
MULTIVARIATE-STATE HIDDEN MARKOV MODELS FOR

SIMULTANEOUS TRANSCRIPTION OF PHONES AND FORMANTS

Mark Hasegawa-Johnson

Department of ECE, University of Illinois

Urbana, IL 61801, USA

ABSTRACT

A multivariate-state HMM | an HMM with a vector s-
tate variable | can be used to �nd jointly optimal phonetic
and formant transcriptions of an utterance. The complexi-
ty of searching a multivariate state space using the Baum-
Welch algorithm is substantial, but may be signi�cantly
reduced if the formant frequencies are assumed to be condi-
tionally independent given knowledge of the phone. Operat-
ing with a known phonetic transcription, the multivariate-
state model can provide a maximum a posteriori formant
trajectory, complete with con�dence limits on each of the
formant frequency measurements. The model can also be
used as a phonetic classi�er by adding the probabilities of
all possible formant trajectories. A test system is described
which requires only nine trainable parameters per formant
per phonetic state: �ve parameters to model formant tran-
sitions, and four to model spectral observations. Further
simpli�cations were achieved through parameter tying.

1. INTRODUCTION

This article proposes an algorithm which simultaneously
transcribes the phonetic content and the formant frequen-
cies of an utterance. Previous attempts to use formant fre-
quencies in speech recognition require the formant tracker
to make a hard decision about the frequency of each for-
mant before the commencement of phonetic classi�cation.
In contrast, the algorithm proposed in this article seeks pho-
netic and formant transcriptions which describe the spectral
content of the utterance in a jointly optimal manner. In ef-
fect, the algorithm proposed in this article is a soft-decision
formant tracker.
The structure of the formant tracker is based loosely

on the HMM formant tracker proposed by Kopec [3]. In
Kopec's HMM formant tracker, the state of the hidden

Markov model is a vector of formant frequencies ~�t =
[�1;t; : : : ; �P;t], where P is the number of formants to be
tracked. Kopec reduced the complexity of his formant

tracker by vector quantizing ~�t, and performing a Viterbi
search in the space of vector quantization indices, in order
to determine the maximum likely formant frequency track

�� = [~��1; : : : ; ~�
�

T ]. Once calculated using Kopec's formant
tracker, the matrix �� was then appended to the observa-
tion vector of an HMM digit recognizer [1]. The observation
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vector also included the LPC spectrum from which the for-
mants were originally calculated, so Bush and Kopec note
that the formant frequencies were e�ectively a repetition
of information already available to the recognizer. Even
so, the second formant slope d��2;t=dt was found to increase
digit recognition scores; information about other formants
had no signi�cant e�ect on recognition performance.
In this article, Kopec's formant frequency state vector is

augmented with the scalar state variable qt of a traditional
HMM:

~qt � [qt; �1;t; : : : ; �P;t] (1)

Section 2 describes an eÆcient Viterbi search, and an ap-
proximate Baum-Welch algorithm, in which the cost of
searching the state space given in equation 1 is signi�cantly
reduced using appropriate independence assumptions. Sec-
tion 3 describes a simple test system which can be used
to track formant frequencies at the release of a voiced stop
consonant, or to identify the consonant. Section 4 describes
parameter tying and estimation, and section 5 gives results.

2. SEARCH IN A MULTIVARIATE

STATE SPACE

The formant frequencies may be modeled as a vector of hid-
den state variables which inuence but do not determine the
acoustic spectrum. In the notation of speech recognition,
the scalar state variable qt in traditional HMM formulation-
s [4] is replaced by the vector state variable ~qt in equation 1.
Assume that the scalar phonetic variable qt takes on Nq d-
i�erent values, while each of the formant frequencies �i;t
takes on N� di�erent values; then the vector state variable
~qt takes on a total of NqN

P
� di�erent values.

Maximum a posteriori transcription of formant frequen-
cies and phonetic information given a spectrogram can
be accomplished using either the Viterbi algorithm or the
Baum-Welch algorithm. This article will derive a computa-
tionally eÆcient multivariate approximation of the Baum-
Welch algorithm. A computationally eÆcient multivariate
Viterbi algorithm may be derived in much the same way.
The Baum-Welch algorithm calculates the probability

t(~j) = P (O; ~qt = ~jj�), where O = [~o1; : : : ; ~oT ] is the ma-

trix of observation vectors, and � is the model. t(~j) is

the product of a forward probability �t(~j) and a backward

probability �t(~j), which are calculated using recursions of
the form:

�t(~j) = p(~otj~j)
X
~i

�
�t�1(~i) p(~jj~i)

�
(2)



In the general case, the only way to solve equation 2 is by
summing over all of the possible state vectors. The total
computation required, with NqN

P
� possible state vectors

and T time steps, is T (NqN
P
� )

2.
It is possible to construct a simpli�ed approximation of

equation 2 by assuming that formant frequencies �p;t are
dependent on the \phonetic state" qt (which is equivalent
to the state in a traditional HMM), but that given knowl-
edge that qt equals soem particular state j0 and qt�1 = i0,
the formant frequencies �p;t = jp and �r;t = jr are inde-
pendent:

p(~jj~i) = p(j0ji0)

PY
p=1

p(jpji0; ip) (3)

p(~otj~j) /

PY
p=1

p(~otjj0; jp) (4)

If the transition and observation probabilities satisfy e-
quations 3 and 4, then equation 2 can be approximated
using the equations

�t(~j) � ~�t(~j) =

PY
p=1

�t(jp; j0) (5)

�t(jp; j0) = p(~otjjp; j0)� (6)X
i0

X
ip

�
�t�1(ip; i0) p(j0ji0)

1=P p(jpjip; i0)
�

The total complexity of �nding ~�t(~j) using equation 6 for
T time steps is TP (NqN�)

2.
Even if the transition and observation probabilities sat-

isfy equations 3 and 4, equation 6 is only an approximation
of equation 2. It can be shown that a Viterbi search can be
simpli�ed in a similar manner without su�ering a similar
loss of accuracy; unfortunately, a Viterbi search does not
provide us with the probability t(~j). It can also be shown

that ~�t(~j) � �t(~j), with equality if the phonetic state q� is
known with certainty for � < t.
The multivariate-state algorithm may be used as a max-

imum a posteriori formant tracker. The a posteriori distri-
bution of each of the formant frequencies given observations
~o1; : : : ; ~oT , and given the phoneme sequence q1; : : : ; qT , is:

t(jpjqt) = �t(jpjqt)�t(jpjqt) (7)

�t(jpjqt) = p(~otjjp; qt)� (8)X
ip

[ �t�1(ipjqt�1) p(jpjip; qt�1) ]

The maximum a posteriori (MAP) formant transcription of
an utterance is the sequence of formants ��p;t which maxi-
mize t(�p;tjqt).
It may be the case that an application needs to know

how con�dent the formant tracker is about the estimated
formant frequency ��p;t. Con�dence limits for the formant
��p;t are given by the distribution t(�p;tjqt). For example,
it is possible to numerically integrate t(�p;tjqt), and to �nd
two frequencies f1 and f2 such that the true value of �p;t is
between f1 and f2 with a probability of 95%.

Phoneme classi�cation with the multivariate-state model
can be accomplished using either the Viterbi algorithm or
the approximate Baum-Welch algorithm. Using the Baum-
Welch algorithm, maximum-likelihood phone classi�cation
is accomplished by choosing the phone model � which max-
imizes

P (Oj�) =
X
j

�T (~j) (9)

where T is the length of the waveform. As noted previously,
exact computation of equation 9 requires on the order of
T (NqN

P
� )

2 computations, which is usually not practically
feasible. An approximate maximum likelihood classi�cation
can be accomplished by choosing � to maximize

~P (Oj�) �

PY
p=1

X
j0

X
jp

�T (jp; j0) (10)

It can be shown that ~P (Oj�) � P (Oj�), with equality if the
sequence q1; : : : ; qT is deterministic.

3. TEST SYSTEM

The approximate Baum-Welch algorithm described in equa-
tions 5 through 10 was tested using stop consonant releases
excised by hand from the TIMIT database. Formant track-
ing and phonetic classi�cation were performed using seg-
ments consisting of six consecutive non-overlapping 10ms
frames, beginning 5ms before stop release.
Each of the three places of articulation (lips, tongue

blade, and tongue body) was modeled using two hidden
Markov models: one for male speakers, and one for fe-
male speakers. Each model consisted of six states, with
no self-loops and no skipped states; in other words, given
knowledge of the model, the state sequence [q1; : : : ; q6] was
deterministic and non-repeating.
Formant frequencies tend to be slowly varying, so it is

reasonable to model p(jpjip; i0) using a unimodal distribu-
tion, with a peak somewhere near jp = ip. The test system
modeled formant transitions using a two-dimensional Gaus-
sian distribution with phoneme-dependent parameters:

p ([ip; jp]ji0) = N
�
[ip; jp]; ��p(i0);��;p(i0)

�
(11)

where N (~x; �x;�) is the normal distribution with mean vec-
tor �x and covariance matrix �. Since jp is a discrete random
variable, the PDF in equation 11 was converted to a PMF
using approximate numerical integration.
The dependence of the observed DFT spectrum on any

given formant frequency jp was modeled using a strictly
local, independent modulation of the relative amplitude
A(jp; t) and spectral convexity C(jp; t) at the speci�ed fre-
quency jp, with probability densities whose parameters de-
pend only on the phonetic state j0:

p(~otjjp; j0) = p(A(jp; t)jj0)p(C(jp; t)jj0) (12)

The spectral amplitude A(jp; t) is de�ned as the ratio
of the squared DFT spectrum jX(jp; t)j

2 to the total DFT
energy E(t), where

E(t) =

N=2X
k=0

jX(kFs=N; t)j
2; (13)
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Figure 1: Lifter used to estimate spectral convexity.

and N is the number of samples in the DFT spectrum,
and Fs is the sampling rate. Since ratio variables are not
well modeled by a Gaussian distribution, the ratio is trans-
formed using a form of the logistic transform:

A(jp; t) � 10 log
10

�
jX(jp; t)j

2

E(t)� jX(jp; t)j2

�
(14)

The resulting amplitude measure A(jp; t) is modeled using
a Gaussian distribution, with phone-dependent mean and
variance:

p(A(jp; t)jj0) = N
�
A(jp; t); �Ap(j0); �

2

A;p(j0)
�

(15)

The convexity measurement C(jp; t) is an approximation
of the second derivative of the log spectrum, created by
convolving log jX(f; t)j with a seven-sample FIR lifter:

C(jp; t) = 20

3X
k=�3

H(k) log
10
jX(jp � k; t)j (16)

The lifter H(k) was designed by truncating the spectrum
of a 125Hz-bandwidth complex pole pair, and normalizing
the result to zero mean and unit energy. The spectrum and
cepstrum of H(k) are shown in �gure 1.
The probability distribution of C(jp; t) is not well mod-

eled by a Gaussian distribution. When human judges mea-
sure formant frequencies, they usually locate a formant fre-
quency near a local maximum of C(jp; t), implying that
larger values of C(jp; t) are somehow \better" than average
values | in other words, the mode of p(C(jp; t)) should be
higher than the mean. Since the true form of p(C(jp; t)) was
unknown, convexity was modeled using a \half-Gaussian"
weighting distribution (not a true probability distribution),
in which all convexity values above the training sample
mean were considered equally likely:

p(C(jp; t)jj0) = N
�
C(jp; t); �Cp(j0); �

2

C;p(j0)
�

(17)

C(jp; t) � min
�
C(jp; t); �Cp(j0)

�
(18)
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Figure 2: Spectrum, spectral convexity, and a posteriori

formant probabilities, as calculated by the formant tracker,
10ms after release of the �rst /b/ in \Barb." A posteriori

probability distributions of all three formants are shown
on the same plot, because there is no signi�cant overlap
between the distributions.

4. PARAMETER TYING AND ESTIMATION

The probability densities in equations 11, 15, and 17 are
speci�ed by nine parameters per formant per phonetic s-
tate: �ve parameters to model the formant transition (e-
quation 11), and four to model spectral observations (e-
quations 15 and 17). Visual analysis of the training data
suggests that amplitude and convexity parameters vary lit-
tle from one place of articulation to another and from one
speaker gender to another, so the amplitude mean and vari-
ance parameters were tied across place of articulation and
speaker gender. The parameters of equation 11, on the
other hand, vary substantially as a function of place and
gender, but are more slowly varying as a function of time.
The parameters ��;p(j0) were therefore tied together across
all states within each HMM, i.e. ��;p(qt) = ��;p(�), where
� denotes place of articulation and gender of the speaker.
After these simpli�cations, the average number of trainable
parameters per formant per phonetic state is 3.17. Further
tying reduced the complexity to 1.84 trainable parameters
per formant per phonetic state; see [2] for details.
The multivariate-state model was tested in two experi-

ments, with separate training for each experiment.
In the �rst experiment, the model was tested as a soft-

decision formant tracking algorithm, using the a posteriori

formant probability distributions given in equation 7. The
model parameters were estimated using manual transcrip-
tions of the formant trajectories following 36 stop release
tokens, produced by 36 di�erent speakers (18 male, 18 fe-
male). Training tokens were manually segmented, and the
mean and variance of each Gaussian distribution in equa-
tions 11 and 12 were estimated using sample means from
each segment, pooled across training tokens.
In the second experiment, the model was used to clas-

sify the place of articulation of stop releases. For this ex-
periment, the model was trained using 3141 non-word-�nal
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Figure 3: Spectrum, spectral convexity, and a posteriori

formant probabilities, as calculated by the formant tracker,
50ms after release of the �rst /b/ in \Barb."

Vowel Correct Num. Classi�ed As:
Phone Toks. /b/ /d/ /g/

Low Back /b/ 63 92
/aa, /d/ 29 83
ah/ /g/ 64 17 81
High Front /b/ 216 94
/iy,y, /d/ 102 76 14
ih,ux/ /g/ 33 15 79
High Back /b/ 18 83 11
/uw,w, /d/ 25 88 12
uh/ /g/ 31 84
Other /b/ 474 90
/eh,ae, /d/ 476 15 72 13
ix,ax/ /g/ 474 11 81

Table 1: Stochastic formant model classi�cation of voiced
stops, as a function of right context. Entries of 10% or less
have been omitted.

voiced stop release tokens extracted from the TRAIN sub-
directory of TIMIT. Segmentation was based on the TIMIT
segmentation, but was checked manually for each training
token. Formant frequencies were transcribed by the ES-
PS formant tracker (Entropic Research Labs, Washington,
DC); formants missed by the ESPS tracker were �lled in
using an expectation maximization algorithm.

5. RESULTS

The multivariate-state model can be used as an MAP for-
mant tracker by calculating, at each time t, the set of for-
mant frequencies which maximize the a posteriori probabil-
ity distribution t(�pjqt). If the model is used in this way,
t(�pjqt) itself can be viewed as a frame-by-frame estimate
of the measurement uncertainty of the formant-tracking al-
gorithm.
Figures 2 and 3 show the spectrum, spectral convexity,

and a posteriori formant probabilities t(�pjqt) at t = 10ms

and t = 50ms following the /b/ release in the word \Barb"
spoken by a female speaker. In most cases, there is a clear
peak in the spectrum near the expected value of formant
�p, and as a result, t(�pjqt) has low variance. In �gure 3,
however, the F1 peak obscures the location of the F2 peak,
and as a consequence, t(�2jqt) in �gure 3 is more di�use.
A di�erent kind of uncertainty is visible in the F3 region in
�gure 2: there are two clear peaks in the spectrum. The
algorithm is unable to de�nitively rule out either peak, so
t(�3jqt) is non-zero for candidate values of �3 in both pos-
sible formant locations.
The model was also tested in a phoneme classi�cation

task. The approximate Baum-Welch algorithm described
in equation 10 was used to classify the place of articulation
of 2005 non-word-�nal voiced stop releases in vowel, schwa,
and glide right contexts extracted from the TEST subdi-
rectory of TIMIT. Table 5 lists confusion matrices for four
di�erent categories of right context; on average, classi�ca-
tion of the stop consonant was 83% correct.

6. CONCLUSIONS

This article describes a hidden Markov model which simul-
taneously tracks the phonetic state of an utterance and
three hidden formant frequencies. The model can be used
as a maximum a posteriori formant tracker, in which case
the a posteriori distributions t(jpjj0) provide a frame-by-
frame estimate of formant measurement uncertainty. The
model can also be used for phoneme classi�cation or recog-
nition.
The observation PDF used in this article models only

one sample of the spectral amplitude and one sample of the
spectral convexity per formant per phonetic state. The lim-
ited observations may explain the rather poor classi�cation
performance of the test system. If a more complete observa-
tion spectrum can be devised which approximately satis�es
the independence constraint in equation 4, the classi�cation
performance of the model is expected to improve.
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