into a WFST decoder.

4.3.1 Regularization for i-vector sub-network

Regularization for this model is done by adding a L2 regularization term of
the i-vector sub-network. Suppose the original cross-entropy loss function for neural
network training is

Lce = −
∑
t

∑
c

yc,t logP (c|xt) (4.1)

where xt is feature vector for frame t, yc,t is a binary indicator (0 or 1) that equals
1 if class c is the correct state for frame t. P (c|xt) is the predicted probability that
frame t is of state c. Then the new loss function with regularization term is

Lre = Lce + β‖wivec‖2 (4.2)

where ‖wivec‖2 denotes L2 regularization of weights directly associated with i-vectors
(these weights are shown in red in Figure 4.1). β is a hyper-parameter to be tuned
for appropriate value.

CHAPTER 4. SPEAKER ADAPTATION USING I-VECTORS 36

4.4 Experimental Setup

The Kaldi toolkit[81] is used for baseline GMM-HMM and DNN-HMM system
training. Standard 13-dim MFCC feature are extracted, and together with its deltas
and accelerations, used for maximum likelihood GMM model training. Features are
then transformed using LDA+MLLT before SAT training. After GMM training is
done, alignments of training data are prepared for DNN model training. Note that
SAT training is used here only to get better alignments. The transformations learned
in this process are not necessary for DNN model training.

The 300-hour Switchboard data set [35] is used in this work for model training.
Statistics of the data set are provided in Table 4.1. To facilitate system develop-
ment and parameter tuning, a smaller dataset is constructed by randomly picking
recordings and utterances from the full data set. To make sure the utterances are
evenly distributed, we restrict equal number of utterances per channel. Statistics of
this smaller data set is also shown in Table 4.1. The test data for this work is the
NIST 2000 Hub5 evaluation set (Eval2000) [29]. Recognition results of both Switch-
board portion (denoted as “swbd”) and Call Home portion (denoted as “callhm”) are
reported.

channels utterances hours

Switchboard
10-hour set 438 7,825 9.83

full set 4809 192,390 284.76

Eval2000
swbd 40 1,831 2.09

callhm 40 2,635 1.61

Table 4.1. Statistics for training and test set

4.5 Results and Discussion

4.5.1 Effects of regularization

Table 4.2 shows experimental results of models trained on the 10-hour subset of
Switchboard data. The last line of the table shows results from the baseline acoustic
feature only system. Here LDA transformed feature is used as the default acoustic
feature. The top line of the table shows results from i-vector adaptation model. We
can see that i-vector adaptation model performs better than the baseline model in
both validation set frame accuracy and evaluation set decoding WER.

The three lines in the middle of Table 4.2 shows effects of regularization. In fact,
the top line (where no regularization is used) and bottom line (where no i-vectors are
used) corresponds to regularization weight β set to 0 and +∞ respectively. Figure 4.2
plots the WER of Eval2000 swbd portion and frame accuracy on cv set in one plot.

CHAPTER 4. SPEAKER ADAPTATION USING I-VECTORS 37

Validation set Eval 2000 WER
XENT frame acc swbd callhm

With i-vector (β = 0) 2.875 40.21 24.9 39.7
β = 8e− 6 2.857 40.24 24.6 39.3
β = 8e− 5 2.860 40.60 24.5 38.5
β = 8e− 4 2.892 39.98 24.9 39.2
No i-vector (β = +∞) 2.952 38.35 26.5 41.5

Table 4.2. WER of systems trained on 10-hour training set

Figure 4.2. Comparing systems with different regularization weights

We can see that models with moderate regularization do achieve better system
performances, and the frame accuracy on development set is a good indicator of ASR
recognition performance.

4.5.2 Comparing with feature space adaptation method

The left half of Table 4.3 shows recognition performance of different systems
trained on the full Switchboard dataset. We can see from the numbers that i-vector
adaptation and regularization works well on the full data set. On the other hand, we
also want to compare i-vector adaptation with traditional fMLLR based adaptation.
The right half of the table shows systems trained on fMLLR adapted acoustic features.
Compared with the baseline system, we can see the fMLLR system achieves a WER
reduction from 16.0 to 14.9, which is about the same as that achieved by i-vector
adapted system with regularization. Also, when these two are combined, a slight
better WER can be achieved (14.3). From these results we see that effects from

CHAPTER 4. SPEAKER ADAPTATION USING I-VECTORS 38

i-vector and fMLLR adaptation are similar.

feature ac feature +fMLLR
data swbd callhm swbd callhm
acoustic feature 16.0 28.5 14.9 25.6
+ i-vector 15.2 27.1 14.4 25.7
+ regularization 14.6 26.3 14.3 24.9

Table 4.3. WER of systems trained on full training set

4.6 Conclusion

In this chapter, I proposed to use channel i-vectors for speaker adaptation of
DNN hybrid system, and used L2 regularization of “i-vector sub-network” to miti-
gate the curse of dimensionality. Experimental results show that regularization can
effective improve adaptation performance, and the final result matches the approach
that uses the transformation based fMLLR adaptation method. In terms of real ap-
plication, the i-vector adaptation method is handier than the fMLLR method as its
pipeline is much shorter; i.e., it does not require performing ASR using a speaker
independent model and estimating speaker specific transformations.

Future work may include:

1. Perform speaker adaptation on recurrent neural networks.

2. Substitute i-vector with speaker embeddings generated by neural network.

39

Chapter 5

TIK: An Open-source Toolkit
Connecting Tensorflow and Kaldi

5.1 Introduction

In recent years, the resurgence of neural network research has generated a need
for flexible and efficient deep learning frameworks. As a result, a bunch of open-
source implementations have been actively developed. Among them are Tensorflow[3],
PyTorch[77], Caffe[52], MXNet[18] and CNTK[98]. All of these toolkits support flex-
ible model development at large scale and in heterogeneous environments, bringing a
positive impact to deep learning research and production.

Tensorflow, being one of the most popular deep learning toolkits, has been widely
used in many speech research areas. These include automatic speech recognition
[134, 19], speaker recognition [118, 45], speaker diarization [119], etc. The support
for programmable network structure greatly facilitates development and testing of a
research idea, adding to the booming of deep learning research.

Meanwhile, another open source toolkit, Kaldi, has been very popular in the field
of speech research [81]. As we have introduced in earlier chapters, Kaldi has a set of
useful tools written in C++ that helps to build efficient ASR systems conveniently.
It also supports speaker recognition and language recognition tasks. One particular
advantage of Kaldi over other speech recognition toolkits is that many state-of-the-
art recipes for various datasets are publicly available, which greatly reduces the time
needed to start a project. In terms of neural network research, Kaldi has three
different implementations for neural network model building and training. Out of
these three, the “nnet3” is intended to support programmable network structures,
i.e., model building that does not require any actual coding.

Compared with Kaldi’s nnet3, the Tensorflow toolkit is more actively developed
and maintained. By introducing Tensorflow Lite, it becomes possible to deploy deep
learning algorithms on mobile and embedded devices. Also the Tensor Processing

CHAPTER 5. TIK: CONNECTING TENSORFLOW AND KALDI 40

Unit (TPU) that has been developed by Google makes Tensorflow a promising tool
for deep learning applications (for those who have access to a TPU).

My work here aims to bridge the gap between Tensorflow and Kaldi. By using
Tensorflow for acoustic modeling and Kaldi for all other speech related tasks, one may
exploit the convenience brought by both toolkits and conduct rapid deep learning
research. TIK, which stands for Tensorflow integration with Kaldi, is developed
to address this need. This open source tool uses the Tensorflow toolkit for deep
learning based acoustic modeling, and connects to the Kaldi toolkit for alignments,
ASR decoding, and scoring, etc. In terms of applications, it supports both speech
and speaker recognition. It also has recipes for switchboard and SRE 2010 data sets.
With this framework in place, researchers and developers using Kaldi will be able to
use TensorFlow to explore deep learning models in Kaldi speech recognition pipelines.

I will briefly cover related work in Section 5.2. Then, I will introduce my de-
sign of the experimental framework in 5.3, which supports both speech and speaker
recognition. This framework is built on top of the Tensorflow toolkit for neural net-
work modeling, and it connects to the Kaldi toolkit for alignments, ASR decoding,
and scoring, etc. In Section 5.4, I will show state-of-the-art experimental results in
speech and speaker recognition using my implementation. Finally, I will describe
the multi-GPU training implementation in Section 5.5 and show its effectiveness on
acceleration of model training.

5.2 Related Work

In 2016, an open source tool called “tfkaldi” was developed by V. Renkens [87].
This tool contains a set of Python scripts that support training and decoding of an
end-to-end ASR model. It uses Tensorflow for acoustic model building and train-
ing. During decoding, frame-likelihoods are dumped into files and passed into a
Kaldi decoder for transcriptions. Later, this project evolved into another tool called
“Nabu” that does end-to-end ASR with neural networks [88]. Nabu is an experi-
mental framework built on top of Tensorflow that focusses on adaptability, and it no
longer connects to the Kaldi toolkit, nor does it require Kaldi scripts / binaries. Some
other ASR projects developed using Tensorflow also follow the end-to-end approach
[75], and they only work on ASR tasks.

In another open-source project, “tfdnn-kaldi”, the author implemented a simple
DNN for acoustic modelling for ASR [107]. This project also uses Kaldi’s decoder by
dumping frame-likelihoods into files. It does not support any network structure other
than a feed-forward DNN.

In 2017, a RNNLM extension to Kaldi was developed by Y. Carmiel and H.
Xu [126]. This extension uses Tensorflow for neural network language modeling,
and supports rescoring of decoded word lattices generated by Kaldi. Though this
extension is reported to have “Tensorflow integration”, it only supports language

CHAPTER 5. TIK: CONNECTING TENSORFLOW AND KALDI 41

Figure 5.1. System Design of TIK

modeling and lattice rescoring, which limits the capability of Tensorflow.
Another speech recognition toolkit EESEN [68] was built out of the Kaldi toolkit.

This tool develops end-to-end acoustic model in C++ on top of Kaldi’s matrix library,
and uses Kaldi’s WFST decoder for decoding. As it does not connect to any flexible
deep learning toolkit, it does not support programmable network structure.

My work in this chapter differentiates itself from existing tools in 3 aspects:

• It supports acoustic modeling using Tensorflow

• It integrates with Kaldi decoder through a pipe

• It covers both speech and speaker recognition tasks

5.3 A Tensorflow framework

The TIK implementation is separated into six components: top-level scripts,
data preparation scripts, data generators, network models, network trainer and other
helper modules. The overall system design is shown in Figure 5.1.

CHAPTER 5. TIK: CONNECTING TENSORFLOW AND KALDI 42

5.3.1 Network trainer

The network trainer is designed as the core of the framework, and all modules
are implemented to support the trainer. This abstract class is responsible for the
following tasks:

• Initialize / write / read neural network models

• Train model through one iteration of data

• Perform forward pass on given input data

This class is instantiated in all top-level scripts so operations on the network model
could be done.

5.3.2 Data Preparation

The amount of training data for speech applications are often quite significant,
ranging from 100 million to a few billions samples, which makes it impossible to load
them all into the memory during model training. To speed up the entire training
process, these data are scheduled to be loaded into memory in blocks. Data genera-
tors are designed to perform these tasks. During each iteration, data generators are
responsible for loading blocks of training data from a file into the memory one at a
time, pack them into numpy ndarray format, and provide them to the trainer when
it requires them. These data generators keep processing until they run out of data,
and then instruct the trainer to end this iteration.

Training data randomization is another important point to note as it has been
proven to be critical for training of neural networks [12, 9, 99]. This is because for
mini-batch stochastic gradient descent method, it is important that each minibatch
approximately represent data distribution of the full data set. However, random ac-
cess to data samples during training is usually expensive, so it is necessary to perform
the randomization before the training starts. Randomization is done in two levels: file
randomization and memory randomization. get feats.sh and get seq feats.sh

are coded to perform utterance level randomization, and save randomized data to
file before any training scripts are called. During training, we also perform frame /
utterance level randomization in memory.

5.3.3 Model and proto file

In TensorFlow, a neural network model is represented as a dataflow graph that
can perform computation in terms of the dependencies between individual operations.
Nodes in this graph could either be tensors that store model parameters or operators

CHAPTER 5. TIK: CONNECTING TENSORFLOW AND KALDI 43

that perform computations. A sample Tensorflow graph for an LSTM model is shown
in Figure 5.2 1.

In my implementation, 4 types of models are supported: DNN, LSTM, SEQ2CLASS
and JOINTDNN. DNN and LSTM are designed for ASR acoustic modeling, and
SEQ2CLASS model is designed for x-vector speaker recognition, which will be in-
troduced in Section 5.4.3. JOINTDNN model is a joint model for ASR and speaker
recognition, and this model will be covered in Chapter 6.

Neural network proto files are required to initialize these models. The proto
file specifies the network structure and model-related hyper-parameters, including
number of hidden layers, hidden notes, or number of cells. The use of proto file
facilitates experiments with different model hyper-parameters. A sample proto file
for bi-directional LSTM is shown below:

<NnetProto>

<BLSTM> <NumCells> 1024 <UsePeepHoles> True

<BLSTM> <NumCells> 1024 <UsePeepHoles> True

<BLSTM> <NumCells> 1024 <UsePeepHoles> True

<BLSTM> <NumCells> 1024 <UsePeepHoles> True

<BLSTM> <NumCells> 1024 <UsePeepHoles> True

<BLSTM> <NumCells> 1024 <UsePeepHoles> True

<AffineTransform> <InputDim> 1024 <OutputDim> 8815 <BiasMean> 0.000000 \

<BiasRange> 0.000000 <ParamStddev> 0.049901

</NnetProto>

Once a proto file is given, it is passed to “nnet” and “layer” module to construct
the model graph. During training, gradient-related operators are added to the graph
and used to update the model.

5.3.4 Training and scheduler

Training a neural network using stochastic gradient descent (SGD) usually re-
quires working through data samples for several passes. To achieve better conver-
gence, change of learning rates during training are necessary. Schedulers are de-
signed to support various learning rate schedules. Currently, two schedulers are
implemented: exponential scheduler and newbob scheduler. For the first one,
learning rate for model updates decay exponentially from the initial value to the final
value settled beforehand, as is shown below.

lri = lrinit · (lrfinal/lrinit)
i

iters (5.1)

Here lri is the learning rate for iteration i, lrinit and lrfinal are the initial and final
learning rates, and iters are total number of iterations for training the network.

1This graph is generated by the Tensorboard

CHAPTER 5. TIK: CONNECTING TENSORFLOW AND KALDI 44

Figure 5.2. Sample Tensorflow graph for an LSTM model

CHAPTER 5. TIK: CONNECTING TENSORFLOW AND KALDI 45

The newbob scheduler works in the way introduced in Section 4.3. In short, it
starts with a fixed initial learning rate for the first few iterations, and then begin
halving by half when relative improvement of loss on cross-validation set is less than
a pre-set value. The training process goes on until relative improvement of the loss
on cv set becomes less than another value.

5.3.5 Connection to Kaldi

TIK connects to Kaldi via pipes. These include the following scenarios:

• Load data from disk into memory for model training.

• Predict frame log-likelihood for ASR decoding.

• Generate speaker embeddings for speaker recognition.

By using pipes for integration, fewer intermediate files are necessary.

5.4 Experiments and Results

With the design of TIK in place, one can easily construct deep learning models
for ASR and speaker recognition. In this section, I will present experiments using
TIK.

5.4.1 DNN and LSTM for ASR

As is mentioned earlier in Section 2.1, the GMM-HMM and hybrid approach
are two basic approaches for ASR. For the hybrid approach, DNN is the most basic
setup. Apart from DNN, other neural network structures also show great potential
for acoustic modeling, including the time delay neural network (TDNN) [117, 78],
maxout neural network [133] and long-short term memory neural network (LSTM)
[73]. In this section, I will present experiments using feed-forward DNN models and
bi-directional LSTM models.

A traditional tri-phone GMM-HMM system serves as our baseline system, and
its training framework follows the standard pipeline in the Kaldi toolkit [81]. The
standard 13-dim MFCC feature and its delta and acceleration are extracted and used
for maximum likelihood GMM model training. Features are then transformed using
Linear Discriminant Analysis (LDA), Maximum Likelihood Linear Transformation
(MLLT) and fMLLR.

With the baseline GMM-HMM system developed, I then use frame alignments
generated from the system to train a DNN-HMM hybrid system [116]. 40-dimension
fMLLR features are used as inputs to the DNN, and HMM state alignments are used
as targets. Kaldi’s DNN-HMM system was trained using RBM-based pretraining

CHAPTER 5. TIK: CONNECTING TENSORFLOW AND KALDI 46

and then stochastic gradient descent, while TIK’s DNN system does not require any
pretraining. The DNN used in this experiment has 6 hidden layers with 2048 hidden
nodes in each layer. Sigmoid functions are used as nonlinear activations.

Following the recipe proposed in [73], I develop a deep bi-directional LSTM
(BLSTM) RNN model. In this implementation, BLSTM is used to model short
segments of speech (40 frames), and predict frame-level HMM states. The model has 6
hidden layers and 512 LSTM cells for each direction. A standard dropout mechanism,
peephole connection and gradient clipping are adopted to stabilize model training.
Like in DNN-HMM training, fMLLR feature and HMM state alignments are used as
inputs and targets respectively.

development Eval2000
XENT acc swbd callhome all

Kaldi GMM – – 21.4 34.8 28.2
Kaldi DNN 1.800 54.78 14.9 25.6 20.3
TIK DNN 1.875 53.97 14.5 25.5 20.0

TIK BLSTM 1.067 72.50 13.6 24.3 19.0

Table 5.1. Speech Recognition Performance

Table 5.1 shows that TIK DNN shows comparable ASR accuracy as Kaldi DNN,
with a WER of 14.5 on Switchboard portion of Eval2000. The BLSTM model further
reduces this WER to 13.6. On Callhome portion of Eval2000, similar patterns are
observed.

5.4.2 DNN + i-vector for Speaker Recognition

For speaker recognition, a DNN+i-vector approach and x-vector approach are
tested.

Importing DNN posteriors to an i-vector framework is shown to be effective
on improving speaker recognition performance, which has been described in Chap-
ter 3. Here, I reproduce state-of-the-art speaker recognition performance using a DNN
trained with the TIK toolkit, and compare the results with Kaldi’s sre10 recipe. DNNs
trained on Switchboard and Fisher English data sets are compared. This comparison
helps to understand how speaker recognition benefit from DNNs trained with more
speech data.

Table 5.2 shows the comparison between Kaldi and TIK systems. Here the UBM
system is the baseline i-vector system combined with UBM. SUP-GMM stands for
supervised-GMM method, which is introduced in [104]. This approach creates a GMM
based on DNN posteriors and speaker recognition features, so as to model phonetic
content in a lightweight sense. It requires less computation during enrollment and
testing phase compared to SUP-DNN approach.

CHAPTER 5. TIK: CONNECTING TENSORFLOW AND KALDI 47

Cosine LDA PLDA
Kaldi UBM 6.91 3.36 2.51

Kaldi SUP-GMM-swbd 6.07 2.75 1.94
Kaldi SUP-DNN-swbd 4.00 1.83 1.27
Kaldi SUP-GMM-fisher 6.11 2.65 2.02
Kaldi SUP-DNN-fisher 3.54 1.60 1.21
TIK SUP-GMM-swbd 6.19 2.75 1.97
TIK SUP-DNN-swbd 4.53 2.00 1.27
TIK SUP-GMM-fisher 6.19 2.73 1.95
TIK SUP-DNN-fisher 3.93 1.74 1.19

Table 5.2. Speaker Recognition Performance using Kaldi and TIK

SUP-DNN is used to denote our DNN + i-vector approach. As we can see from
the table, SUP-DNN systems generally perform better than SUP-GMM systems.
Also, by comparing DNNs trained with Switchboard and Fisher data set, we can
observe similar performance. This indicates that the DNN + i-vector approach may
not benefit from a huge data set for DNN training.

5.4.3 X-vector for Speaker Recognition

As is mentioned in 2.2.6, using the x-vector for speaker recognition is proposed
in [106] to extract speaker embeddings from segments of speech. The network takes
in features of speech segments, passes them though several hidden layers and trains
against speaker labels at the segment-level. Even though this approach does not
perform better than the now traditional i-vector approach given same amount of
training data, its capability to effectively exploit data augmentation helps it surpasses
i-vector systems. A typical x-vector model is shown in Figure 5.3. Here Relu stands
for rectified linear unit [66], which is an activation function that performs

f(x) = max(0, x) (5.2)

and Batchnorm stands for batch normalization [117], which is proposed to accelerate
the training process.

In this section, I implemented a network structure that is similar to Kaldi’s
setup, and achieved reasonable speaker recognition performance. Some differences
between them are detailed below.

Firstly, due to restrictions on graph compilation in Tensorflow, the dimension of
the inputs for the graph must be determined beforehand. To handle speech segments
of variable length, the so-called bucket-training was implemented to address this
issue. To be specific, speech segments for training are placed into different buckets
according to their lengths. During graph compilation, input placeholders of different
bucket sizes are defined and connected to the model. In the training phase, speech

CHAPTER 5. TIK: CONNECTING TENSORFLOW AND KALDI 48

Figure 5.3. Structure of x-vector model in Kaldi

segments in the same bucket are passed into the network trainer in batches to perform
SGD based model update. This speeds up training and helps the model converge.
Buckets for testing are also necessary, as test speech segments are of variable lengths.
For SRE 2010 data set, some speech segments may last 30k frames, which makes
graph compilation a big problem. In TIK, this problem is solved by cutting speech
segments into shorter ones. X-vectors are computed over each segments, and then
averaged to get the final embedding. Maximum speech segments supported by the
graph is set to 10k frames.

Another difference exists in the model structure. In my setup, the relu nonlin-
earity is found to be unstable for x-vector training. So I chose to use the sigmoid as
the activation function for hidden layers. Batch normalization is used for the second
part of the model as we observe better convergence in this setup. Model structure for
my x-vector implementation is shown in Figure 5.4.

Table 5.3 shows the EERs of x-vector experiments on the standard SRE10 test
set. As is shown in the table, both x-vector systems perform a bit worse than the i-
vector system. The TIK system gives less accurate recognition performance compared
to Kaldi’s implementation, mostly due to differences mentioned earlier. Figure 5.5
shows the DET curve for these three systems.

CHAPTER 5. TIK: CONNECTING TENSORFLOW AND KALDI 49

Figure 5.4. Structure of x-vector model in TIK

Cosine LDA PLDA LDA-PLDA
Kaldi UBM i-vector 6.91 3.36 2.51 2.86

Kaldi x-vector 45.36 8.05 3.52 3.08
TIK x-vector 41.23 7.99 4.85 4.53

Table 5.3. Comparing TIK and Kaldi’s x-vector EER

5.5 Multi-GPU training

5.5.1 Introduction

Since the resurgence of deep neural networks, large / complex models and mas-
sive training data have been the top two driving forces for great recognition perfor-
mance. However, these two factors also slow down the training procedure.

Parallelization of DNN training has been a popular topic since the revival of neu-
ral networks. Several different strategies have been proposed to tackle this problem.
Multiple thread CPU parallelization and single GPU implementation are compared
in [97, 115], and it is shown that a single GPU version could beat multi-threaded
CPU implementation by a factor of 2. DistBelief proposed in [24] reports that 8 CPU
machines train 2.2 times faster than a single GPU machine on a moderately sized

CHAPTER 5. TIK: CONNECTING TENSORFLOW AND KALDI 50

Figure 5.5. DET curve for i-vector, Kaldi’s x-vector and TIK’s x-vector systems

speech model. Asynchronous SGD using multiple GPUs achieved a 3.2x speed-up on
4 GPUs [131].

Distributed model averaging is used in [133, 69], and a further improvement is
done using NG-SGD [84]. In this approach, separate models are trained on multiple
nodes using different partitions of data, and model parameters are averaged after each
epoch. It is shown that NG-SGD can effectively improve convergence and ensure a
better model trained using the model averaging framework.

My work in [108] utilizes multiple GPUs in neural networks training via MPI,
which allows the training process to perform model averaging more frequently and
efficiently. I also compared the “all-reduce” strategy with “butterfly”, which reduces
the bandwidth requirement. On the 300h Switchboard dataset, 9.3x and 17x speedups
could be achieved using 16 and 32 GPUs respectively.

In the next section, I will briefly introduce my implementation of multi-GPU
training in TIK, and then present experimental results comparing models trained in
parallel and using single GPU.

CHAPTER 5. TIK: CONNECTING TENSORFLOW AND KALDI 51

Figure 5.6. Multi-GPU training of deep learning models

5.5.2 Multi-GPU training in Tensorflow

Figure 5.6 shows the pipeline of my implementation of multi-GPU training. The
data are first prepared in CPU memory using a data generator. Then these data are
split into batches and sent to different GPUs. Each GPU is responsible to perform
a forward and backward pass using its portion of data. Gradients computed by each
GPU are copied to CPU for pooling. The pooled gradients are then sent back to each
GPU for model update. Losses and other training statistics on these batches are also
gathered and pooled in the CPU.

5.5.3 Experiments and Analysis

Table 5.4 shows effectiveness of multi-GPU training. As is shown in the table,
the final ASR performances using different numbers of GPUs are about the same. On
the other hand, by exploiting more GPUs, the time for model training can be greatly
reduced.

CHAPTER 5. TIK: CONNECTING TENSORFLOW AND KALDI 52

GPUs 1 2 4 8
training batch size 128 128*2 128*4 128*8

speedup/iter
training 1 1.98 3.50 5.21

validation 1 1.62 2.97 4.89

development
XENT 1.067 1.090 1.086 1.096

Acc (%) 72.45 41.92 72.10 71.20

evaluation
swbd 13.6 14.0 13.8 14.0

callhm 24.2 24.8 24.6 24.7

Table 5.4. Multi-GPU training speed up and ASR performance

One thing to note here is that using more GPUs naturally requires a bigger
minibatch for model update, and this usually causes slower convergence. One could
use a smaller minibatch for each GPU during training, while this approach may reduce
the speedup factor. Alternatively, a slight bigger learning rate can compensate the
change in convergence speed.

For multi-GPU to be effective for training speedup, one may need to make sure
the time spent on GPU is more than that spent on CPU gradient pooling.

5.6 Conclusion

In this work, I design an open-source experimental framework, TIK, that con-
nects Tensorflow and Kaldi. This framework utilizes both toolkits to facilitate deep
learning research in speech and speaker recognition. Details of the design are covered,
and state-of-the-art experimental results are presented. Effectiveness of multi-GPU
training are also explored. It is shown that using 8 GPUs at the same time may be
able to speed up the training process by a factor of 5.

Some directions for future developments include:

• Add support for bottleneck neural network and end-to-end CTC model for ASR

• Tuning x-vector setup and add end-to-end approaches for speaker ID

• Expand to other speech research areas like language recognition and speech
diarization.

53

Chapter 6

Joint Modeling of Speaker and
Speech

6.1 Introduction

In the last few sections, I have been discussing speech and speaker recognition
separately. I showed that acoustic models trained for ASR can effectively be used
to improve speaker recognition performance, and speaker i-vectors based speaker
adaptation are effective in improving ASR accuracy. In this chapter, I seek to combine
ASR and speaker recognition, and find a solution that tackles both tasks at the same
time.

The connections between speech and speaker recognition has long been recog-
nized by researchers. However, compared with the efforts spent on speaker adaptation
and speaker recognition, fewer attempts have been made on joint modeling of speech
and speaker. There are many reasons leading to this:

1. Most research projects are set up to study one particular problem rather than
tackling two or more of them all together.

2. Focusing on ASR or speaker recognition individually usually yields better results
compared to multi-tasking.

3. Speech data sets are mostly designed to address either ASR or speaker recog-
nition, which makes it hard to conduct research on joint modeling.

Despite of all these reasons, joint-modeling itself is an important topic to study.
Firstly, the human brain is able to perform two or more task simultaneously using
unconscious mind. When picking up phone calls, or listening to TV shows / radios,
people tend to recognize the speaker and contents at the same time. Secondly, as
we have shown, ASR and speaker recognition can be beneficial to each other, so it
is natural to think that a joint model could benefit from learning to perform both

CHAPTER 6. JOINT MODELING OF SPEAKER AND SPEECH 54

tasks. Last but not least, this topic itself is worthy of exploration. In a recent paper
published by Google Research, the authors propose to use one deep learning model to
perform 8 tasks at the same time [53]. This motivates us to seek better joint-modeling
methods for speech.

In this chapter, I propose a JointDNN model to perform ASR and speaker recog-
nition together. This model is built using the TIK toolkit developed in Chapter 5, and
is tested on popular data sets for both ASR and speaker recognition. Related work is
introduced in Section 6.2, followed by the design and implementation of a JointDNN
in Section 6.3. Experimental setup and results for the joint-modeling are presented
in Section 6.4 and Section 6.5 respectively. Section 6.6 concludes this chapter.

6.2 Related Work

Multi-task learning (MTL) is probably the most straight-forward approach for
joint modeling. In this approach, a network is trained to perform both the primary
classification task and one or more secondary tasks using some shared representa-
tions. The idea behind this approach is that secondary tasks are beneficial for neural
networks to gain useful information from the features, yielding a better representation
of the data.

The topic of MTL has been studied in much of the deep learning literature. For
example, in [100], the authors propose to use phone or state context prediction as
a secondary task in additional to the main task of predicting context-independent
states. In [76] and [65] where MTL is used for an isolated digits recognition, the
network was trained to predict both digit labels and clean speech feature vectors given
noisy feature vectors as inputs. Other multi-task learning research was conducted
on noise robustness [85], semi-supervised training [110] and multi-language transfer
learning [48], etc.

For joint speech and speaker recognition, a Twin-Output Multi-Layer Perceptron
(TO-MLP) was proposed in [34] that can be used for both ASR and SRE. In this
approach, a TO-MLP is trained for each speaker by adapting a speaker-independent
MLP. These speaker-dependent TO-MLPs can then be used for speaker dependent
ASR and for SRE. This approach requires training of separate neural network models
for each enrolled speaker, which adds much model complexity.

Then, in 2015, a joint modeling idea was proposed in to tackle text-dependent
speaker verification[16]. This work stems from the “d-vector” approach where speech
features are trained against speakers [114] in a frame-by-frame fashion. The proposed
j-vector model is shown in Figure 6.1. In this approach, speech feature vectors are
passed into the network in batches, and the network is trained to classify speakers
and phrases at the same time. During speaker enrollment and testing, activations
from the last hidden layer are pooled to form j-vectors, which will then be used for
scoring. It is shown that the j-vector approach can get a large improvement over other

CHAPTER 6. JOINT MODELING OF SPEAKER AND SPEECH 55

Figure 6.1. Structure of j-vector model

deep learning approaches, like d-vectors or tandem deep features, in the context of
text-dependent speaker verification.

A similar network structure was utilized in [79] to perform ASR. In this pa-
per, a RNN-LSTM is used for acoustic modeling. The neural network is trained to
classify phoneme-states and speakers at the same time. An additional “SIL” class is
introduced and used as the target speaker if the input is in silence at that moment.
Experimental results on the TIMIT phone recognition task are reported, and it is
shown that these results are comparable to traditional single task learning models.

While all the MTL research mentioned above emphasize performance on the
primary task, some efforts have been made on conducting both tasks together.

In 2003, a combined system for text-dependent speaker recognition and for
speech recognition was studied [10]. In this work, an artificial neural network (ANN)
model and a Gaussian mixture model are combined and trained jointly. The ANN is
used to recognize words and the GMM is for MAP based speaker recognition. Recog-
nition of both the word and the speaker identity is done on the following criterion:

(Ŵ , Ŝ) = arg max
{W,S}

[
logP (W |θs, X) + logP (X|λs)

]
(6.1)

Here X denotes speech features, W denotes possible words, S denotes possible speak-
ers, and θs and λs denote parameters for the ANN and the GMM model respectively.

In 2016, a multi-task recurrent model for speech and speaker recognition was
proposed [112]. The authors of this work advocates using the output of one task
as part of the input for the other. While this would not be feasible because of
deadlock issue, the author chose to use output of the tasks at a previous time step
instead, leading to a recurrent architecture. The structure of this implementation is

CHAPTER 6. JOINT MODELING OF SPEAKER AND SPEECH 56

Figure 6.2. Structure of multi-task recurrent model

shown in Figure 6.2. In this plot, F (t) denotes the speech feature for frame t, P (t)
denotes phone identities and S(t) denotes speaker identities. The author of the paper
conducted experiments on the WSJ data set, and showed that the joint model can
achieve comparable performance as baseline LSTM and i-vector systems. Later on,
this similar structure was further applied to joint language and speaker recognition
[63].

My work on JointDNN model differs from the research mentioned above in a
number of aspects:

1. It focuses on conversational ASR and text-independent speaker recognition.

2. It is a joint neural network model rather than a combination of different models.

3. It is evaluated on standard test sets for both ASR and speaker recognition.

6.3 Joint Modeling of Speaker and Speech

6.3.1 General Design of JointDNN

I designed the JointDNN model for ASR and speaker recognition using multi-
task learning. The model takes segments of speech features as inputs, passes them
through a number of shared hidden layers, and then separates out into sub-networks
that predict HMM states and speaker identity respectively. The structure of the
proposed model is shown in Figure 6.3. A pooling layer is placed inside the SRE
sub-nnet to average out sequence of activations. These pooled activations are then
passed on to predict speaker identity. During testing, the ASR sub-nnet can be used
to generate frame log-likelihoods for WFST decoder, and the SRE sub-nnet can be
used to generate speaker embeddings for speaker recognition, referred to as jd-vector.

Since the pooling layer reduces the dimension of activations, there will be a
dimension mismatch between layers before and after pooling. To update the network
in a minibatch fashion, special cares must be taken while preparing the data. To

CHAPTER 6. JOINT MODELING OF SPEAKER AND SPEECH 57

Figure 6.3. Structure of JointDNN model

be specific, input data for the network are packed into a 3-dimensional matrix of
size [num batches, segment length, feature dim], and activations of all DNN layers
before the pooling layer 1 are of size [num batches, segment length, hidden units].
The pooling layer take averages of hidden activations over speech segments, so the
output of the pooling layer becomes [num batches, hidden units]. The labels for ASR
sub-nnet and SRE sub-nnet are of sizes [num batches, segment length, num states]
and [num batches, num speakers] respectively.

6.3.2 Data preparation

Since joint modeling requires data labeled with both text and speaker informa-
tion, only limited choices are available for model training. Here in this project, the
Switchboard data set is chosen as the main corpus, which contains 192k utterances
from 520 speakers. These utterances are randomized and saved sequentially on disk
before training starts. Filter-bank features are used as input features in this project as
they are low level representation of speech signals compared to other well-developed
ASR or speaker recognition features.

During training, blocks of utterances are loaded into memory one at a time.
The data generator packs utterances into batches before sending them over for model
backpropagation. For utterances longer than a pre-defined segment length L, they

1including those in ASR sub-nnet

CHAPTER 6. JOINT MODELING OF SPEAKER AND SPEECH 58

are broken into pieces using a sliding window. For those that are shorter than L,
zeros are padded to the end of those utterances. The data generator also needs to
prepare ASR labels and speaker labels along the way.

Special care must be taken regarding silence inside speech utterances. Since
silence frames are not useful for speaker recognition, they must be excluded during
pooling. To achieve this operation, a mask is prepared for each segment using pre-
computed voice activity detection information.

6.3.3 Loss function

The loss function for model training is defined by:

L(θ) = −
S∑
s=1

sT∑
t=1

hs,t logP (hs,t|os,t)− β
S∑
s=1

xs logP (xs|os) (6.2)

which is an interpolation of cross-entropy losses for ASR and speaker recognition.
Here hs,t denotes the HMM state for frame t of speech segment s, and os,t is the
observed feature vector that corresponds to hs,t, xs is the correct speaker for segment
s and os is speech features for segment s. β is the interpolation weight.

6.3.4 Making predictions

To evaluate this model, ASR and speaker recognition are tested on standard
data set. For ASR decoding, the ASR branch of the network are used to generate
frame log-likelihoods. These log-likelihoods are passed into Kaldi’s WFST decoder
via a pipe to generate decoding outputs. For speaker recognition, activations after
the pooling layer are collected as speaker embeddings, just as the way x-vector is
generated. These speaker embeddings, referred to as jd-vector, is used for scoring
methods, like cosine scoring or PLDA scoring.

6.3.5 Buckets for training and testing

To ensure SRE sub-nnet generalizes well to speech segments of different lengths,
bucket training is implemented in a similar way as is done in Section 5.4.3 for x-
vector. During data preparation, speech segments for training are fed into buckets of
different sizes. Then, in training phase, speech segments in the same bucket are passed
into the model trainer in batches to perform an SGD based model update. During
model evaluation, buckets are also used to generate jd-vectors for speech segments of
different sizes.

CHAPTER 6. JOINT MODELING OF SPEAKER AND SPEECH 59

Figure 6.4. Histograms of utterance lengths and utterances per speaker

6.4 Experimental Setup

The JointDNN model used in this section has 3 shared hidden layers with 2048
hidden nodes per layer. For the ASR sub-nnet, 3 more hidden layers with 2048 nodes
per layer are used, before a final softmax layer of 5238. For the SRE sub-nnet, the
number of hidden nodes are projected down to 1500 before pooling. The layer after
the pooling layer further reduces number of hidden nodes to 512, before sending
activations to a final softmax layer. Jd-vectors are extracted after the pooling layer,
which has 512 hidden nodes.

The Switchboard data set [35] is used for model training. To make sure the
pooling operation in SRE sub-nnet is stable during training, I pre-select utterances
that are 2 seconds or longer, which leaves 158k utterances from 520 speakers, totaling
270 hours of speech. Histograms of utterance lengths and utterances per speaker are
shown in Figure 6.4.

Standard filter-bank features (24-dimension) are extracted, and then expanded
to 264 dimensions to include context information by concatenating features of neigh-
boring frames. Sliding window mean normalization is performed on the features
before a global mean and variance normalization. Alignments for ASR sub-nnet is
generated using a baseline GMM-HMM system. This baseline system is built follow-
ing the standard Kaldi recipe for Switchboard data set, where LDA, MLLT and SAT
techniques are used during model training. Newbob method is used for learning rate
scheduling, and standard SGD is used for model update.

For model evalutation, the NIST 2000 Hub5 evaluation set (Eval2000) [29] is
used for ASR experiments, and SRE 2010 data set [2] is used for speaker recognition
experiments.

CHAPTER 6. JOINT MODELING OF SPEAKER AND SPEECH 60

6.5 Results and analysis

6.5.1 SRE performance

Testing of speaker recognition is evaluated on the SRE 2010 data set. Table 6.1
compares recognition performances of different systems on the test set. As is shown in
the table, the baseline i-vector system performs best in terms of EER. This is because
the training data is very limited in this experiment - only around 300 hours in total.
The i-vector model, as a generative one, usually performs better than discriminative
models when limited data are available. This observation is also compatible with
that published in [105]. The Kaldi x-vector system and the TIK x-vector system
give comparable results regarding EER. The JointDNN implementation, however,
outperformed both x-vector systems and achieves a EER of 5.30 under LDA+PLDA
scoring. This result shows that phonetic content could help the JointDNN to model
speaker embeddings.

cosine LDA PLDA LDA+PLDA
Baseline i-vector 28.12 6.263 4.85 4.95
Kaldi x-vector 39.60 13.78 8.94 8.89
TIK x-vector 38.61 12.54 8.16 8.80

TIK jd-vector (beta0.01) 37.45 8.20 4.75 4.85

Table 6.1. EER of JointDNN model for speaker recognition

Figure 6.5 shows the DET curve of all four systems on SRE 2010 test set. As
we can see from the figure, performances of i-vector and jd-vector systems are quite
close to each other. However, in the low miss-rate region, the i-vector system becomes
better. In general, jd-vector performs better than both x-vector systems.

6.5.2 ASR performance

Testing of speech recognition is evaluated on an Eval2000 dataset [29]. Figure 6.2
shows the word error rate (WER) for JointDNN model. Currently, we do not observe
recognition improvement over the baseline DNN model. Adding additional targets of
speaker labels introduces slight negative influences on the speech recognition part 2.

6.5.3 Adjusting Beta

As is covered in the last section, the loss function for training JointDNN model
is a weighted sum of ASR loss and SRE loss. Here β is used to adjust the weight

2Note that the WER here are worse than state-of-the-art DNN systems because we are not using
any feature transformations like LDA, MLLT and SAT

CHAPTER 6. JOINT MODELING OF SPEAKER AND SPEECH 61

Figure 6.5. DET curve for speaker recognition performance

CHAPTER 6. JOINT MODELING OF SPEAKER AND SPEECH 62

swbd callhome all
Baseline DNN 16.1 28.4 22.3

JointDNN (beta 0.01) 16.8 29.0 23.9

Table 6.2. WER of JointDNN model for speech recognition

placed on speaker recognition. Table 6.3 shows ASR and SRE performances of models
trained with different βs.

Validation Evaluation
beta frame acc (%) speaker acc (%) EER (%) swbd WER (%)
0.1 39.07 97.22 5.10 16.7
0.01 39.20 94.10 4.75 16.8
0.001 38.60 85.36 9.19 17.2
0.0001 38.59 41.95 13.25 17.0

Table 6.3. EER of JointDNN model with different interpolation weight

Validation columns show frame accuracy and speaker accuracy on cross-validation
set when the last iteration of model training is finished. Evaluation columns show
EER on SRE 2010 test set and WER on Hub5 Eval 2000 Switchboard portion.

As is shown in the table, the SRE portion general performs better as β becomes
bigger. The best SRE performance is achieved when β is set to 0.1. However, as β
gets bigger, the ASR performance begins heading worse. The trade-off between ASR
and SRE performances can be balanced by adjusting β.

6.6 Conclusion

I conclude the final technical chapter of this thesis by introducing a joint model
for ASR and speaker recognition. This model, referred to as JointDNN, is built using
the TIK tool developed in Chapter 5. Multi-task learning is used for model training.
After training, the joint model can be used for both ASR and SRE. For speaker recog-
nition, speaker embeddings, referred to as jd-vectors, are extracted for enrollment
and testing. Experiments show that JointDNN model is effective in using a limited
amount of training data for a neural network based speaker recognition model. On
ASR, the JointDNN performs comparably to baseline DNN systems without feature
transformations.

This thesis only presents some preliminary results on joint modeling of speaker
and speech, yet there is much more to explore in this field. The recurrent approach
proposed in [112] is novel in utilizing higher-level representations of the data, but it is
slow to train because of the recurrent structure. The JointDNN model, being a feed

CHAPTER 6. JOINT MODELING OF SPEAKER AND SPEECH 63

forward network, is much faster during training, but a bit weaker in utilizing high-
level representations. The trade-off between model complexity and training speed
is worth more investigation. Other possible research directions for joint modeling
includes:

1. Using powerful network layers that could capture temporal information, like
LSTM or TDNN;

2. Using a large amount of training data or using perturbation of training data;

3. Exploring different structures for joint modeling;

4. Using an end-to-end approach for joint modeling of speaker and speech;

5. Fine-tuning of model parameters after joint training of the model.

64

Chapter 7

Conclusions

7.1 Contributions

The contribution of this thesis has two components: first, I show that ASR and
SRE are beneficial to each other; secondly, I build an opensource tool, “TIK”, on top
of which I design a joint model for ASR and speaker recognition.

In Chapter 3, I explore ways to improve speaker recognition performance using
acoustic models trained for ASR. It is shown that speaker verification performance
aligns well with ASR performance when posteriors are imported from acoustic models
trained for ASR. This demonstrate that ASR can be used to aid speaker recognition
systems.

In Chapter 4, I conduct research on speaker adaptation of DNN hybrid systems
using i-vectors. A novel regularization method is introduced that helps to solve the
curse of dimensionality. Experimental results show that speaker adaptation using
i-vectors can effectively improve ASR performance of DNN systems, especially when
regularization is placed on a “i-vector sub-network”.

Chapter 5 describes the open-source tool, “TIK”, that connects Tensorflow and
Kaldi for deep learning research in ASR and SRE. This tool makes it easier to conduct
deep learning research using flexible network structures. Design of the framework is
detailed, and state-of-the-art ASR and speaker recognition results are presented.

In Chapter 6 I describe the building of a JointDNN model using the TIK tool
I developed earlier. This model is trained using multi-task learning and is able to
perform both ASR and SRE tasks. Experiments show that the JointDNN model is
more effective in speaker recognition than x-vector systems, given a limited amount
of training data.

CHAPTER 7. CONCLUSIONS 65

7.2 Future Work and Beyond

Since the first generation of speech applications, spoken language technology
has evolved over 60 years. Recently, the rapid popularization of smart home devices
like Amazon Echo and Google Home has made it possible for humans to connect to
machines through voice. Other mobile devices like cell-phones or smart watches also
support more and more speech applications. Because of the huge number of devices
and requests, it is usually necessary to design embedded algorithms for these devices
rather than implementing all of the speech application on the server side. This will
require that models take up limited space, and that algorithms do not occupy huge
amounts of memory and use excessive amounts of computation. In this regard, a joint
model for ASR and SRE might then become a reasonable choice. Further research on
compressing network weights might contribute to the advantage of joint modeling.

The end-to-end approach also comes into play as an efficient solution. Since the
resurgence of neural network research, the trend of using end-to-end neural networks
for AI tasks has been kept moving forward. Even though some problems with this
approach remain unsolved 1, it is worthwhile to build end-to-end joint models for
speech and speaker recognition.

Joint modeling of speaker and speech only serves as a first step towards an
all-around AI agent. Ideally, all speech-related AI tasks shall share some lower-
level representations. Further research on joint training might consider coverage of
language recognition, gender recognition, emotion analysis, etc. Training data might
become a problem when more tasks are taken into consideration, so research on
utilizing multiple data sets for joint model is definitely worth exploration.

1E.g. a solution for out-of-vocabulary words or integration of a domain-specific language model.

66

Bibliography

[1] Householder transformation. http://en.wikipedia.org/wiki/Householder_

transformation. Accessed: 2016-03-23.

[2] The nist year 2010 speaker recognition evaluation plan. http://www.nist.gov/

itl/iad/mig/upload/NIST_SRE10_evalplan-r6.pdf. Accessed: 2016-03-22.

[3] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,
J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and
Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous
systems. https://www.tensorflow.org/. Software available from tensorflow.org.

[4] Anastasakos, T., McDonough, J., and Makhoul, J. (1997). Speaker adaptive
training: A maximum likelihood approach to speaker normalization. In Acous-
tics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International
Conference on, volume 2, pages 1043–1046. IEEE.

[5] Anastasakos, T., McDonough, J., Schwartz, R., and Makhoul, J. (1996). A
compact model for speaker-adaptive training. In Spoken Language, 1996. ICSLP
96. Proceedings., Fourth International Conference on, volume 2, pages 1137–1140.
IEEE.

[6] Attias, H. (2000). A variational bayesian framework for graphical models. Ad-
vances in neural information processing systems, 12(1-2):209–215.

[7] Bahl, L., Brown, P. F., De Souza, P. V., and Mercer, R. L. (1986). Maximum mu-
tual information estimation of hidden markov model parameters for speech recog-
nition. In proc. icassp, volume 86, pages 49–52.

[8] Baker, J. (1975). The dragon system–an overview. IEEE Transactions on Acous-
tics, Speech, and Signal Processing, 23(1):24–29.

http://en.wikipedia.org/wiki/Householder_transformation
http://en.wikipedia.org/wiki/Householder_transformation
http://www.nist.gov/itl/iad/mig/upload/NIST_SRE10_evalplan-r6.pdf
http://www.nist.gov/itl/iad/mig/upload/NIST_SRE10_evalplan-r6.pdf
https://www.tensorflow.org/

BIBLIOGRAPHY 67

[9] Bengio, Y. (2012). Practical recommendations for gradient-based training of deep
architectures. In Neural networks: Tricks of the trade, pages 437–478. Springer.

[10] BenZeghiba, M. F. and Bourlard, H. (2003). On the combination of speech and
speaker recognition. In Eighth European Conference on Speech Communication and
Technology.

[11] Bilmes, J. A. (1998). A gentle tutorial of the em algorithm and its application
to parameter estimation for gaussian mixture and hidden markov models. Inter-
national Computer Science Institute, 4(510):126.

[12] Bourlard, H. A. and Morgan, N. (1993). Connectionist Speech Recognition: A
Hybrid Approach. Kluwer Academic Publishers, Norwell, MA, USA.

[13] Brümmer, N. (2009). The em algorithm and minimum divergence. Agnitio Labs
Technical Report.

[14] Brümmer, N. and De Villiers, E. (2010). The speaker partitioning problem. In
Odyssey.

[15] Chan, W., Jaitly, N., Le, Q., and Vinyals, O. (2016). Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition. In Acoustics,
Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on,
pages 4960–4964. IEEE.

[16] Chen, N., Qian, Y., and Yu, K. (2015a). Multi-task learning for text-dependent
speaker verification. In Sixteenth annual conference of the international speech
communication association.

[17] Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing techniques
for language modeling. Computer Speech & Language, 13(4):359–394.

[18] Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang,
C., and Zhang, Z. (2015b). Mxnet: A flexible and efficient machine learning library
for heterogeneous distributed systems. CoRR, abs/1512.01274.

[19] Chiu, C.-C., Sainath, T. N., Wu, Y., Prabhavalkar, R., Nguyen, P., Chen, Z.,
Kannan, A., Weiss, R. J., Rao, K., Gonina, E., Jaitly, N., Li, B., Chorowski, J.,
and Bacchiani, M. (2017). State-of-the-art speech recognition with sequence-to-
sequence models. arXiv preprint arXiv:1712.01769.

[20] Cieri, C., Miller, D., and Walker, K. (2004). Fisher english training speech parts
1 and 2. Philadelphia: Linguistic Data Consortium.

BIBLIOGRAPHY 68

[21] Dahl, G. E., Yu, D., Deng, L., and Acero, A. (2012). Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition. IEEE Trans-
actions on audio, speech, and language processing, 20(1):30–42.

[22] Das, S. and Mohn, W. (1971). A scheme for speech processing in automatic
speaker verification. IEEE transactions on Audio and electroacoustics, 19(1):32–
43.

[23] Davis, S. B. and Mermelstein, P. (1990). Comparison of parametric represen-
tations for monosyllabic word recognition in continuously spoken sentences. In
Readings in speech recognition, pages 65–74. Elsevier.

[24] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le, Q. V., Mao, M.,
Ranzato, M. A., Senior, A., Tucker, P., Yang, K., and Ng, A. Y. (2012). Large scale
distributed deep networks. In Advances in Neural Information Processing Systems,
pages 1223–1231.

[25] Dehak, N., Kenny, P., Dehak, R., Glembek, O., Dumouchel, P., Burget, L.,
Hubeika, V., and Castaldo, F. (2009). Support vector machines and joint factor
analysis for speaker verification. In Acoustics, Speech and Signal Processing, 2009.
ICASSP 2009. IEEE International Conference on, pages 4237–4240. IEEE.

[26] Dehak, N., Kenny, P. J., Dehak, R., Dumouchel, P., and Ouellet, P. (2011).
Front-end factor analysis for speaker verification. IEEE Transactions on Audio,
Speech, and Language Processing, 19(4):788–798.

[27] Doddington, G. R., Przybocki, M. A., Martin, A. F., and Reynolds, D. A. (2000).
The nist speaker recognition evaluation–overview, methodology, systems, results,
perspective. Speech Communication, 31(2):225–254.

[28] Eide, E. and Gish, H. (1996). A parametric approach to vocal tract length
normalization. In Acoustics, Speech, and Signal Processing, 1996. ICASSP-96.
Conference Proceedings., 1996 IEEE International Conference on, volume 1, pages
346–348. IEEE.

[29] Fiscus, J., Fisher, W. M., Martin, A. F., Przybocki, M. A., and Pallett, D. S.
(2000). 2000 nist evaluation of conversational speech recognition over the tele-
phone: English and mandarin performance results. In Proc. Speech Transcription
Workshop. Citeseer.

[30] Gales, M. and Young, S. (2008). The application of hidden markov models in
speech recognition. Foundations and Trends R© in Signal Processing, 1(3):195–304.

[31] Gales, M. J. (1998). Maximum likelihood linear transformations for hmm-based
speech recognition. Computer speech & language, 12(2):75–98.

BIBLIOGRAPHY 69

[32] Gales, M. J. (1999). Semi-tied covariance matrices for hidden markov models.
Speech and Audio Processing, IEEE Transactions on, 7(3):272–281.

[33] Garcia-Romero, D. and Espy-Wilson, C. Y. (2011). Analysis of i-vector length
normalization in speaker recognition systems. In Twelfth Annual Conference of the
International Speech Communication Association.

[34] Genoud, D., Ellis, D., and Morgan, N. (1999). Combined speech and speaker
recognition with speaker-adapted connectionist models. In Proc. ASRU.

[35] Godfrey, J. J. and Holliman, E. (1997). Switchboard-1 release 2. Linguistic Data
Consortium, Philadelphia, 926:927.

[36] Goel, V. and Byrne, W. J. (2000). Minimum bayes-risk automatic speech recog-
nition. Computer Speech & Language, 14(2):115–135.

[37] Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006). Connectionist
temporal classification: labelling unsegmented sequence data with recurrent neural
networks. In Proceedings of the 23rd international conference on Machine learning,
pages 369–376. ACM.

[38] Graves, A. and Jaitly, N. (2014). Towards end-to-end speech recognition with
recurrent neural networks. In International Conference on Machine Learning, pages
1764–1772.

[39] Grézl, F., Karafiát, M., Kontár, S., and Cernocky, J. (2007). Probabilistic and
bottle-neck features for lvcsr of meetings. In Acoustics, Speech and Signal Pro-
cessing, 2007. ICASSP 2007. IEEE International Conference on, volume 4, pages
IV–757. IEEE.

[40] Gupta, V., Kenny, P., Ouellet, P., and Stafylakis, T. (2014). I-vector-based
speaker adaptation of deep neural networks for french broadcast audio transcrip-
tion. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE Interna-
tional Conference on, pages 6334–6338. IEEE.

[41] Haeb-Umbach, R. and Ney, H. (1992). Linear discriminant analysis for improved
large vocabulary continuous speech recognition. In ICASSP. IEEE.

[42] Hain, T., Woodland, P. C., Niesler, T. R., and Whittaker, E. W. D. (1999). The
1998 htk system for transcription of conversational telephone speech. In 1999 IEEE
International Conference on Acoustics, Speech, and Signal Processing. Proceedings.
ICASSP99 (Cat. No.99CH36258), volume 1, pages 57–60 vol.1.

[43] Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger,
R., Satheesh, S., Sengupta, S., Coates, A., and Ng, A. Y. (2014). Deep speech:
Scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567.

BIBLIOGRAPHY 70

[44] Hargreaves, W. A. and Starkweather, J. A. (1963). Recognition of speaker iden-
tity. Language and Speech, 6(2):63–67.

[45] Heigold, G., Moreno, I., Bengio, S., and Shazeer, N. (2016). End-to-end
text-dependent speaker verification. In Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference on, pages 5115–5119. IEEE.

[46] Hermansky, H. (1990). Perceptual linear predictive (plp) analysis of speech. the
Journal of the Acoustical Society of America, 87(4):1738–1752.

[47] Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm
for deep belief nets. Neural computation, 18(7):1527–1554.

[48] Huang, J.-T., Li, J., Yu, D., Deng, L., and Gong, Y. (2013). Cross-language
knowledge transfer using multilingual deep neural network with shared hidden lay-
ers. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 7304–7308. IEEE.

[49] Indyk, P. and Motwani, R. (1998). Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pages 604–613. ACM.

[50] Ioffe, S. (2006). Probabilistic linear discriminant analysis. In European Confer-
ence on Computer Vision, pages 531–542. Springer.

[51] Jelinek, F. (1976). Continuous speech recognition by statistical methods. Pro-
ceedings of the IEEE, 64(4):532–556.

[52] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature
embedding. In Proceedings of the 22nd ACM international conference on Multime-
dia, pages 675–678. ACM.

[53] Kaiser, L., Gomez, A. N., Shazeer, N., Vaswani, A., Parmar, N., Jones, L., and
Uszkoreit, J. (2017). One model to learn them all. arXiv preprint arXiv:1706.05137.

[54] Kenny, P., Boulianne, G., and Dumouchel, P. (2005). Eigenvoice modeling
with sparse training data. Speech and Audio Processing, IEEE Transactions on,
13(3):345–354.

[55] Kenny, P., Boulianne, G., Ouellet, P., and Dumouchel, P. (2007). Joint factor
analysis versus eigenchannels in speaker recognition. IEEE Transactions on Audio,
Speech, and Language Processing, 15(4):1435–1447.

BIBLIOGRAPHY 71

[56] Kenny, P. and Dumouchel, P. (2004). Experiments in speaker verification us-
ing factor analysis likelihood ratios. In ODYSSEY04-The Speaker and Language
Recognition Workshop.

[57] Kenny, P., Gupta, V., Stafylakis, T., Ouellet, P., and Alam, J. (2014). Deep
neural networks for extracting baum-welch statistics for speaker recognition. In
Proc. Odyssey, pages 293–298.

[58] Kim, C. and Stern, R. M. (2012). Power-normalized cepstral coefficients
(pncc) for robust speech recognition. In Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, pages 4101–4104. IEEE.

[59] Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language mod-
eling. In Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 Inter-
national Conference on, volume 1, pages 181–184. IEEE.

[60] Lee, K.-F. (1990). Context-dependent phonetic hidden markov models for
speaker-independent continuous speech recognition. In Readings in speech recogni-
tion, pages 347–365. Elsevier.

[61] Leggetter, C. J. and Woodland, P. C. (1995). Maximum likelihood linear regres-
sion for speaker adaptation of continuous density hidden markov models. Computer
Speech & Language, 9(2):171–185.

[62] Lei, Y., Nicolas, S., Ferrer, L., and McLaren, M. (2014). A novel scheme for
speaker recognition using a phonetically-aware deep neural network. In ICASSP.
IEEE.

[63] Li, L., Tang, Z., Wang, D., Abel, A., Feng, Y., and Zhang, S. (2017). Collab-
orative learning for language and speaker recognition. In National Conference on
Man-Machine Speech Communication, pages 58–69. Springer.

[64] Liao, H. (2013). Speaker adaptation of context dependent deep neural networks.
In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 7947–7951. IEEE.

[65] Lu, Y., Lu, F., Sehgal, S., Gupta, S., Du, J., Tham, C. H., Green, P., and Wan,
V. (2004). Multitask learning in connectionist speech recognition. In Proceedings
of the Australian International Conference on Speech Science and Technology.

[66] Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities
improve neural network acoustic models. In Proc. icml, volume 30, page 3.

[67] Miao, Y., Gowayyed, M., and Metze, F. (2015a). Eesen: End-to-end speech
recognition using deep rnn models and wfst-based decoding. In Automatic Speech

BIBLIOGRAPHY 72

Recognition and Understanding (ASRU), 2015 IEEE Workshop on, pages 167–174.
IEEE.

[68] Miao, Y., Gowayyed, M., and Metze, F. (2015b). EESEN: end-to-end
speech recognition using deep RNN models and wfst-based decoding. CoRR,
abs/1507.08240.

[69] Miao, Y., Zhang, H., and Metze, F. (2014a). Distributed learning of multilingual
dnn feature extractors using gpus.

[70] Miao, Y., Zhang, H., and Metze, F. (2014b). Towards speaker adaptive training
of deep neural network acoustic models. In Fifteenth Annual Conference of the
International Speech Communication Association.

[71] Miao, Y., Zhang, H., and Metze, F. (2015c). Speaker adaptive training of deep
neural network acoustic models using i-vectors. IEEE/ACM Transactions on Au-
dio, Speech and Language Processing (TASLP), 23(11):1938–1949.

[72] Mohamed, A.-r., Sainath, T. N., Dahl, G., Ramabhadran, B., Hinton, G. E.,
and Picheny, M. A. (2011). Deep belief networks using discriminative features for
phone recognition. In ICASSP. IEEE.

[73] Mohamed, A.-r., Seide, F., Yu, D., Droppo, J., Stoicke, A., Zweig, G., and
Penn, G. (2015). Deep bi-directional recurrent networks over spectral windows. In
Automatic Speech Recognition and Understanding (ASRU), 2015 IEEE Workshop
on, pages 78–83. IEEE.

[74] Naik, J. M. (1990). Speaker verification: A tutorial. IEEE Communications
Magazine, 28(1):42–48.

[75] pannous. tfasr. https://github.com/pannous/

tensorflow-speech-recognition.

[76] Parveen, S. and Green, P. (2003). Multitask learning in connectionist robust
asr using recurrent neural networks. In Eighth European Conference on Speech
Communication and Technology.

[77] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in
pytorch.

[78] Peddinti, V., Povey, D., and Khudanpur, S. (2015). A time delay neural network
architecture for efficient modeling of long temporal contexts. In Sixteenth Annual
Conference of the International Speech Communication Association.

https://github.com/pannous/tensorflow-speech-recognition
https://github.com/pannous/tensorflow-speech-recognition

BIBLIOGRAPHY 73

[79] Pironkov, G., Dupont, S., and Dutoit, T. (2016). Speaker-aware long short-term
memory multi-task learning for speech recognition. In Signal Processing Conference
(EUSIPCO), 2016 24th European, pages 1911–1915. IEEE.

[80] Povey, D. (2005). Discriminative training for large vocabulary speech recognition.
PhD thesis, University of Cambridge.

[81] Povey, D., Ghoshal, A., G.Boulianne, Burget, L., O.Glembek, Goel, N., Han-
nermann, M., Motĺıček, P., Qian, Y., Schwartz, P., Silovský, J., Stemmer, G., and
Veselý, K. (2011). The kaldi speech recognition toolkit. In ASRU. IEEE.

[82] Povey, D., Kanevsky, D., Kingsbury, B., Ramabhadran, B., Saon, G., and
Visweswariah, K. (2008). Boosted mmi for model and feature-space discrimina-
tive training. In ICASSP. IEEE.

[83] Povey, D. and Woodland, P. C. (2002). Minimum phone error and i-smoothing
for improved discriminative training. In ICASSP. IEEE.

[84] Povey, D., Zhang, X., and Khudanpur, S. (2014). Parallel training of deep
neural networks with natural gradient and parameter averaging. arXiv preprint
arXiv:1410.7455.

[85] Qian, Y., Yin, M., You, Y., and Yu, K. (2015). Multi-task joint-learning of deep
neural networks for robust speech recognition. In Automatic Speech Recognition
and Understanding (ASRU), 2015 IEEE Workshop on, pages 310–316. IEEE.

[86] Rabiner, L., Juang, B.-H., Levinson, S., and Sondhi, M. (1985). Recognition of
isolated digits using hidden markov models with continuous mixture densities. Bell
Labs Technical Journal, 64(6):1211–1234.

[87] Renkens, V. (2016). Kaldi with tensorflow neural net. https://github.com/

vrenkens/tfkaldi.

[88] Renkens, V. (2017). Code for end-to-end asr with neural networks. https:

//github.com/vrenkens/nabu.

[89] Reynolds, D. A. (1994). Experimental evaluation of features for robust speaker
identification. IEEE Transactions on Speech and Audio Processing, 2(4):639–643.

[90] Reynolds, D. A. (1997). Comparison of background normalization methods for
text-independent speaker verification. In Fifth European Conference on Speech
Communication and Technology.

[91] Reynolds, D. A., Quatieri, T. F., and Dunn, R. B. (2000). Speaker verification
using adapted gaussian mixture models. Digital signal processing, 10(1-3):19–41.

https://github.com/vrenkens/tfkaldi
https://github.com/vrenkens/tfkaldi
https://github.com/vrenkens/nabu
https://github.com/vrenkens/nabu

BIBLIOGRAPHY 74

[92] Richardson, F., Reynolds, D., and Dehak, N. (2015a). Deep neural network
approaches to speaker and language recognition. Signal Processing Letters, IEEE,
22(10):1671–1675.

[93] Richardson, F., Reynolds, D., and Dehak, N. (2015b). A unified deep neural
network for speaker and language recognition. arXiv preprint arXiv:1504.00923.

[94] Robinson, T. and Fallside, F. (1991). A recurrent error propagation network
speech recognition system. Computer Speech and Language, 5(3).

[95] Robinson, T., Hochberg, M., and Renals, S. (1996). The use of recurrent neu-
ral networks in continuous speech recognition. In Automatic speech and speaker
recognition, pages 233–258. Springer.

[96] Saon, G., Soltau, H., Nahamoo, D., and Picheny, M. (2013). Speaker adaptation
of neural network acoustic models using i-vectors. In ASRU, pages 55–59.

[97] Scanzio, S., Cumani, S., Gemello, R., Mana, F., and Laface, P. (2010). Parallel
implementation of artificial neural network training. In Acoustics Speech and Signal
Processing (ICASSP), 2010 IEEE International Conference on, pages 4902–4905.
IEEE.

[98] Seide, F. and Agarwal, A. (2016). Cntk: Microsoft’s open-source deep-learning
toolkit. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 2135–2135. ACM.

[99] Seide, F., Li, G., and Yu, D. (2011). Conversational speech transcription using
context-dependent deep neural networks. In Twelfth Annual Conference of the
International Speech Communication Association.

[100] Seltzer, M. L. and Droppo, J. (2013). Multi-task learning in deep neural net-
works for improved phoneme recognition. In Acoustics, Speech and Signal Process-
ing (ICASSP), 2013 IEEE International Conference on, pages 6965–6969. IEEE.

[101] Senior, A. and Lopez-Moreno, I. (2014). Improving dnn speaker independence
with i-vector inputs. In Acoustics, Speech and Signal Processing (ICASSP), 2014
IEEE International Conference on, pages 225–229. IEEE.

[102] Sizov, A., Lee, K. A., and Kinnunen, T. (2014). Unifying probabilistic linear
discriminant analysis variants in biometric authentication. In Structural, Syntactic,
and Statistical Pattern Recognition, pages 464–475. Springer.

[103] Snyder, D., Garcia-Romero, D., and Povey, D. (2015a). Time delay deep neural
network-based universal background models for speaker recognition. In ASRU.
IEEE.

BIBLIOGRAPHY 75

[104] Snyder, D., Garcia-Romero, D., and Povey, D. (2015b). Time delay deep neural
network-based universal background models for speaker recognition. In Automatic
Speech Recognition and Understanding (ASRU), 2015 IEEE Workshop on, pages
92–97. IEEE.

[105] Snyder, D., Garcia-Romero, D., Povey, D., and Khudanpur, S. (2017). Deep
neural network embeddings for text-independent speaker verification. In Proc.
Interspeech, pages 999–1003.

[106] Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., and Khudanpur, S. (2018).
X-vectors: Robust dnn embeddings for speaker recognition. Submitted to ICASSP.

[107] srinivr (2016). Tensorflow dnn with kaldi. https://github.com/srinivr/

tfdnn-kaldi.

[108] Su, H. and Chen, H. (2015). Experiments on parallel training of deep neural
network using model averaging. arXiv preprint arXiv:1507.01239.

[109] Su, H. and Wegmann, S. (2016). Factor analysis based speaker verification
using asr. In Interspeech, pages 2223–2227.

[110] Su, H. and Xu, H. (2015). Multi-softmax deep neural network for semi-
supervised training. In Sixteenth Annual Conference of the International Speech
Communication Association.

[111] Swietojanski, P. and Renals, S. (2014). Learning hidden unit contributions for
unsupervised speaker adaptation of neural network acoustic models. In Spoken
Language Technology Workshop (SLT), 2014 IEEE, pages 171–176. IEEE.

[112] Tang, Z., Li, L., and Wang, D. (2016). Multi-task recurrent model for speech
and speaker recognition. In Signal and Information Processing Association Annual
Summit and Conference (APSIPA), 2016 Asia-Pacific, pages 1–4. IEEE.

[113] Tipping, M. E. and Bishop, C. M. (1999). Probabilistic principal component
analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 61(3):611–622.

[114] Variani, E., Lei, X., McDermott, E., Moreno, I. L., and Gonzalez-Dominguez,
J. (2014). Deep neural networks for small footprint text-dependent speaker veri-
fication. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE Inter-
national Conference on, pages 4052–4056. IEEE.

[115] Veselỳ, K., Burget, L., and Grézl, F. (2010). Parallel training of neural networks
for speech recognition. In Text, Speech and Dialogue, pages 439–446. Springer.

https://github.com/srinivr/tfdnn-kaldi
https://github.com/srinivr/tfdnn-kaldi

BIBLIOGRAPHY 76

[116] Veselýl, K., Hannemann, M., and Burget, L. (2013). Semi-supervised training
of deep neural networks. In ASRU. IEEE.

[117] Waibel, A. (1989). Modular construction of time-delay neural networks for
speech recognition. Neural computation, 1(1):39–46.

[118] Wan, L., Wang, Q., Papir, A., and Moreno, I. L. (2017). Generalized end-to-end
loss for speaker verification. arXiv preprint arXiv:1710.10467.

[119] Wang, Q., Downey, C., Wan, L., Mansfield, P. A., and Moreno, I. L. (2017).
Speaker diarization with lstm. arXiv preprint arXiv:1710.10468.

[120] Wang, Y.-Y., Acero, A., and Chelba, C. (2003). Is word error rate a good indica-
tor for spoken language understanding accuracy. In Automatic Speech Recognition
and Understanding, 2003. ASRU’03. 2003 IEEE Workshop on, pages 577–582.
IEEE.

[121] Wikipedia (2018). Word error rate — Wikipedia, the free encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Word%20error%20rate&

oldid=839599774. [Online; accessed 07-May-2018].

[122] Wikipedia contributors (2018). Phone (phonetics) — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Phone_(phonetics)

&oldid=845974307. [Online; accessed 16-June-2018].

[123] Wood, L. C., Pearce, D. J., and Novello, F. (1991). Improved vocabulary-
independent sub-word hmm modelling. In ICASSP. IEEE.

[124] Woodland, P. C. (2001). Speaker adaptation for continuous density hmms: A
review. In ISCA Tutorial and Research Workshop (ITRW) on Adaptation Methods
for Speech Recognition.

[125] Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., Yu, D.,
and Zweig, G. (2016). Achieving human parity in conversational speech recognition.
arXiv preprint arXiv:1610.05256.

[126] Xu, H., Chen, T., Gao, D., Wang, Y., Li, K., Goel, N., Carmiel, Y., Povey,
D., and Khudanpur, S. (2018). A pruned rnnlm lattice-rescoring algorithm for
automatic speech recognition.

[127] Yaman, S., Pelecanos, J., and Sarikaya, R. (2012). Bottleneck features for
speaker recognition. In Odyssey 2012-The Speaker and Language Recognition Work-
shop.

http://en.wikipedia.org/w/index.php?title=Word%20error%20rate&oldid=839599774
http://en.wikipedia.org/w/index.php?title=Word%20error%20rate&oldid=839599774
https://en.wikipedia.org/w/index.php?title=Phone_(phonetics)&oldid=845974307
https://en.wikipedia.org/w/index.php?title=Phone_(phonetics)&oldid=845974307

BIBLIOGRAPHY 77

[128] Yao, K., Yu, D., Seide, F., Su, H., Deng, L., and Gong, Y. (2012). Adaptation
of context-dependent deep neural networks for automatic speech recognition. In
Spoken Language Technology Workshop (SLT), 2012 IEEE, pages 366–369. IEEE.

[129] Yu, D., Yao, K., Su, H., Li, G., and Seide, F. (2013). Kl-divergence regularized
deep neural network adaptation for improved large vocabulary speech recognition.
In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 7893–7897. IEEE.

[130] Zhang, C. and Koishida, K. (2017). End-to-end text-independent speaker veri-
fication with triplet loss on short utterances. In Proc. of Interspeech.

[131] Zhang, S., Zhang, C., You, Z., Zheng, R., and Xu, B. (2013). Asynchronous
stochastic gradient descent for dnn training. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on, pages 6660–6663.
IEEE.

[132] Zhang, S.-X., Chen, Z., Zhao, Y., Li, J., and Gong, Y. (2016). End-to-end at-
tention based text-dependent speaker verification. In Spoken Language Technology
Workshop (SLT), 2016 IEEE, pages 171–178. IEEE.

[133] Zhang, X., Trmal, J., Povey, D., and Khudanpur, S. (2014). Improving deep
neural network acoustic models using generalized maxout networks. In Acoustics,
Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on,
pages 215–219. IEEE.

[134] Zhang, Y., Chan, W., and Jaitly, N. (2017). Very deep convolutional net-
works for end-to-end speech recognition. In Acoustics, Speech and Signal Processing
(ICASSP), 2017 IEEE International Conference on, pages 4845–4849. IEEE.

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Automatic Speech Recognition
	Introduction
	Feature Extraction
	Lexicon
	Language Modeling
	Acoustic Modeling
	Speech Corpora
	Metric for Performance Measurement

	Speaker Recognition
	Introduction
	Feature Extraction
	Acoustic modeling
	Speaker modeling
	Scoring methods
	Deep learning approaches
	Speech Corpora
	Metric for Performance Measurement

	Conclusion

	Speaker Recognition Using ASR
	Introduction
	Related Work
	Factor Analysis applied to Speech
	GMM supervector approach
	Gaussian Mixture Factor Analysis Model
	Model Estimation and Other Details
	PLDA model for scoring

	Neural Networks for Speaker Recognition
	General Framework

	Experiments
	Data
	Setup
	Results and Analysis
	Using ASR features for speaker verification

	Conclusion

	Speaker Adaptation Using I-vectors
	Introduction
	Related work
	Speaker adaptation using i-vectors
	Regularization for i-vector sub-network

	Experimental Setup
	Results and Discussion
	Effects of regularization
	Comparing with feature space adaptation method

	Conclusion

	TIK: An Open-source Toolkit Connecting Tensorflow and Kaldi
	Introduction
	Related Work
	A Tensorflow framework
	Network trainer
	Data Preparation
	Model and proto file
	Training and scheduler
	Connection to Kaldi

	Experiments and Results
	DNN and LSTM for ASR
	DNN + i-vector for Speaker Recognition
	X-vector for Speaker Recognition

	Multi-GPU training
	Introduction
	Multi-GPU training in Tensorflow
	Experiments and Analysis

	Conclusion

	Joint Modeling of Speaker and Speech
	Introduction
	Related Work
	Joint Modeling of Speaker and Speech
	General Design of JointDNN
	Data preparation
	Loss function
	Making predictions
	Buckets for training and testing

	Experimental Setup
	Results and analysis
	SRE performance
	ASR performance
	Adjusting Beta

	Conclusion

	Conclusions
	Contributions
	Future Work and Beyond

	Bibliography

