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ABSTRACT 

In this paper, we propose an analytically tractable framework that 
integrates the frame and segment based acoustic modeling 
techniques.  We combine the two approaches by jointly modeling 
their respective hidden Markov processes. Since the joint process 
is based on the same mathematical framework, conventional 
search and training techniques, such as Viterbi and EM 
algorithms, can be directly applied. It also allows the score from 
either model to contribute to the training and decoding of the 
other, reaching a jointly optimal decision. We conducted two 
series of experiments to verify our hypotheses. In the phone-pair 
classification experiments, our segment models show a 24% error 
reduction over state-of-the-art HMM-based system.  The superior 
quality of segment models contributes to an 8.2% reduction in 
word error rates for the unified system on the WSJ dictation task. 

1. INTRODUCTION 

In laying out a pattern recognition framework for variable-length 
patterns such as speech, one usually assumes the pattern is 
generated by an unobservable Markov chain of basic units, each of 
which captures the local salient features of the signal and can be 
modeled by a probabilistic distribution with fixed parameters.  
The frame-based approaches further assume that, within each unit, 
the acoustic frames are independent and stationary. While these 
assumptions lead to tractable and efficient implementations, they 
are inconsistent with the properties of speech [4,6]. Segment 
based methods [1-5], on the other hand, do not employ the 
piecewise stationary and conditional independence assumptions. 
However, these systems are usually more expensive and, although 
they have produced encouraging performance for small 
vocabulary or isolated recognition tasks, their effectiveness on 
large vocabulary continuous speech recognition (LVCSR) remains 
an open issue. 

The strengths of the two approaches are complementary and can 
be integrated seamlessly. HMMs are very effective in modeling 
the subtle details of speech signals by using one state for each 
quasi-stationary region.  However, the transitions between quasi-
stationary regions are largely neglected by HMMs.  In contrast, 
segment models (SM) are powerful in modeling the transitions 
and longer-range speech dynamics, but often require compromises 
to reduce the complexity of implementation. In this paper, we 
report our unified framework of combining HMMs and SMs. 

This paper is organized as follows. In Section 2 we present the 
general framework. In Section 3 we then discuss our SM approach 
based on parametric mixture trajectory models.  In Section 4 we 
report a classification experiment aimed at verifying the 

effectiveness of our SM.   In Section5, we present the recognition 
results on a LVCSR task using the combination framework.   
Finally, major findings are summarized and future works are 
discussed in Section 6. 

2. MATHMEMATICAL FRAMEWORK 

In the statistical approach to automatic speech recognition, the 
mathematical optimal solution dictates that the recognizer follow 
the maximum a posteriori (MAP) decision rule 

ˆ arg max ( | ) arg max ( | ) ( )p p p= =W W O O W W  (1) 

where W is a word string hypothesis for a given acoustic 
observation O . When deriving the acoustic model 
score ( | )p O W , a hidden process q  is usually introduced as 

( | ) ( | ) ( | )p p p= ∑q
O W O q q W    (2) 

in which it is assumed the hidden process can fully account for the 
conditional probability of the acoustic signal. 

In the frame-based HMM approach, the hidden process is a path 
through a Markov chain, and the probabilistic distribution of an 
acoustic frame to  is determined by the Markov state in which the 

hidden process (denoted hq  herein) is at time t. It is common to 
assume that (i) the underlying Markov chain is of order one, (ii) 
the probability distribution for the acoustic observation remains 
the same over time within the same Markov state, and that (iii) the 
acoustic observations are statistically independent.  These 
assumptions lead to  
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t t t

t
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a formulation that is tractable and has many desirable properties 
for implementation. As mentioned before, these assumptions have 
drawbacks that may be alleviated by including segment models. If 
we denote the hidden process of a segment model as sq , the 
combination can be achieved through 
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In essence, we combine the frame and segment based approaches 
by joining their hidden processes. By treating the combination as a 
hidden data problem, one can apply the decoding and iterative 
training techniques commonly used in HMMs and SMs to the 
combination framework as well. By tightly coupling the two 
hidden processes, the HMM re-estimation and decoding may also 
benefit from its segmental counterpart, and vice versa. 



In this work, we let the conditional probability of the acoustic 
signal be 

( | , ) ( | ) ( | )s h s a hp p p=O q q O q O q    (5) 

where a is a constant weight. Following the same rationale in [9], 
segment recognition can be performed by detecting and decoding a 
sequence of salient events in the acoustic stream. These events 
mark the boundaries of speech segments, which are assumed to be 
statistically independent. In other words, 

( | ) ( | )s s
i i

i

p p q= ∏O q Y     (6) 

where iY  denotes the ith segment. Because of the independent 
segment assumption, we believe the segment units should not be 
shorter than a phone.  

 

 

 

 

Figure 1 Overlapped evaluation where (a) a phone-pair 
SM is used, or (b) back off to two phones when the 
phone-pair (ei-1, ei) SM does not exist. 

In this paper, three types of units are used: monophone, 
generalized triphone, and phone-pair (which is composed of two 
adjacent phones). The probabilistic distribution for each segment 
employs the trajectory modeling methods described in Section 3. 
Suppose ie and ti denote the phone and the starting time of the ith 

segment. For the monophone or generalized triphone segment, a 
trajectory model is trained for the acoustic segments between ti 
and ti+1, i.e., 
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For the phone-pair segment, we have a trajectory model straddling 
across the phone boundary, as shown in Figure 1 (a): 
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In the case for which a phone-pair (ei-1, ei) does not have enough 
occurrences in the training data, we approximate the phone-pair 
model with its monophone or generalized triphone back off, as 
shown in Figure 1 (b), namely, 
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As evident in Figure 1, using phone-pair as the segment unit 
results in an "overlapped evaluation," which means the 
contribution for each acoustic frame is counted twice towards the 
overall score. For either the beginning or ending phone segment in 
a sentence, an extra phone based SM evaluation is performed as 
shown in Figure 2, to assure completely overlapped evaluation. 
Overlapped evaluation also free us from additional normalization 
for Eq. (5) We shall elaborate the significance of overlapped 
evaluation in Section 6. 

Finally, it is also assumed here that the phone sequence and phone 
boundaries hypothesized by the HMM and segment model agree 

with each other. Based on the independent segment assumption, 
this leads to a segment duration model 

1( | ) ( , 1| ),s h
i i i

i

p p t t e+= −∏q q    (10) 

which, as in [9], is modeled by an ergodic Poisson mixture 
distribution. This Unified framework enables both frame and 
segment based models to equally contribute to jointly optimal 
segmentations, which should lead to more efficient pruning during 
search. The inclusion of the SM should not require massive 
changes in the decoder’s design because the SM scores can be 
handled in the same manner as the language model scores.  
Finally, Eq. (4) can be used to estimate the model parameters for 
both HMM and SM for joint optimalization. 

 

 

 

 
Figure 2. Overlapped evaluation for the beginning and 
ending phone segments in a sentence. 

3. MIXTURE TRAJECTORY MODELS 

In this section, we present our SM approach, which is based on 
parametric trajectory segment models [2,4].  Our SM 
approximates the D-dimensional acoustic observation vector 

0 1 1( , , , )T −=Y y y y"  by a polynomial function.  Specifically, the 

observation vector ty  can be represented as 
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where the matrix C  is the trajectory parameter matrix, tF  is the 

family of Nth order polynomial functions, and ( )t Σe  is the residual 

fitting error.  Eq. (11) can be regarded as modeling the time-varing 
mean in the output distribution for a HMM state.  To simplify 
computation, the distribution of the residual error is often assumed 
to be an independent and identically distributed random process 
with a normal distribution (0, )N Σ .  To accomdate diverse 
durations for the same segment, we follow the same approach as 
in [2] by using  the relative linear time sampling of the fixed 
trajectory. 

Each segment M is characterized by a trajectory parameter matrix 

mC  and covariance matrix mΣ .  The likelihood for each frame can 

be specified as 
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If we let 0 1 1( , , , )t
TF F F −=F � , then the likelihood for the whole 

acoustic observation vector Y  can be expressed as 
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Multiple mixture components can also be applied to SM.  Suppose 
segment M is modeled by K trajectory mixtures.  The likelihood 
for the acoustic observation vector Y  in Eq. (13) becomes 

1
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k
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Assuming an a sample of L observation vectors 1 2, , , LY Y Y"  with 

corresponding duration 1 2, , , LT T T"  are accounted for by the 

segment model M.  The maximum likelihood re-estimation 
formulae using the EM algorithm can be derived as follows: 
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Figure 3. Diagram illustrates that HMM’s output 
observation can hop between two unexpected quasi-
stationary states. 

While our formulations (Eq. (11) – (18)) are similar to [6], they 
are more efficient to implement because no individual polynormial 
fitting is required for each training segment.  Segment mixtures 
can be considered as a complement to Gaussian mixtures in 
HMMs [7]. Figure 3 shows a digram where each of the two 
adjacent Markov states has two mixture components.  The solid 
lines denote the valid trajectories actually observed in the data. 
However, HMM will inadvently allow two phantom trajectories, 
as shown in Figure 3 with dashed lines.  HMM’s independent 
observation assumption places no constraint on the mixture 
component transitions across the states.  It is likely that such 
phantom trajectories are overgenerated and do not exist in real 
data.  The segment mixture can be used to model the two valid 
trajectories exclusively when the two states are modeled within the 
same segment.   

4. PHONE-PAIR CLASSIFICATION 

To assess the usefulness of our segment models described in the 
previous section, a phone-pair classification experiment is first 
conducted.  The continuous female Wall Street Journal (WSJ) 
training database is automatically segmented into a phone-pair 
database with the help of the Whisper system [8].  To ensure that 

there is enough training data, we only test the 500 most frequent 
phone-pairs in the database.  These 500 most frequent phone-pairs 
comprise about two thirds of the entire female WSJ training data.   
There are between 300 to 33458 occurrences of these 500 phone-
pairs. 

We use Whisper as the baseline frame-based system, where each 
phone-pair is modeled by a 6-state HMM.  Since there is enough 
training data for each phone-pair HMM, each state uses 20 
Gaussian mixtures with no sharing.  The acoustic feature used for 
the baseline is a 33-dimension vector consisting of 12 MFCC, 12 
delta-MFCC, 6 delta-delta-MFCC, power, delta-power, and delta-
delta-power.  The baseline has a 31.5% classification error.  For 
the trajectory models described in Section 3, we use only 12 
MFCC and power as the feature vector to see how well the 
trajectory can model the dynamic features.  The classification 
result is disappointing, as indicated in Table 1.    

System Order Mix. Co-Var. 
Matrix 

Error 
Rate 

HMM    31.5% 

SM1 3 5 F 37.2% 

SM2 5 7 F 33.9% 

SM3 5 10 F 34.1% 

SM4 5 10 D 34.2% 

Table 1 Phone-pair classification results for segment 
models with MFCC+power only.  The second and the 
third columns show the order of the polynomial and the 
number of trajectory mixtures used in our SM.  'F' and 'D' 
in the fourth column indicate whether a full or diagonal 
covariance matrix is used, respectively. 

Next, we add the delta features (but not the delta-delta ones).   The 
classification results are much better than the HMM baseline and 
the best configuration shows a 24% error reduction over the 
baseline system as seen in Table 2. This indicates that the fixed-
time speech dynamics like delta features are essential and are not 
well modeled by the linear time sampling in our segment models. 

System Order Mix. Co-Var. 
Matrix 

Error 
Rate 

Error 
Reduction 

HMM    31.5% N/A 

SM1 3 7 F 24.9% 21% 

SM3 5 7 F 23.9% 24% 

SM4 5 10 F 24.2% 23% 

SM5 5 10 D 26.9% 15% 

SM6 5 15 D 25.7% 18% 

Table 2 Phone-pair classification results for segment 
models with additional dynamic features.  

5. LVCSR EXPERIMENTS 

The phone-pair classification results depict a very promising 
future for the trajectory model, considering the SM uses a smaller 
set of features (no delta-delta features) and fewer model 
parameters than HMM.  For our preliminary LVCSR experiments 
conducted on the same female WSJ database, we use the WSJ 5K 

state 1 state 2 



dictation task and the ARPA Lincoln Lab 5K bigram language 
model.  To have a larger test set, we combine November 92 5K-
word dictation evaluation test set and 94 s0 development set.  The 
baseline system uses 6000 senones, in which each senone is 
modeled by 20 Gaussian mixtures.   

Our preliminary experiments use an N-best rescoring technique as 
in [5].  The top 100-best sentence hypotheses are generated by the 
HMM, and these hypotheses are then re-scored based on the 
combination of HMM and segment model scores using Eq (5). For 
SMs, we generate the 850 most frequent phone-pair models and 
all the monophone models for back off.  For better back-off 
models, we create 2000 generalized triphone SMs using a triphone 
decision tree.  The results are summarized in Table 3.   

 ERROR ERROR REDUCTION 

Baseline HMM 7.19% N/A 

+phone-pair SM 
+monophone 

6.97% 3.3% 

+triphone SM 6.78% 5.7% 

+phone-pair SM 
+triphone SM 

6.60% 8.2% 

 Table 3 WSJ dictation results using various segment 
models. The 3rd row shows the results using only general 
triphone segments in conjunction with HMM, where the 
2nd and 4th rows use phone-pairs with monophone and 
general triphone back off, respectively. 

In the test set, there are about 25% of the phone-pair units 
requiring phone back off. By analyzing the results, it is clear that 
context-dependency is important to SM as well.  Naturally, we 
should be able to improve the results further by using context 
dependent phone-pair models.  Moreover, variance smoothing 
seems to be critical. Current experiments used the simplest grand 
variance. We are expecting to leverage all the advanced smoothing 
techniques, such as MAP [10], to make the SM more robust.  
Finally, our preliminary results have not taken full advantage of 
the unified framework as outlined in Section 2.  Ongoing work is 
being conducted to decode the jointly optimal results and carry 
out iterative training accordingly. 

6. CONCLUSIONS 

In this article, we present a unified frame and segment based 
model for ASR. The merits of the segment models are first 
verified in phone-pair classification experiments. Our results show 
24% improvement in the quality of the acoustic model, which 
leads to an 8.2% improvement in WSJ dictation task.  

There are three unique and significant findings in this work, the 
first of which is the use of long and supra-phonetic segments. Our 
results strongly support what many speech scientists have 
advocated that long-range acoustic evolution patterns in the time-
frequency domain are critical for speech recognition. However, 
the realization of segment models often involves a considerable 
amount of complexity, and reasonable compromises made for 
implementation often wipe out the potential gains they stand to 

offer. We hope the unified framework proposed here will manifest 
itself as a reasonable yet effective compromise. 

Secondly, our results show that only a handful target trajectories 
are needed for speaker independent recognition. Once again, we 
view this outcome as supporting evidence for the invariant feature 
hypothesis advocated in phonetic target theories. Given the fact 
that diagonal models fail to outperform even with twice or three 
times as many mixture components, the results seem to suggest the 
pay-off is really from a better model for the residual errors rather 
than the trajectories themselves. This conjecture will be verified 
by further relaxing the assumptions made on the residual error in 
Sec. 3.  One possible direction is to use mixture distributions to 
model the residual error. 

Finally, the effectiveness of phone-pair segments and their 
consistently better performance than generalized triphone units are 
also interesting. In addition to phone-pairs being longer, there 
might be other explanations here. First, phone-pairs are designed 
to capture the transition trajectories across phone boundaries. 
Secondly, the overlapped evaluation framework illustrated in 
Figure 1 and 2 is able to minimize the impact of discontinuities for 
phone-pair SM’s. A quick glance at the LVCSR outcomes does 
render the impression that recognition errors are correlated to 
triphone (monophone) back-off rates.  We wish to explore context 
dependent phone-pair models in the future to further improve the 
system. 
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