

Experimental Design for Machine Learning on Multimedia Data Lecture 3

Dr. Gerald Friedland, fractor@eecs.berkeley.edu

Website: http://www.icsi.berkeley.edu/~fractor/fall2020/

Project Specs and HW coming this week

- Homework 1: Will be online (delayed due to Labor Day)
- Project specs will be online on website
- Please start forming teams as of next week.
- Check Piazza posts.

Reminder:

Office hours: Monday 1-2pm, this Zoom

Refresh: Memory Arithmetic

- Information is reduction of uncertainty: $H=-log_2 P=-log_2 \frac{1}{\#states} = log_2 \#states$ measured in bits.
- Information: log₂ #states (positive bits) Uncertainty: log₂ P=log₂ 1/(negative bits)
- If states are not equiprobable, *Shannon Entropy* provides tighter bound.

Important for homework!

Refresh: Thought Framework: Machine Learning

Assume

 $x_i \in \mathbb{R}, f(\vec{x}) \in \{0,1\}$

(binary classifier)

Question:

How many state transitions does *M* need to model the training data?

Maximally: #rows (lookup table) Minimally: ?

Gerald Friedland, http://www.gerald-friedland.org

Refresh: Thought Framework: Machine Learning

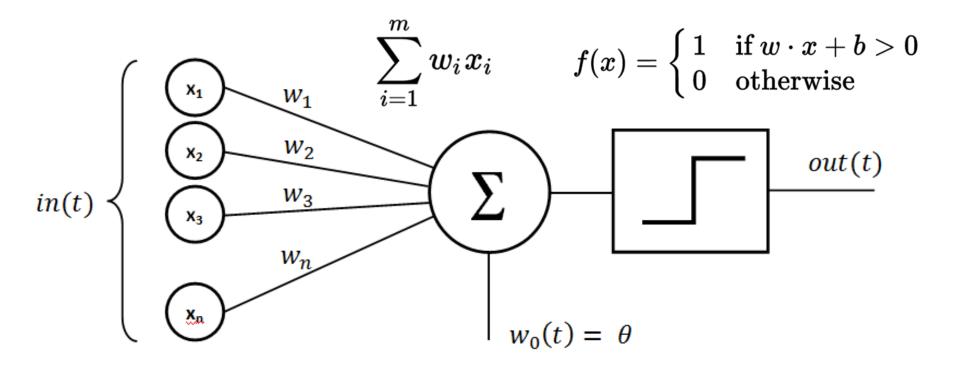
- Intellectual Capacity: The number of unique target functions a machine learner is able to represent (as a function of the number of model parameters).
- Memory Equivalent Capacity (MEC): A machine learner's intellectual capacity is memory-equivalent to N bits when the machine learner is able to represent all 2^N binary labeling functions of N inputs.
- At MEC or higher, M is able to memorize all possible state transitions from the input to the output.

Gerald Friedland, http://www.gerald-friedland.org

Recap: Machine Learning as Engineering Discipline

- Supervised Machine Learners have a memory capacity in bits that is computable and measurable.
 - Artificial Neural Networks with gating functions (Sigmoid, ReLU, etc.) have
 - a capacity upper limit that can be determined analytically using 4 principles
 - an effective capacity that can be measured on actual implementations.
- Predicting and measuring capacity allows for task-independent optimization of a concrete network architecture, learning algorithm, convergence tricks, etc...
- Capacity requirement can be approximately predicted given the input data and ground truth.
- Generalization can fail as a result of input redundancies. Occam's Razor helps to minimize the risk.

The Perceptron (Rosenblatt, Widrow)



Physical interpretation: Energy threshold

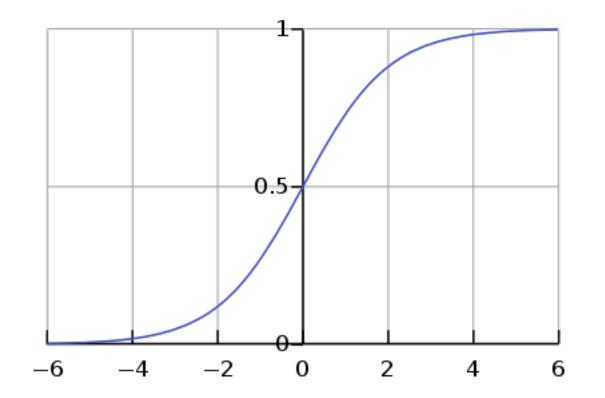
Source: Wikipedia

Activation Functions (too many)

Identity	_/	f(x) = x	f'(x)=1	$(-\infty,\infty)$	C^{∞}
Binary step		$f(x)=egin{cases} 0 & ext{for} & x<0\ 1 & ext{for} & x\geq 0 \end{cases}$	$f'(x)=egin{cases} 0 & ext{for} & x eq 0 \ ? & ext{for} & x=0 \end{cases}$	$\{0, 1\}$	C^{-1}
Logistic (a.k.a. Soft step)		$f(x)=\frac{1}{1+e^{-x}}$	$f^{\prime}(x)=f(x)(1-f(x))$	(0, 1)	C^{∞}
TanH		$f(x)=\tanh(x)=\frac{2}{1+e^{-2x}}-1$	$f^\prime(x) = 1 - f(x)^2$	(-1, 1)	C^∞
ArcTan		$f(x)=\tan^{-1}(x)$	$f'(x)=\frac{1}{x^2+1}$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	C^{∞}
Softsign ^{[7][8]}		$f(x) = \frac{x}{1+ x }$	$f'(x) = \frac{1}{(1+ x)^2}$	(-1, 1)	C^1
Rectified linear unit (ReLU) ^[9]		$f(x)=\left\{egin{array}{ll} 0 & ext{for} & x<0\ x & ext{for} & x\geq 0 \end{array} ight.$	$f'(x) = egin{cases} 0 & ext{for} & x < 0 \ 1 & ext{for} & x \geq 0 \end{cases}$	$[0,\infty)$	C^0
Leaky rectified linear unit (Leaky ReLU) ^[10]		$f(x) = egin{cases} 0.01x & ext{for} & x < 0 \ x & ext{for} & x \geq 0 \end{cases}$	$f'(x) = egin{cases} 0.01 & ext{for} x < 0 \ 1 & ext{for} x \ge 0 \end{cases}$	$(-\infty,\infty)$	C^0
Parameteric rectified linear unit (PReLU) ^[11]		$f(lpha,x) = \left\{egin{array}{ccc} lpha x & ext{for} & x < 0 \ x & ext{for} & x \geq 0 \end{array} ight.$	$f'(lpha,x) = \left\{egin{array}{ccc} lpha & ext{for} & x < 0 \ 1 & ext{for} & x \geq 0 \end{array} ight.$	$(-\infty,\infty)$	C^0
Randomized leaky rectified linear unit (RReLU) ^[12]		$f(lpha,x) = \left\{egin{array}{cccc} lpha x & ext{for} & x < 0 \ x & ext{for} & x \geq 0 \end{array} ight.$	$f'(lpha,x) = \left\{egin{array}{ccc} lpha & ext{for} & x < 0 \ 1 & ext{for} & x \geq 0 \end{array} ight.$	$(-\infty,\infty)$	C^0
Exponential linear unit (ELU) ^[13]		$f(lpha,x) = \left\{egin{array}{ccc} lpha(e^x-1) & ext{for} & x < 0 \ & x & ext{for} & x \geq 0 \end{array} ight.$	$f'(lpha,x) = \left\{egin{array}{cc} f(lpha,x)+lpha & ext{for} & x < 0 \ 1 & ext{for} & x \ge 0 \end{array} ight.$	$(-lpha,\infty)$	C^1 when $lpha=1$, otherwise C^0

Activation functions approximate the sharp decision boundary. Source: Wikipedia

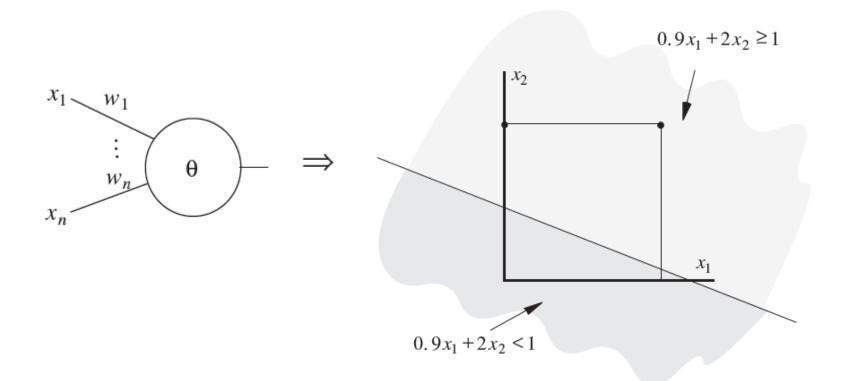
Activation Functions Make no Difference for Information Content!



What is the probability that the decision is 0? What is the probability that the decision is 1?

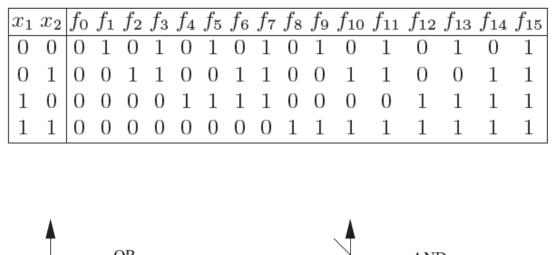
Source: Wikipedia

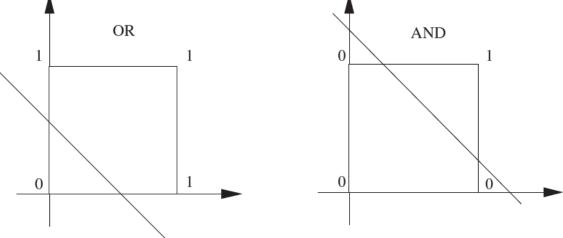
How many functions can be modeled using a Perceptron?



Source: R. Rojas, Intro to Neural Networks

Minsky's Problem





- 2^{2^v} functions of v boolean variables
- 2^v labelings of 2^v points.
- For v=2, all but 2 functions work: XOR, NXOR

Source: R. Rojas, Intro to Neural Networks

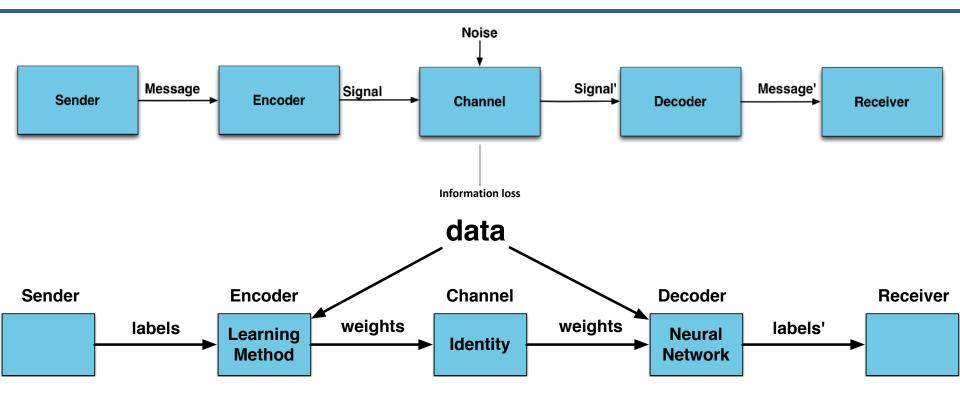
Orthogonal Concept: Vapnik-Chervonenkis Dimension

Definition 3.1 (VC Dimension [47]). The VC dimension D_{VC} of a hypothesis space f is the maximum integer $D = D_{VC}$ such that some dataset of cardinality D can be shattered by f. Shattered by f means that any arbitrary labeling can be represented by a hypothesis in f. If there is no maximum, it holds $D_{VC} = \infty$.

Some \neq Any!

Memory Equivalent Capacity = Lossless Memory Dimension D_{LM} = *any* dataset of Cardinality D.

MacKay's Solution: Machine Learning as an Encoder/Decoder



Main trick: Let the Machine Learner 'learn' uniform random points!

Source: D. MacKay: Information Theory, Inference and Learning

How many points can a Perceptron label in general?

Formula by Schlaefli (1852):

$$T(n,k) = T(n-1,k) + T(n-1,k-1), \quad (3)$$

where T(n, 1) = T(1, k) = 2 or iteratively:

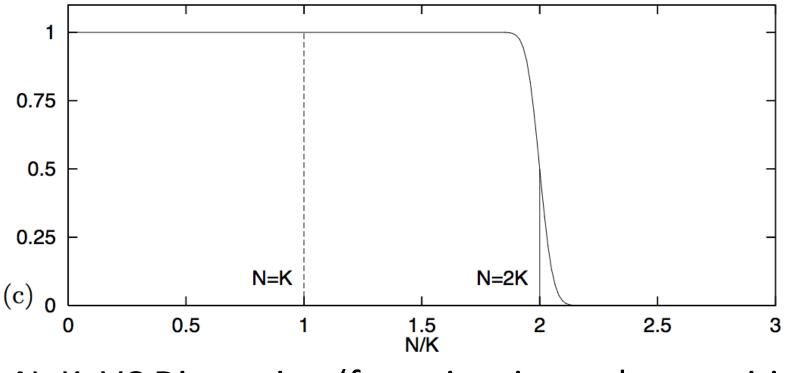
$$T(n,k) = 2\sum_{l=0}^{k-1} \binom{n-1}{l}$$
(4)

$n \setminus k$	1	2	3	4	5	6	7	8
1	2	2	2	2	2	2	2	2
2	2	4	4	4	4	4	4	4
3	2	6	8	8	8	8	8	8
4	2	8	14	16	16	16	16	16
5	2	10	22	30	32	32	32	32
6	2	12	32	52	62	64	64	64
7	2	14	44	84	114	126	128	128
8	2	16	58	128	198	240	254	256

Table 1: Some values of the T(n, k) function indicating the number of distinct threshold functions on n points in general position in k dimensions as defined by [22].

$$T(n,k) = 2^n$$
 for $k \ge n$.

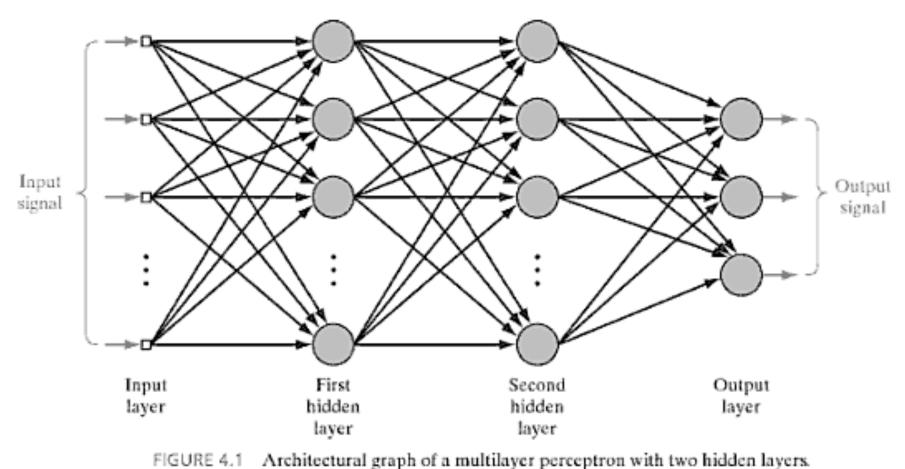
Critical Points: Perceptron (Cover, MacKay)



N=K: VC Dimension (for points in random position) N=2K: Cover/MacKay Capacity

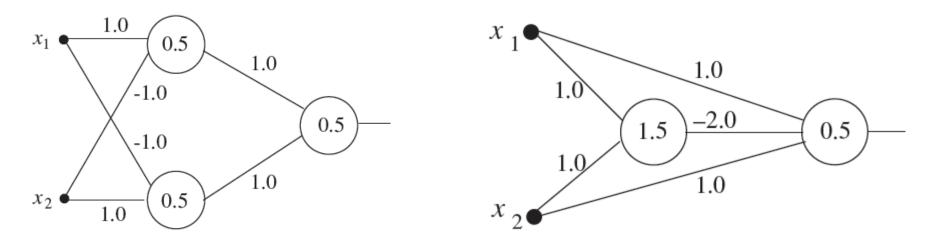
Source: D. MacKay: Information Theory, Inference and Learning

Next Lecture: Generalizing from Perceptron to Neural Networks



Source: Wikipedia

Careful: Other Architectures



Typical MLP

Shortcut Network

Example Solutions to XOR

Source: R. Rojas, Intro to Neural Networks

Next Lecture

- Capacity for Neural Networks explained: See also cheat sheet.
- Practical applications
- Demo

