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ABSTRACT
Basically all conventional digital signal processing techniques can
be warped by introducing a simple modification to the system. In
this paper, the focus is in warped linear predictive coding tech-
niques with application to speech and audio coding. The perfor-
mance of warped LPC is compared with a conventional LPC in
listening tests and in terms of technical measures. This is done at
various sampling rates as a function of the order of the LPC model.

1. INTRODUCTION

Nonuniform resolution FFT was introduced by Oppenheim, John-
son, and Steiglitz [10]. The main idea was to use a network of
cascaded first order allpass sections for frequency warping of the
signal and then apply Fast Fourier Transform (FFT) to produce the
warped spectrum from the preprocessed signal.

The transfer function of a first order allpass, AP, filter is given
by

D(z) =
z�1 � �

1� �z�1
; (1)

By definition, the magnitude response of the filter is a constant.
The phase response of D(z) is given by

~! = ! + 2arctan

�
� sin(!)

1� � cos(!)

�
: (2)

The phase function determines a frequency mapping occurring
in the allpass chain [10, 14]. For a certain value of � the frequency
transformation closely resembles the frequency mapping occurring
in the human auditory system. Smith and Abel [12, 13] derived an
analytic expression for � so that the mapping, for a given sam-
pling frequency fs, matches the psychoacoustic Bark-scale map-
ping. The value is given by

�fs � 1:0211(
2

�
arctan(0:076fs))

1=2 � 0:19877: (3)

The value of � obeys this formula in all experiments reported
in this article.

2. WARPED LINEAR PREDICTIVE CODING

In classical forward linear prediction [8] an estimate for the next
sample value x(n) is obtained as a linear combination of N previ-
ous values given by

x̂(n) =

NX
k=1

akx(n� k); or X̂(z) = [

NX
k=1

akz
�k]X(z); (4)

where ak are fixed filter coefficients. Here z�1 is a simple unit
delay filteror a shift operator, which may be generalized using a
first-order allpass, AP, filter D(z) to obtain

X̂(z) = [

NX
k=1

akD(z)k]X(z): (5)

In the time domain, D(z)k can be interpreted as a Generalized
Shift Operatordefined as

dk[x(n)] � h(n) � h(n) � � � � � h(n)| {z }
k�fold convolution

�x(n); (6)

where the asterisk is a convolution and h(n) is the impulse re-
sponse of D(z). Furthermore, we denote d0[x(n)] � x(n). The
minimum mean square error of the estimate may now be written
as

e = E

"
jx(n)�

NX
k=1

akdk[x(n)]j2
#
; (7)

where E[�] is expectation. Minimization of this with @e=@ak = 0
and k = 1; 2; � � � ; N leads to a system of normal equations

E[dj [x(n)]d0[x(n)]]�
NX
k=1

akE[dk[x(n)]dj [x(n)]] = 0; (8)

with j = 0; � � � ; N � 1. Since H(z) is a linear filter, it is straight-
forward to show that

E[dj [x(n)]dk[x(n)]] = E[dj+p[x(n)]dk+p[x(n)]]; 8j; k; p;
(9)

which means that the same correlation values appear in the both
parts of (8). Therefore (8) can be seen as a generalized form of
Wiener-Hopfequations. The correlation terms can be easily com-
puted and optimalcoefficients ak can be solved efficiently using,
e.g, Levinson-Durbinalgorithm equally as in the conventional au-
tocorrelation method of linear prediction. Correspondingly, we
now have a prediction error filtergiven by

A(z) = 1�
NX
k=1

akD(z)k; (10)

which can be implemented directly by replacing all the unit de-
lays of a conventional FIR structure with D(z) blocks. It is also
possible to implement a synthesis filtergiven by

A
�1(z) =

1

1�
P

N

k=1
akD(z)k

; (11)



using, e.g., techniques presented in [1, 2].
Strube [14] pointed out that in the frequency domain the pre-

diction error power of (7) takes the following form:

�
2 =

Z
�

��

E(~!)d~! =

Z
�

��

E(!)
1� �2

1� �2 � 2a cos(!)
d! (12)

This can be derived from (7) using Parceval’s theorem and (2), and
its derivative d~!=d!.

This means that (8) minimizes an error weighted with (1 �
�2)=(1��2�2a cos(!)). The transfer function of this weighting
filter is given by

D0(z) =

p
1� �2

1� �z�1
: (13)

This is a first-order lowpass filter. In practice this causes that the
spectrum at the output of (10) is not perfectly flat but it has lowpass
characteristics. In all experiments in this article, the residual signal
r(n) = x(n) � x̂(n) is filtered using D�10 (z) to produce a flat
residual spectrum for the quantizer. This is a stable filter because
0 < � < 1. Moreover, D0(z) is applied for the excitation before
synthesis filtering. This is done in order to make the comparison
between prediction gain and spectral flatness measures reasonable
in Section 4.

3. TEST SETUP

3.1. Simulated codec

In this paper, the performance of warped linear predictive coding
is compared with conventional linear predictive coding. This is
done in a simulated residual-drivencodec where the autocorre-
lation method of linear prediction is used to estimate the coeffi-
cients of the warped filter and quantization process is simulated by
adding white noise to the excitation signal in the synthesis phase.
It is assumed here that results with this simplified LPC scheme
reflect also results that that could be obtained by comparing any
modern LPC based speech or audio codec, e.g., a CELP codec,
and its warped version. As was pointed out earlier, almost any
DSP algorithm can be warped.

The simulated encoder and decoder are shown in Figs. 1a and
b, respectively. The computation of coefficients is performed in
frames of 20 ms. In the encoder, the coefficients are used in a
prediction error filter to produce a residual signal. This signal is
quantized using Jayant’s one-word memory quantizer [3]. In this
simulated setup, the role of the quantizer is used to produce a noise
signal which is obtained by subtracting the original residual from
quantized residual, as shown in Fig. 1b. After the synthesis filter-
ing the quantization noise has a spectral shape determined by the
synthesis filter as usual in D*PCM codecs.

The coefficients of the filter are computed in frames of 20 ms
using a Hamming window. The analysis is overlapping such that
an analysis frame starts after every 10 ms interval. The coefficients
of the filter are not quantized and no bandwidth expansion or other
techniques are applied to the obtained all-pole model. Filter coef-
ficients are expressed as reflection coefficients of a corresponding
warped lattice filter and they are linearly interpolated between ad-
jacent frames using a trapezoidal rule. Filters are implemented in
the warped lattice form [1, 2].

In the decoder, see Fig. 1b, the quantized residual is first sub-
tracted from the original residual to produce a quantization error
signal q(n) = r(n) � r̂(n), which is approximately white noise
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Figure 1: a) Simulated encoder. b) Simulated decoder

id Sequence identifier source
1 English horn E4 note MUMS v1 09-13
2 Tubular bells G4 note MUMS v2 10-08
3 Electric guitar chord MUMS v8 04-02
4 Triangle onset removed MUMS v3 12-25
5 Violin D4 open MUMS v1 01-09
6 Female voice singing /a/ Lab. of Acoustics
7 Male voice /oe/ Lab of Acoustics
8 Trumpet a long note MUMS v2 16-12

Table 1: Test sequences. MUMS refers to the McGill University
Master Sample collection.

but follows roughly the energy envelope of the original signal. The
excitation for the time-varying synthesis filter (11) is a weighted
sum of the original residual and the quantization error signal given
by

~r(n) = r(n) +
p
10�SNR=10Grq(n); (14)

where Gr is a gain coefficient which is used to scale q(n) so that
E[jGrq(n)j2] = E[jr(n)j2]. In listening tests, a subject may ad-
just the parameter SNR in real time to find the threshold of au-
dibility for the quantization noise in the presence of the signal.
The parameter SNR is the Signal-to-Noise Ratiofor the residual
signal and therefore it has, roughly, the following relation to the
bit-rate of the quantizer:

SNR=dB = 6b+ �; (15)

where b is the number of bits and � is some constant, see, e.g.,
[11].

3.2. Test sequences

The choice of test sequences plays an important role in design-
ing the test setup. The listening test results were collected using
steady-state segments from 8 music and voice signals. The test sig-
nals are listed in Table 1. Most of the test sequences are anechoic
recordings from the McGill University Master Sample [9] collec-
tion. The signals were chosen so that they represent a wide range
of clearly identifiable musical or speech sounds. Another criteria
at this phase was to find sequences for which the variance in lis-
tening tests among different listeners and between trials is small.
Some traditional test sequences, e.g., the harpsichord and some
other noisysounds, were left out of the set because it turned out
that it was difficult for the listeners to judge the quality accurately,
i.e., the variance was high.
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Figure 2: a) Prediction gain, and b) Spectral flatness values in a
warped LPC (solid curve) and a conventional LPC (dashed curve)
as a function of LPC order at four different sampling rates.

4. PERFORMANCE IN TERMS OF TECHNICAL
MEASURES

The minimization of the mean square error of the prediction error
signal is equivalent with maximization of prediction gainmeasure
[4]. Another widely used measure for the performance of an LPC
model is based on measuring the whitening property of an inverse
filter. Spectral flatness measure, SFM, is usually expressed as a
ratio between geometric and arithmetic averages of a power spec-
trum of the residual signal.

The average prediction gain over the test sequences in Table 1
in a warped (solid curve) and a conventional LPC (dashed curve)
as a function of model order at four different sampling rates are
shown in Figs. 2a. The corresponding SFM percentages are shown
in Fig. 2b. The prediction gain in WLPC is lower than in LPC at
48, 32, and 16 kHz sampling rates. However, the spectral flat-
ness measure gives clearly higher values for WLPC than for LPC
at those sampling rates. At 8 kHz sampling rate the values for
both measures almost coincide. The difference between prediction
gains in WLPC and LPC decreases as the model order increases.
At 48 and 32 kHz sampling rates the spectral flatness increases
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Figure 3: a) Power spectrum for a 1024 excerpt from test sequence
2 at 48 kHz sampling rate. 40th order LP and WLP spectral es-
timates are plotted in the same figure. The frequency scale is
warped. b.) Residual spectra in LPC and WLPC.

faster than in LPC as a function of model order. Therefore, it the
SFM favours WLPC especially if the model order is high.

Figure 3a shows the power spectrum of a 1024 sample (at the
sampling rate of 48 kHz) excerpt of Test Sequence 2, Tubular Bell
and the estimated 40th order LPC and WLPC spectra. The fre-
quency axis is warped so that it approximates the Bark scale. The
warped model can pick most of the peaks at low frequencies while
the conventional model is probably too accurate at high frequen-
cies. Fig. 3b shows the corresponding residual spectra in the two
cases. Both inverse filters reduce spectral level at low frequencies
approximately by the same amount but WLP model removes the
spectral peaks while LPC model, as one can see by Fig. 3a, only
whitens the signal in a coarse sense, i.e., the peaks of the original
spectrum are almost unchanged. This is one reason why LP gives
a higher prediction gain even if the model in the spectral sense is
worse than in WLP. Another thing is that the overall level of the
residual spectrum in WLPC is at a higher level.

One can see from Fig. 3a that the spectral resolution of WLP
is higher than in LP below approximately 5 kHz and lower above
that.
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Figure 4: Average listening test results

5. LISTENING TESTS

The preliminary listening test reported in this paper was done in a
standard listening room [5] using one Genelec 1032 loudspeaker.
Test sounds were played by a Silicon Graphics Indigo workstation.
The two listeners used a computer mouse to adjust a slider, corre-
sponding to the SNR parameter, in a graphical user interface. Ba-
sically, the test procedure is a version of the method of adjustment.
In this real-time system a listener may freely adjust the SNR pa-
rameter and hear the difference immediately. The goal was to find
the threshold of audibility for quantization noise.

The test material consisted of the eight steady-state musical
and speech sounds listed in Table 1. The duration of each sample
was one second but the sounds were played in a continuous loop.
The warped and conventional LPC simulations were tested at four
different sampling rates (8, 16, 32, and 48 kHz) and with three dif-
ferent orders of the LPC or WLPC model, i.e, 20, 40, and 50. In
this preliminary test, only one subject was tested in all 12 experi-
ments. Two other listeners participated in some of these listening
tests.

The average listening test results over all test samples are shown
in Fig. 4. At sampling rates of 48 kHz and 32 kHz, the SNR for
residual in the warped LPC is approximately 6 dB below that of a
conventional LPC. According to (15) this means that a sufficient
bitrate for residual in WLPC is one bit per sample less, i.e., 48kb/s
or 32 kb/s less, than in LPC. At the 16 and 8 kHz sampling rates
the difference between WLPC and LPC is a decreasing function of
model order. In the case of 50th order model at the 16 kHz sam-
pling rate, or 35th order model at the 8 kHz sampling rate the use
of warped LPC brings no gain compared to the conventional case.
However, below that the difference is clear.

It is not shown in the figures, but the curves can be almost
linearly extrapolated towards lower orders of the model. For ex-
ample, at 8 kHz sampling rate the difference between a 10th order
conventional and a warped LPC model is around 5 dB. Basically,
this means that the order of the model can be significantly lower in
the warped LPC compared to the conventional LPC. Similar results
with narrow band speech coding were also obtained by Krüger and
Strube [7] and, e.g., Koishida et al. [6].

6. CONCLUSIONS AND FUTURE WORK

The purpose of this paper was to compare frequency-warped LPC
and conventional LPC in terms of listening tests and technical mea-
sures as a function of model order and sampling rate. Preliminary
listening test results seem to indicate that it is beneficial to use
warped LPC especially if the sampling rate is above 8 kHz or if
the order of the model is low.

At the time of writing this, the final listening tests are running
and it can be expected that more accurate data can be presented in
the conference.
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