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ABSTRACT

In this paper we investigate the mutual information in speech
between the spectral envelope of the high frequency band
and low frequency bands of various widths. Direct methods
on the computation of the mutual information often result
in an excessive amount of data required even for modest sit-
uations. We reduce the required amount of data by quan-
tizing the low band leading to a lower bound expression on
the mutual information. We indicate by simulation that
this lower bound is in the same order of magnitude as the
true mutual information. Simulations on speech show that
we have no less than 0.1 bit of shared information between
the slope of the high band and the low frequency band from
0 - 4 kHz. Performing the analogous simulation with the
gain of the high band we obtained no less than 0.45 bit of
mutual information.

1. INTRODUCTION

In recent years, there have been a significant number of
publications on bandwidth expansion of speech signals [1,
2, 3, 4]. The bandwidth expansion algorithms are generally
aimed at recovering the spectral envelope for frequencies
up to 8 kHz, given a speech signal with frequency contents
below 3.6 kHz. This processing removes the muffled sound
quality, which is introduced when the speech signal is band
limited to 4 kHz.

The motivation for all bandwidth expansion methods is
the fact that the spectral envelope of the lower and higher
frequency bands of the speech signal are dependent, i.e., the
low band part of the speech spectrum provides information
about the spectral shape of the high band part. This results
from speech being created by a physical source.

If the logarithmic spectral energies of frequency bands
had a Gaussian distribution, their relation could be de-
scribed with a correlation function. However, it is well
known [5] that the logarithmic spectral energies of the speech
signal are non-Gaussian and thus have statistical moments
of order higher than two, which would not be accounted
for with a correlation measure. In this situation, mutual
information is an appropriate measure.

Mutual information as a measure of dependency has
been used in connection with automatic speech recognition
to study the distribution in time and frequency of infor-
mation relevant for phonetic classification [5] and in esti-
mating the information contained in the so-called feature-

vector joint distribution [6]. By observing only regions hav-
ing densely informative content, it is possible to reduce the
size of the data set used for training maximum-likelihood
based speech recognition systems.

This work is a first attempt to investigate the amount of
information that is shared between the low and high band in
speech. The objective is to determine an approximate value
of the mutual information between the high band and vari-
ous widths of the low band of spectral envelopes of speech.
We have in this paper only considered the mutual informa-
tion between spectral envelopes. Our results should provide
information on whether there is a frequency region in the
low band, that contains almost all information about the
high band. If there is, we could claim that speech coders
coding the high band independently of the low band are
wasting bits in representing something which is predictable
from the low frequency band. In this work we are using
only the slope respectively the gain of the high band spec-
tral envelope to capture the behavior of the high band.

The slope of the high band conveys partial information
on whether a speech segment is voiced (v) or unvoiced (uv).
A v/uv decision can also be made from a low frequency
band 0 - 4 kHz. This suggest that the low band contains
information about the high band slope in the same order
of magnitude as the entropy of a v/uv classification. If we
assume 80 % of the speech to be voiced, this results in an
entropy of 0.72 bit. If the slope contained full information
about the v/uv classification, 0.72 bit would be a lower
bound on the mutual information between the slope and
the low band. However, we do not suggest that this is the
case since only partial information on a voiced/unvoiced
classification is conveyed by the slope.

Looking at the LPC spectrum at the high frequency
band we can see that there are some peaks and valleys,
which will not be captured using only the slope and gain.
However, this work is a first step in the direction of find-
ing the true mutual information between the low and high
frequency bands.

This paper is organized as follows. In section 2, we
derive a lower bound on the mutual information, which re-
quires a smaller amount of data compared to direct calcula-
tions of the mutual information. Simulation procedures and
results for both synthetic and speech data are presented in
section 3. In section 4 conclusions from this work are drawn.



2. MUTUAL INFORMATION

The mutual information between two continuous variables
X and Y is given by [7]:

I(X;Y) = h(Y) = h(Y]X), (1)

where h(Y) is the differential entropy of Y and is defined
by an integration over the value space Qy of Y:
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with fy (y) being the probability density function (pdf) of
Y. The conditional differential entropy h(Y|X) of Y given
X is defined as:

h(Y|X) = — / Fox (4,2 Logs (Fy yx (ule) e,

where Qx is the value space of X and fy x(y,z) is the
joint pdf of X and Y. Throughout this paper, X is a coeffi-
cient vector representing the low frequency band and Y is a
coefficient scalar or vector representing the high frequency
band.

2.1. Reduction of the required amount of data

In practice we do not have access to either the true value
spaces Qx and Qy or to the true pdfs. Thus, the differen-
tial entropies in (2) and (3) have to be estimated from the
observed data. Estimation of these differential entropies is
problematic. We would like Y to be the log amplitude of
the spectrum at m frequency bins covering the high band
frequencies, Y = {Y1,Ys,---,Y.,,}. This requires an esti-
mate of the joint pdf fvy,ve,-,vim (Y1,¥2, -, Yym) to com-
pute the differential entropy. However, the determination
of this joint pdf with sufficient accuracy demands an ex-
tremely large amount of data, even for modest values of
m.

To reduce the amount of data required and to make the
computations tractable, we describe the high band with two
parameters: the slope S, and the gain G. The slope and
gain are both derived from a first order model of the high
frequency band. This allows estimation of the differential
entropies h(S), h(G), h(S|X) and h(G|X). In our work,
the low band representation X consists of 32 mel-frequency
cepstral coefficients (MFCC).

To further reduce the amount of data required, we con-
strain X to be a fixed number of possible low band spectral
envelope representations, i.e., we quantize our low band X
with a fixed size codebook. When we quantize the low band,
we tile the space of X into a fixed number of regions. The
random index of these regions is denoted by Kx. We used
a vector quantizer to cluster the MFCCs representing the
low band using the Generalized Lloyd Algorithm (GLA) [8].
For every set of MFCCs mapped to a certain codebook en-
try, the slope and gain are calculated and averaged. This
results in approximate MMSE-estimators of S and G, given
Kx:
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respectively. Here, E denotes the approximation of the true
expectation operator E by the sample mean. The estimator
is in practice a codebook look-up. In the remainder of this
section, we describe the processing concerning the slope S,
since the processing for the gain G is completely analogous.
By using a quantizer for the low band we obtain an
upper bound for the conditional differential entropy term

in (3):
h(S|X) < h(S|Kx), (6)

where the inequality results from the fact that the quantized
low band Kx provides equal or less information about S
than the original low band X.

From our MMSE estimate S of S we now form the es-
timation error:

Ns=S8-258. (7)
Inserting (7) in (6) yields,

h(S|Kx) = h(S(Kx) + Ns|Kx), (8)

which, since S'(KX) is a deterministic function of Kx, can
be reduced to

h(S|Kx) = h(Ns|Kx). 9)

We can now write (9) as an upper bound on the conditional
differential entropy:

h(S|Kx) < h(Ns) (10)

with equality when the indexing process K x is independent
of the estimation noise Ng.

Finally, from equations (1) and (10) we have a lower
bound on the mutual information between the spectral en-
velope of the low band and slope of the high band:

1(X;5) 2 h(S) — h(Ns). (11)

This lower bound requires only the determination of the
differential entropies of the slope and the slope estimation
noise.

2.2. Estimation of differential entropy via histogram

From a histogram of S we can approximate the pdf of the
slope with a probability mass function (pmf). If we divide
the range of the random variable S into bins of length Ag
and denote the random index Kg, we can then approximate
the differential entropy as [7]:

h(S) = H(Ks) + log,(As), (12)

where H(Ks) is the entropy of Ks. This method applies
to the estimation noise Ng as well.

3. SIMULATIONS AND RESULTS

This section describes simulations on both synthetic and
speech data. The results are presented at the end of the
section.



3.1. Simulation with synthetic data

To investigate the closeness of the lower bound (11) to
the true value of the mutual information, we performed a
simulation on synthetic data with known mutual informa-
tion. Two zero mean unit variance Gaussian distributed
processes S and D were constructed. We then formed a
new process Sp = S + D for which the mutual information
between Sp and S can be determined analytically [7]:
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1(5;8) = 5 log,(22) = (13)

For the simulations we constructed 200000 realizations
of the scalar processes S, D and Sp yielding the data sets
{s}, {d} and {sq}, respectively. A synthetic training set
{z} was then constructed: for every element s4 in {sq}
we formed a vector of dimension 10 consisting of s; and a
zero mean Gaussian vector of length 9 samples, each with
variance two. Vector quantization was then performed on
the training set {z} and an approximate MMSE-estimator
was calculated from the data set {s} as described in section
2.1. The codebook size used was 1024. We then used the
codebook to extract an estimate § of the true s and deter-
mine the estimation noise n = s — §. All estimation noise
samples formed the data set {n}. The differential entropies
h(S) and h(N) were then calculated from the data sets {s}
and {n}, respectively, by means of histograms as described
in section 2.2. The lower bound of the mutual information
was then calculated using (11).

3.2. Simulation with speech data

Our data set consisted of 2200 speech files (sampled at 16
kHz) from the TIMIT data base, yielding 600000 segments
of length 20 ms using 50 % overlap. The Log-Area-Ratio
(LAR) was used to represent the slope parameter:

1-1
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where [ is the first reflection coefficient. The reflection coef-
ficient was calculated from a first order LPC analysis. From
the same analysis the amplification b of the LPC filter A(z)
was determined assuming a unit variance input:

b
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A(2) (15)

We then used the logarithm of b as our gain parameter:

g = log,, (D). (16)

From each speech file, high band and low band speech files
were created. The low band speech file contained frequen-
cies up to P kHz, where P ranged from 1 to 4 kHz. The
high band speech file was created by first high-pass filter-
ing the speech signal at a cut-off frequency of 4 kHz. The
high-pass filtered signal was then modulated with a cosine
to move the signal to the band 0 - 4 kHz, low-pass filtered
at 4 kHz and finally down-sampled by a factor 2. For each
speech segment the slope and the approximate MMSE esti-
mate of the slope were found and the estimation noise was
determined.

entity low band frequency regions [kHz]

0-1 0-2 0-3 0-4
h(S) 0.8094 | 0.8094 | 0.8094 | 0.8094
h(Ns) 0.7844 | 0.7417 | 0.7176 | 0.6991
I(X;S) | 0.0250 | 0.0677 | 0.0918 | 0.1103

Table 1: Results from simulation showing the differential
entropy of the slope and slope estimation noise and the
lower bound on the mutual information.

entity low band frequency regions [kHz]
0-1 0-2 0-3 0-4
h(G) 1.2347 | 1.2347 | 1.2347 | 1.2347
h(Ng) 1.2186 | 1.0764 | 0.8861 | 0.7603
I(X;G) | 0.0161 | 0.1583 | 0.3486 | 0.4684

Table 2: Results from simulation showing the differential
entropy of the gain and gain estimation noise and the lower
bound on the mutual information.

The slopes s and the slope estimation noises ns for all
speech segments were used to estimate the differential en-
tropies h(S) and h(Ns), respectively, as described in sec-
tion 2.2. The histograms were computed using 30 bins. To
have the same resolution in the quantization of the ranges
of S and Ng, the same bin width As was used in both his-
tograms. The mutual information was then computed by
subtracting the differential entropy of the slope estimation
noise from the differential entropy of the slope in accordance
with (11). The simulations for calculating the lower bound
on the mutual information between the gain G and the low
frequency bands were performed analogously.

3.3. Results

The result of the simulation on synthetic data was a mutual
information lower bound equal to 0.3 as compared to the
true value 0.5. This means that our numerical methods
indeed give a lower bound and have the correct order of
magnitude.

Using real speech data and determining the lower bound
on the mutual information between the slope of the high
band and various widths of the low band gave the results
shown in Table 1. Table 2 shows the results from the sim-
ulation with the gain. Observing Figure 1, we see that
there is no less than 0.1 bit of mutual information between
the spectral envelope of the low band frequency region 0 -
4 kHz and the slope of the high band. From Figure 1 we
see that largest increase in mutual information is achieved
when we increase the information about the low band from
representing 0 - 1 kHz to representing 0 - 2 kHz. The mu-
tual information then seems to level out as more informa-
tion about the spectral characteristics of the low band are
given. Onme possible explanation is that we have one for-
mant in the region 0 - 1 kHz from which alone it is hard
to estimate the slope, since the total number of formants
determine the slope of the spectrum at the high band, as-
suming an all-pole signal model. All-pole moldels form a
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Figure 1: A lower bound on the mutual information be-
tween the slope of the high band given spectral envelope
representation of the low band for regions 0-1,0-2,0-3
and 0 - 4 kHz.
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Figure 2: A lower bound on the mutual information be-
tween the gain of the high band given spectral envelope
representation of the low band for regions 0-1,0-2,0-3
and 0 - 4 kHz.

good model of the vocal tract, and, thus, of the spectral
envelope. However, by extending the region to 0 - 2 kHz we
have a significantly better estimate of how many formants
there are in the region 0 - 4 kHz and thus we obtain a better
prediction of the slope.

Figure 2 shows the results obtained when we used the
gain G instead of the slope S in the simulations. From
Figure 2 we can see that the there is no less than 0.45 bit
of mutual information between the gain and the spectral
envelope of low band frequency region 0-4 kHz. The curve
indicates that the shared information between the low band
and the gain of the high band is related to how much of the
speech signal energy we observe.

To test the sensitivity of the results towards the use of
a histogram to estimate the differential entropy, we verified
empirically that the results did not fluctuate with increasing
number of histogram bins. We have not tested the sensi-
tivity towards the codebook size, but using the bandwidth
expansion scheme described in [3] we measured the average
spectral distortion over 300 speech files from the TIMIT
database with the codebook sizes 128 and 1024. The av-
erage spectral distortion was lowered by less than 0.2 dB
using the codebook size of 1024 instead of 128. This exper-
iment strongly suggests that the results would not change
with finer quantization.

4. CONCLUSIONS

This paper describes a method for estimating a lower bound
on the mutual information between a low band spectral co-
efficient vector and a high band spectral slope or gain. In

the derivation of the method, we used a quantization step
and an independence assumption and we showed in sec-
tion 2.1 that these two assumptions are consistent with a
lower bounding of the true mutual information. As a result
of these steps, our method required significantly less data
than a more direct approach. The sensitivity test of the
results towards the number of bins used in the histograms
showed that the results do not fluctuate. From the con-
ducted simulations we can conclude that:

e there is mutual information between the low and high
frequency bands;

e the mutual information is no less than 0.1 bit for the
slope and 0.45 bit for the gain given the low band 0
- 4 kHz.

The 0.1 bit value we obtained for the lower bound on the
mutual information between the low band and the slope
of the high band is in the same order of magnitude as the
entropy of the v/uv classification described in the introduc-
tion. Codebook based bandwidth expansion methods typ-
ically use between 7 and 10 bits to quantize the low band;
it seems likely that these methods exploit more than 0.1 or
0.45 bit of information about the high band. Therefore, we
a method for calculating mutual information that can han-
dle a larger coefficient vector describing the high band, but
still does not require an excessive amount of data, would
likely reveal more mutual information between frequency
bands in speech.
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