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ABSTRACT
As summarized by Atlas, Bernard, and Narayanan [1], the
sensing of acoustic vibrations can remotely estimate the state of
wear at the tool edge. This form of monitoring offers the
potential to characterize, in real time, the efficiency of metal
removal processes such as drilling and milling. For example,
information about sudden increases in tool wear, if manifest as a
change in acoustic vibration, could be valuable to a machine
operator. The nature of this monitoring problem has some
similarities to automatic speech recognition. For example, there
is significant tool-to-tool variation in details of vibration and
lifetime. Also, the easy adaptability of monitoring systems
across manufacturing processes is important. In this work we
model the evolution of vibration signals with the same technique
which has shown to be successful in speech recognition: hidden
Markov models (HMMs). We focus on the monitoring of milling
processes at three different time scales and show the how
HMMs can give accurate wear prediction.

1. INTRODUCTION

To date, widespread use of machine monitoring systems has
been limited by several factors, most notably by their inability to
accommodate changes in manufacturing operations. Under
current diagnostic approaches, each machine configuration
requires the development and manual tuning of a complex
diagnostic system by an expensive, highly specialized signal
processing expert. This requirement is incompatible with
modern manufacturing practices, where fast machine
reconfigurations must be carried out to meet frequently changing
product demands. The inflexibility and expense of the
diagnostic systems present a significant barrier to future
developments in high-quality flexible manufacturing. Our past
year's work has contributed to reducing this barrier. Namely, we
have developed a widely applicable and reconfigurable, real-
time transient classification system that, in a large-scale
manufacturing environment, predicts failures. Our system
design is based upon the premises listed below.

Vibration and acoustic sensors provide much needed
information: It is possible to extract early-warning
prognostication information from vibration and acoustic sensors.

Advanced signal processing techniques are needed:
Conventional and commercially available signal processing
techniques such as stationary parametric or non-parametric
spectral analysis and short-time Fourier transforms are
inadequate representations for monitoring and prognostication
tasks. Instead, more advanced techniques, such as proper time-
frequency distributions, are required.

Advanced classification techniques are required: Conventional
and commercially available statistical estimation and
classification techniques are inadequate for monitoring and
prognostication tasks. Instead, more advanced techniques, such
as time-frequency representations [1], for the determination of
salient features, and hidden Markov models, for classification of
nonstationary trends and events, are required.

Both parametric (mechanical-model driven) and non-
parametric (data-trained) approaches need to be efficiently
combined: The integration of partial information about the
mechanics of the systems being monitored is essential.
However, adaptation and “training-by-example” can be used to
refine this incomplete information. This approach is appropriate
for hidden Markov models, where the state topology is based on
mechanical models, and the state transition and emission
probabilities are automatically estimated from data.

Adaptability is key: A cost-effective and useful system must be
adaptable across a wide variety of applications.

2. RELATED PREVIOUS WORK

Over the past three decades, the manufacturing industry has
realized the importance of automation, due to increased global
competition and the potential economic benefits [2].
Consequently, a substantial amount of research has gone into
the field of control of machining processes. Ulsoy et al [3,4]
provide a detailed description of the state-of-the-art in machine
tool automation through the 1970's and 1980's respectively. To
summarize, the accomplishments of the 1970's had not solved
the problems but clearly indicated the complexity of the
machining system, including the non-linear, non-stationary and
multivariate nature of the processes to be controlled, and, as a
result, the 1980’s saw increased research in the use of advanced
methods for automating, monitoring and controlling
manufacturing processes. In contrasting to the automation



emphasis of past work, it is our objective to set the stage for the
next decades of progress by developing techniques which
enhance machine operators' skill.

Najafi and Hakim [5] have compared various standard non-
parametric spectral estimation techniques applied to machine
vibration data. Ramirez and Thornhill [6] analyze the drilling
forces signal and its spectra for use in monitoring circuit board
manufacture. Narayanan, Bernard, Atlas and Fang [7] describe
front-ends that capture features that preserve temporal
resolution, and stress the need for a public-domain
manufacturing database. Fang, Atlas and Bernard [8] have made
use of quadratic energy detectors to accurately detect temporal
events in acoustic emissions while drilling holes on a composite
honeycomb sheet. Kittel and Hayes [2] present a symbolic signal
representation for process monitoring signals. We believe that
signal analysis is an area where our group has made substantial
contributions by bringing into the field of manufacturing a
variety of new non-stationary signal analysis techniques.

Li, Ma, Hwang and Nickerson [9] have developed a pattern
recognition analysis scheme based on features extracted from
rolling element bearing vibrations using bispectral analysis.
Zheng and Whitehouse [10] have observed that the moments of
the Wigner distribution of sensor outputs are useful for
detecting incipient chatter and characterizing changes in the
workpiece. Due to the vast multitude of sensor signals
encountered in this field, and due to the large variance of the
sensor signal within the same class, we argue that an automatic
feature selection procedure is necessary for systems to perform
under a variety of conditions.

Choi, Wang and Dornfeld [1] have attempted to simulate the
relationship between the input (cutting parameters) and output
(sensor outputs) of the turning process using a neural network.
Tansel and McLaughlin [12] have used a supervised neural
network system for detection of tool breakage in milling
operations. Sick has shown how local temporal variability can
be captured with time-delay neural networks [13]. Heck and
McClellan [14] present a multisensor continuous density left-to-
right hidden Markov model based approach for tool wear
detection and prediction. More recent results on systems which
use hidden Markov models for prediction of end mill and tool
wear can be found in McLaughlin et al [15] and Owsley et al
[16].

3. BACKGROUND ON HIDDEN MARKOV
MODELS

A hidden Markov model (HMM) is a stochastic model of a
process that has piecewise stationary regions, where the time
evolution of the non-stationary behavior can be characterized in
terms of an unobserved discrete Markov chain. An HMM is
specified by the set of discrete states, initial state probabilities,
transition probabilities between states, and a set of state-
dependent observation distributions. Standard algorithms exist
for efficient search for the maximum likelihood state sequence
(Viterbi algorithm) and for parameter estimation (Baum-Welch
algorithm).  A brief tutorial on HMMs for speech recognition
can be found in Rabiner [17]; HMM system design issues for

large vocabulary recognition applications are discussed in
Young [18]; and numerous books on speech processing and
pattern recognition now cover this model.

Hidden Markov models are useful, in general, for problems
where there are temporal dynamics.  For tool monitoring, it may
be useful to model observation dynamics at multiple levels,
analogous to the different levels in speech recognition.  At the
highest level is the increasing wear of a tool which, though
inherently continuous, can be represented at a quantized level
with a left-to-right state topology, as first proposed by Heck and
McClellan [14]. Detecting the wear “state” is more useful to a
machinist than a binary decision of “worn” vs. “not worn,”
because it gives an indication of the remaining lifetime of a tool.
Representing more than two states also allows for lower
variance (and thus less confusable) models.  The wear state can
be thought of as analogous to the word in speech recognition.
Depending on the type of cut, there may be multiple phases with
different observation characteristics such as entry and exit into a
work piece, which would be analogous to the specification of a
word pronunciation in speech recognition.  Lastly, there are
dynamics over short time scales that are relevant for
classification, such as within a transient in the tool monitoring
process or within a phoneme in speech. HMMs can be
simultaneously used at more than one of these levels, but so far
most work has involved only one or two levels.

The analogy to speech recognition is not perfect, however, since
there is no clear definition as yet for the fundamental “subword”
units of the drilling process. Nor is it clear that such units could
be learned automatically because of the chaotic nature of the
wear process and the fact that the wear state is not inherently
discrete as words are. However, one can represent temporal
dynamics at this intermediate level by using a priori knowledge
of the physical process of cutting to specify simple state
progressions, in combination with mixture distribution models
to automatically learn chaotically occurring events.

A related and perhaps more important difference between
speech recognition and tool wear monitoring is that the amount
of labeled data is sparse because it is so expensive to collect.
This complicates training as well as evaluating classifiers.

4. HIDDEN MARKOV MODELS FOR
PREDICTION OF WEAR

In this paper we focus on three different time scales of
application of HMM’s to modeling vibrations, as sensed by
accelerometers, from end mill processes.

All experiments used training and testing data that were taken
from an accelerometer mounted on the spindle housing of a
numerically controlled machining center that was climb-cutting
notches in hard metal. Data sets were segmented into passes,
one pass being the period from the time the tool first touches the
work piece to the time the tool cuts air after leaving the work
piece.

We observed and modeled separately three time scales: the
progression of the tool from sharp to worn; the dynamics



associated with entry, bulk machining, and exiting each pass;
and very short, yet potentially meaningful, transients.

4.1 Results for Transients: The Shortest Time
Scale

When looking at the accelerometer signal in detail, we found
that short and energetic signals, which we call “transients,”
occurred throughout the machining process. These transients
were of very short duration (averaging roughly 0.0065 sec. in
length) yet the rate of occurrence, energy, or durations of the
transients did not correlate with tool wear. Our sample rate was
high enough to show detailed time-frequency information for
each transient. We also observed that this time-frequency
information had a fair amount of complexity. We thus encoded
[16] each transient as a vector quantized time-series, and used
this encoding as our front-end representation for the HMMs.

In order to test the hypothesis that these short transients encode
information which relates to the life of the tool, we divided up
750 transients, which were observed over the life of the tool,
into 3 sets of 75 training transients and 525 separate test
transients. The training transients were taken from three regions
of the tool life—early, middle, and late—and three distinct
HMM’s were trained on 75 transients each. Thus, one HMM
potentially models early, the second HMM models middle, and
the third HMM models late transients.

The 525 test transients were matched against the three HMMs
and the proportion assigned to each of the three different classes
is plotted in Figure 1. This result was then cross-validated by
repeating the experiment with a totally distinct new assignment
of 225 training and 525 test transients.

Figure 1. The vertical axis represents the proportion of
transients assigned to the three different hidden Markov
models over the lifetime of the tool. The solid plot is the
result from the first experiment. The dashed plot
represents the second experiment, which closely cross-
validated the first.

This result shows that the HMMs clearly detected separate
structure in early, middle, and late transients. However,

these trained HMM’s did not generalize well with other
tools, implying that HMM retraining would be needed
whenever tools were changed.

4.2 Results for Longer Time Scales

For these experiments we used HMMs to model dynamics on
two levels: for capturing the progression of tool wear and for
modeling the dynamics associated with different stages of a
single cut.  The output of the classifier is both an estimate of the
actual wear on the primary cutting edge (quantized) and a
confidence (actually, posterior probability) in the tool having
exceeded an acceptable threshold of wear.  The classifier was
trained on data from six 1/2-inch cutters and tested on two
independent sets of data, a different set of seven 1/2-inch cutters
and a set of four 1-inch cutters recorded using a different
accelerometer (to assess generalization).

Of the 87 passes recorded for the six cutters in the training set,
only 12 passes were labeled with a measured wear level.  To
deal with the problem of sparsely labeled training data, we
developed an approach of semi-supervised learning of training
labels which makes use of prior knowledge that wear progresses
monotonically.  We progressively assign labels to unlabeled
data, training on subsets of the tools using the current set of
“labeled,” using constrained Viterbi decoding to label the rest,
and assigning new labels when multiple models agree on a
label. The Viterbi decoding is constrained to maintain the
known wear labels in the sequence.

Evaluation of past classifiers has been based upon the accuracy
of the “worn” vs. “not worn” labels assigned. Using this
criterion, we were able to achieve excellent performance across
changing cutting conditions, 92% and 94% accuracy for the two
test sets respectively, even with a single sensor and using only
simple RMS energy and energy derivative features.

While accuracy of binary wear prediction is a valuable metric, it
provides only a limited assessment of the wear prediction
capability. Predicting accuracy of the quantized wear state labels
is impractical because of limited test data, so instead we
assessed the classifier confidence that the tool is worn, i.e. the
posterior probability that the tool is worn given the
observations.  The wear confidence prediction is analogous to
word confidence prediction in speech recognition [19] and we
borrow techniques from that literature.  In particular, confidence
prediction is assessed using the normalized cross entropy (NCE)
measure
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where W is the binary wear variable, X is the observation
sequence and the expectation in the entropy is based on the
empirical distribution of the test data.  The NCE measure
indicates how much information is provided in the predicted
posterior probability that the tool is worn relative to simply
using the prior probability alone.

Lifetime of the tool



As it turns out, the HMM is a poor predictor of the posterior
probability of wear in these experiments, even when the
accuracy is high, because the fine time resolution used to
captured short-time events leads to a long time sequence and a
correspondingly over-confident HMM.  With only one error, if
the confidence of that decision is high, then the NCE measure
can be negative.  To address this problem, a second stage
generalized linear model (GLM) is used to predict confidence of
the binary wear state given the output wear level and optionally
other information from the HMM.  NCE scores for the two test
sets were 0.66 and 0.26, respectively, which are very
encouraging given the 0.20 scores typically seen in
conversational speech recognition.  Unfortunately, the GLM
shifts the posterior estimates (conservatively) towards 0.5 and
can sometimes result in an increase of errors, as seen here.
However, because of the low dimensionality of the GLM (a
single parameter in this case), it can easily be adapted to obtain
improved performance under changing cutting conditions. Using
this idea in a rotation paradigm for adapting and testing the
GLM on the 1-inch test data, we recovered the lost performance
(see Table 1).

Test Set % Accuracy NCE

½ inch 92 0.66

1 inch 91 0.26

1 inch (adapt) 94 0.23

Table 1. Accuracy and NCE performance of systems for
monitoring tool wear in a milling application, using an
HMM followed by a generalized linear model (GLM).
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