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 Office Hours:
Gerald Friedland
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Repeat:
The scientific process and machine learning

Information flow in the scientific process
Looking at traditional Al: Shannon and Chess
Memory Equivalent Capacity



The Scientific Method
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Data Science: The Science of Automating the Scientific Method



Reminder: The New Scientific Method
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Reminder: Thought Framework Machine Learning
Intelligence: The ability to adapt (Binet and Simon, 1904)

Machine learning adapts a finite state machine M to an
unknown function based on observations.

Input: n rows of observations (instances) in a table with

header: N
(X1 X9+ o v s Xy J( X))

where f(?) is a column with labels we call target function.

Output: State machine M that maps a point
(X1, X9y .25 x,) = f(X)
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Thought Framework: Machine Learning

Assume

x, € R, f(x) € {0,1}

(binary classifier)
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Question:

How many states does M need to model the
training data?
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A Thought Experiment

= Which image has more information?

= Which image takes more bits of memory?




Refresh: Memory Arithmetic

* Information is reduction of uncertainty:
H=-log> P= -log; , I =log; #states
measured in bits. "

* Information: log; #states (positive bits)
Uncertainty: log, P=log, _ ! (negative bits)

#states

* |f states are not equiprobable, Shannon Entropy
provides tighter bound.

Important for homework!

Gerald Friedland, http://www.gerald-friedland.org



http://www.gerald-friedland.org
http://www.gerald-friedland.org

Thought Framework: Machine Learning

Assume
—
x, € R, f(x) e {0,1}
(binary classifier) SN s IRV
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How many state (transitions) does M need to
model the training data?

Maximally: #rows (lookup table)
Minimally: ?
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Learning from Chess Players

e C. Shannon 1950: “The game-tree complexity of chess is 107120".
(Shannon Number)

<=>
the Memory Equivalent Capacity of chess using a decision tree is

log, 10'2° = 398.63bits ~ 400bits . .
<=> ]
Any possible chess game fits into 400 bits of memory. :l
<=> .l

Starting a chess game, there are -400 bits of uncertainty that
need to be reduced to determine the winner.

Does it make a difference if we model chess using a Neural
Network that observes enough games or using a Python
program by translating the human rules?

o -
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Thought Framework: Machine Learning

= Intellectual Capacity: The number of unique target functions a
machine learner is able to represent (as a function of the number
of model parameters).

=  Memory Equivalent Capacity (MEC): A machine learner’s
intellectual capacity is memory-equivalent to N bits when the
machine learner is able to represent all 2N binary labeling functions
of any N inputs.

= At MEC or higher, M is able to memorize all possible state
transitions from the input to the output.
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Main Engineering Trick

Memorization is worst-case generalization

e Using more parameters than needed for memorization is a
waste of resources (CPU, memory, I/O, engineer tuning time).

e Using as many parameters as needed for memorization will
most likely not generalize to a held-out data set. This, the
machine learner overfits.

e Reducing parameters below memorization capacity will, in
the best case, make the machine learner forget what’s not
relevant: generalization.

13



How do we calculate the Memory Equivalent
Capacity?

e Binary Decision Tree: Depth of tree (if perfect).
e Neural Network (next lecture)

e Random Forrest: Count non-overlapping nodes.
e GMMs: TBD

e SVN: TBD

e k-NN: TBD
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Machine Learning as Engineering Discipline

* Supervised Machine Learners have a Memory Equivalent Capacity in bits that
is computable and measurable.

* Artificial Neural Networks with gating functions (Sigmoid, ReLU, etc.) have

* a capacity upper limit that can be determined analytically using 4
principles

* an effective capacity that can be measured on actual
implementations.

* Predicting and measuring capacity allows for task-independent optimization of
a concrete network architecture, learning algorithm, convergence tricks, etc...

e Capacity requirement can be approximately predicted given the input data and
ground truth.
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