
Machine Learning Experimental
Design Theory Cheat Sheet
Basics
Intelligence: The ability to adapt [1].
Machine Learner: A machine learner is a mechanism that
is able to adapt to a target function in two ways: 1) through
training and 2) through generalization. A mechanism that
is trainable without generalization is called memory. A
mechanism that generalizes without training is a quantizer.
Artificial Intelligence: A system that performs human-
like tasks, often by relying on machine learning.
Classification: Quantization of an input into a set of pre-
defined classes (see also: generalization).
Regression: Classification with a large (theoretically infi-
nite) number of classes described in functional form.
Detection: Binary classification.
Clustering: Quantization.

Memory View of Machine Learning
Tabularization: Data is organized in N rows and D
columns. Training data contains a D + 1th column with
the prediction variable to be learned (labels). All inputs
to the machine learner are points with D coordinates. All
data in digital computers can be tabularized this way.
Target Function: A mapping from all input points to
the labels, assumed to be a mathematical function.
Representation Function: The parameterized function
a machine learner uses either standalone or in composition
to adapt to the target function, e.g. the activation function
of an artificial neuron.
Bit (Binary digit): Unit of measurement for memory
capacity [5]. One bit corresponds to one boolean parameter
of the identity function whereby each parameter can be in
one of the two states with equal chance.
Intellectual Capacity: The number of unique target
functions a machine learner is able to represent (as a
function of the number of model parameters) [4].
Memory-equivalent Capacity: With the identity
function as representation function, N bits of memory are
able to adapt to 2N target functions. A machine learner’s
intellectual capacity is memory-equivalent to N bits when
the machine learner is able to represent all 2N binary
labeling functions of N uniformly random inputs.
Memory Equivalent Capacity: VC Dimension for
uniformly random data points.

Generalization
Generalization (∀): The concept of handling different
objects by a common property. The set of objects of
the common property are called a class, the elements
are called instances. Neuron: all instances of input
signals below an energy threshold are ignored.
Generalization in Machine Learning: All inputs
close enough to each other result in the same output.
This is for an assumed or trained definition of close
enough (generalization distance). Memory: Only
identical is close enough =⇒ no generalization.
Adversarial Example: An input that contradicts the
generalization assumption of a machine learner [3].
Overfitting: A machine learner at memory-equivalent
capacity or higher with regards to the number of inputs
in the training data could as well just use the identity
function as representation function and still adapt to
the training data perfectly. The machine learner is said
to overfit.
Accuracy: A necessary but not a sufficient condition
for generalization success. At the same accuracy, over-
fitting potentially maximizes the number of adversarial
examples, capacity reduction minimizes it.
Measuring Generalization: Generaliza-
tion of a class-balanced binary classifier is
G = #correctly predicted instances

Memory Equivalent Capacity , only G > 1 im-
plies successful generalization.

Training Processes
Training for Accuracy: The process of adjusting
the parameters of the representation function(s) of the
machine learner to approximate a target function with
maximum accuracy.
Training for Generalization: The process of suc-
cessively reducing the capacity of a machine learner
while training for accuracy. The model with the highest
accuracy and the smallest capacity is the one that
uses the representation function(s) most effectively.
Therefore, it has the lowest chance of failing (this is
requiring to increase capacity) when applied to unseen
data from the same experimental setup [2].
Regularization: Reducing capacity during training
by restricting the freedom of the parameters, thereby
potentially improving generalization. Techniques
include drop out, early stopping, data augmentation, or
imperfect training.

Capacity Estimation
Capacity Requirement: Build a static-parameter ma-
chine learner to memorize the training data. Assume
exponential improvement through training. This is,
the memory-equivalent capacity can be minimally log-
arithmic of the size of the static-parameter machine
learner [2].
Memory-equivalent Capacity for Neural Net-
works [2][7]:

1. The output of a single neuron is maximally one
bit.

2. The memory capacity of a single neuron is the
number of parameters in bits.

3. The memory capacity of neurons is additive.
4. The memory capacity of neurons in a subsequent

layer is limited by the output of the layer it de-
pends on.

Generalization Estimation
Generalization Progression: Estimate the capacity
needed to memorize 10%, 20%, . . . , 100% of training
table. If the capacity does not stabilize at the higher
percentages either there is not enough training data
to generalize or the representation function(s) of the
machine learner is/are not right for the task.
Find Best Machine Learner for Data: Mea-
sure/estimate Generalization Progression for different
types of machine learners. Pick the one with conver-
gence to the smallest capacity.
Testing Generalization Performance: Measuring
accuracy against an independent data set after training
is the only way to guarantee generalization perfor-
mance. Testing against hold-out or cross validation
data in training, practically makes the data part of the
training set.
Occam’s Razor (modern): When you have two com-
peting theories that make exactly the same predictions,
the simpler one is the better [6].
Occam’s Razor for Machine Learning: Among
equally accurate models, choose the one that requires
the lowest memory-equivalent capacity (see also: Train-
ing for Generalization).
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