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ABSTRACT

As the multimedia content of the Web increases techniques
to automatically classify this content become more impor-
tant. In this paper we present a system to classify audio
�les collected from the Web. The system classi�es any au-
dio �le as belonging to one of three categories: `speech',
`music' and `other'.

To classify the audio �les, we use the technique of Fisher
kernels. The technique as proposed by Jaakkola assumes a
probabilistic generative model for the data, in our case a
Gaussian mixture model. Then a discriminative classi�er
uses the GMM as an intermediate step to produce appro-
priate feature vectors. Support Vector Machines are our
choice of discriminative classi�er.

We present classi�cation results on a collection of more
than 173 hours of Web audio randomly collected. We be-
lieve our results represent one of the �rst realistic studies
of audio classi�cation performance on \found" data. Our
�nal system yielded a classi�cation rate of 81.8%.

1. INTRODUCTION

As the magnitude and use of multimedia content on the
web grows, e�cient ways to automatically �nd the \gist"
of the contents become necessary. For example a search
of all \audio" objects on altavista.com reports more than
600,000 di�erent audio �les (as of October 1999). Clearly,
adding tags to help classify this content is necessary.

Previous work in the area of multimedia classi�cation
has focused mostly on using the surrounding text to la-
bel the multimedia object. For example, the current Al-
tavista image/video/audio search technology uses only the
surrounding text. Newer approaches combine the textual
information surrounding the image with the image content
itself [1]. With respect to audio classi�cation, most previ-
ous systems have focused on very small databases and have
used simple likelihood ratios of Gaussian distributions for
classi�cation. For example, [2] base their experiments on
a database of 400 audio �les selected by hand from clean
recordings. It is clear that more sophisticated techniques
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are needed when the quality of the audio recordings de-
grades and the size of the database grows. The Fisher Ker-
nel method is one such technique.

In this paper we investigate the problem of automat-
ically classifying large collections of audio �les into three
broad categories: speech, music and other. The audio �les
are found on the web, with no control over quality or record-
ing conditions. Such a simple classi�cation can be thought
of as a preliminary step in a more detailed labeling of au-
dio �les. For example, music �les can be further classi�ed
by the music style, speech �les can be transcribed into text
with an automatic speech recognition engine and so on.

The outline of the paper is as follows. In Section 2 we
give an overview of the Fisher kernel classi�cation method.
In Section 3 we describe the database used for our experi-
ments as well as the choice of feature vectors. In Section 4
we present our experimental results. Finally, in Section 5
we present out conclusions and suggestions for future work.

2. OVERVIEW OF FISHER KERNEL
CLASSIFICATION METHOD

The statistical modeling approach to a sequence of audio
(speech, music, etc) feature vectors involves constructing a
generative probability model, such as an HMM or a mixture
of Gaussians. See for example [3]. Audio Sequences known
to belong to a particular class are used as training examples
to estimate the parameters of the generative model. Each
class model assigns a probability that the audio sequence
has been generated by it.

A generative method focuses on explaining the training
data. A discriminative model, on the other hand, focuses on
�nding the boundary between classes in some feature space.
Because of this property, discriminative methods often out-
perform generative models at classi�cation. A major dif-
�culty with using a discriminative methods for audio clas-
si�cation is that each audio �le X consists of a sequence
fx1; : : : ; xng, where n varies among audio �les; discrimi-
native methods require a �xed length feature vector. The
Fisher kernel approach allows us to overcome this di�culty.



2.1. Generative model description

We de�ne the probability density function for class c (out
of a total of C classes) as a mixture of K Gaussians:

p(xijClass = c) =

KX

l=1

P (l)p(xi; �l;c;�l;c) (1)

where xi is a feature vector of dimensionD, and p(xi; �l;c;�l;c)
is a multivariate Gaussian distribution with mean �l;c and
covariance matrix �l;c. In this paper, we assume a diagonal
covariance matrix.

We further assume that each audio class has a partic-
ular known a priori probability P (Class = c). If X =
fx1; x2; : : : ; xng denotes a single audio feature vector se-
quence with n vectors, and assuming that each vector in the
sequence is independent and identically distributed, then
the likelihood that the whole sequence has been generated

by class c is P (XjClass = c) =
Q

N

i=1
p(xijClass = c). To

decide which class is most likely we can apply Bayes rule
and obtain

P (Class = cjX) =
P (Xjc)P (c)P
C

i=1
P (Xji)P (i)

(2)

If the generative model is itself to be used for classi�cation,
the class with the largest a posteriori probability is taken as
an indication that the audio sequence has been generated
by that class.

2.2. The Fisher Kernel

Instead of classifying directly with the generative model,
we use the generative model to map audio sequences of
variable length into a linear space of �xed dimension where
discriminative techniques are applicable. Given a set of
labeled audio sequences fX1; : : : ; Xng, each composed of a
di�erent number of feature vectors, we would like to �nd a
discriminative classi�er that separates sequences optimally.

We de�ne a new feature vector, the Fisher score, as

UX = r�log(P (Xj�)) (3)

Each component of UX is a derivative of the log-likelihood of
the audio sequenceX with respect to a particular parameter
of the generative model. In our case the parameters � of the
generative model are the prior probability for each mixture
Gaussian P (l), each component of the mean vector �l;c and
the diagonal covariance matrix �l;c.

Once a generative model is trained, for every training
sequence of feature vectors Xi = x1; x2; : : : ; xni

, composed
of ni feature vectors we transform it into a vector of �xed
dimension. For example, if we use the mean vectors as our
model parameters �, i.e., for � = �l then the Fisher score is

r�l
log(P (Xj�l)) =

niX

t=1

P (ljxt)�
�1

l
(xt � �l) (4)

where P (ljxt) represents the a posteriori probability of mix-
ture l given the observed feature vector xt.

Similarly, by taking the derivatives we can obtain a
Fisher score with respect to the prior probabilities P (l) or

with respect to the covariance matrices �l. For more de-
tails on the general theory of Fisher kernel methods and for
details on how to compute these Fisher scores see [4].

Once each original audio �le sequence Xi with a vari-
able number of feature vectors ni has been transformed
into a �xed dimensional Fisher score feature vector UXi

we train/test our discriminative classi�er. In our experi-
ments we have used a Support Vector Machine (SVM) as
classi�er. Burges [5] provides a good introduction to the
general theory of SVMs.

3. DATABASE DESCRIPTION AND
PARAMETRIZATION

Through a random walk of the World Wide Web, we ob-
tained a random list of 1,000,000 web pages with multime-
dia content. From this list we extracted those pages with
audio content. We collected a random list of multimedia
�les in the following formats: RealNetworks, Microsoft Me-
diaPlayer, Microsoft wave format, AVI videoformat and Ap-
ple QuickTime. For those multimedia �les that contained
audio and video we only retained the audio stream. All
Audio �les were resampled to a uniform sampling rate of
16,000 kHz with a single audio channel.

The �nal database contained 13,016 audio �les. Its du-
ration ranges from a minimum of half a second to a max-
imum of 7 minutes. The mean duration was 48 seconds.
Figure 1 shows a histogram of �le duration in seconds for
our database.

We used the mel cepstra feature vector representation
commonly used in speech recognition systems. We con-
verted the audio �les from their waveform representation
into a sequence of 13 dimensional mel cepstral feature vec-
tors with their time derivatives. The cepstra and its time
derivatives were combined into a 26 dimensional vector. For
our cepstral analysis we used a 25.5 ms Hamming window
shifted every 10 ms. We evaluated the use of the second
derivatives of the cepstrum vector but observed no signi�-
cant gains. We also applied the cepstral mean normalization
procedure typically applied in speech recognition systems.

Each audio �le was labeled by humans and a detailed
category was assigned to it. The categories describe music
style, type of background noise, quality of the audio record-
ing etc. In those cases in which the �le had several sections
with di�erent audio categories, e.g., the �rst section was
music, the second one speech with background music, the
third section speech, etc, the labelers were instructed to
pick the label that dominated. In cases in which no label
was clearly dominating they were instructed to classify the
audio �le as \other".

Finally, all the labels were merged into three: speech,
music and other. Table 1 presents some statistics of the
resulting database.

4. EXPERIMENTS AND RESULTS

4.1. Gaussian Mixture Classi�er

Using the well known EM algorithm [6] we trained three
Gaussian mixture models for each of the classes, for use as
generative models.



Class Number of Duration
Label �les hours:min:sec

speech 7121 101:40:00
music 4282 60:37:00
other 1631 11:21:00

Table 1: Duration and Population statistics for the Web
Audio database.
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Figure 1: Histogram of �le duration in seconds for the ex-
perimental database.

To obtain better estimates of the error rate for each
of the classi�er con�gurations we performed 10-fold cross
validations: we split our database into ten equal subsets,
and trained separately for each of the ten splits of these
sets into nine parts traning and one part testing data. This
allowed us to evaluate the mean and variance of the correct
classi�cation rate over the 10 non overlapping train/test
partitions.

The only parameter con�guration we explored was the
number of Gaussian mixtures. Table 2 presents our results.

Number of Correct Rate
Gaussians mean var

20 0.623 0.020
68 0.684 0.012
100 0.674 0.011
116 0.673 0.012
132 0.670 0.011

Table 2: Gaussian Mixture classi�cation performance vs.
number of mixtures.

The best classi�cation rate was obtained with a system
with 68 mixtures per component. A further increase in the
number of mixtures did not yield any improvements. For
our experiments with Fisher kernel methods we used this
con�guration as the intermediate generative model.

4.2. Fisher Kernel based SVM Classi�er

We partitioned the database into 3 sections. The �rst sec-
tion contained 50% of the corpora and was used for training
the Gaussian mixture classi�ers. The 3 sets of Gaussian
mixtures (68 components per classi�er) were combined into
a single one, reweighting the prior probabilities to make
sure they added up to 1:0. Given the parameters � of the
generative model chosen to take derivatives from, the re-
maining 50% of the corpora was transformed into Fisher
score vectors. This new corpora was split into training and
testing sets. The training set contained 40% of the whole
corpora while the testing set contained the remaining 10%
of the corpora. This partition of the whole database was
performed ten times so we could obtain estimates of the
error vars for the classi�cation accuracy.

For our SMVs, we decided to explore the choice of ker-
nel and capacity (C). We experimented with polynomial
kernels of orders two and three and with Gaussian kernels.
None of the polynomial kernels yielded good results; all re-
sults reported in the paper are based on Gaussian kernels.
In general, as we increase the capacity, we work harder to
enforce complete separation on the training set; this may or
may not lead to improved generalization error.

4.2.1. One vs. One and One vs. All Classi�ers

Since our database contains more than two classes and
SMVs are inherently two class classi�ers, we need to com-
bine individual classi�ers to obtain a global classi�cation.

Two common schemes for combining SVM classi�ers are
one vs all and one vs one. In one vs all, n classi�ers are
trained, each of which attempts to distinguish a single class
from all remaining classes. A data point is classi�ed as
belonging to a class I if the I vs all classi�er gives a YES
vote and all the other classi�ers give NO votes. In the one
vs one scheme, n(n�1)=2 classi�ers are trained, and a data
point is classi�ed as the class with the most YES votes.

In our version of the scheme, if a point is not classi�ed
unambiguously, it is assigned to one of the three classes
completely at random.

4.3. Results

To generate Fisher score feature vectors � we explored the
use of prior probabilities P (l), mean vectors �l, and the
covariance matrix �l. The covariance matrix Fisher score
results were poor and hence are not reported here. Ta-
ble 3 presents classi�cation results (on the testing set) for
di�erent values of the SVM capacity, using a one vs one
combination scheme.

As we can see in the table a Fisher score based on mean
vectors yields slightly better results. However, the resulting
feature vector contains 5304 components (three sets of 68
Gaussian mixtures multiplied by 26 components per mean
vector) compared with the 204 components in the prior
based feature vector (three sets of 68 priors).

Table 4 compares the classi�cation performance of the
one vs one and the one vs all multiclass schemes for multiple
choices of the SVM capacity, using the Fisher score based
on mean vectors.



As we can see, the one vs one multiclass scheme provided
better classi�cation results. Further more, the one vs one
scheme was less sensitive to the capacity value. Similar
results were observed for the � = P (l) feature vector.

Capacity � = P (l) � = �l
mean(var) mean(var)

1 0.765 (0.015) 0.774 (0.013)
10 0.785 (0.014) 0.799 (0.012)
100 0.795 (0.012) 0.797 (0.012)
1000 0.784 (0.012) 0.764 (0.007)
10000 0.767 (0.013) 0.749 (0.009)

Table 3: Classi�cation performance (mean and variance) vs
SVM capacity using a Gaussian kernel and a SVM one vs

one multiclass architecture.

Capacity one vs one one vs all
mean(var) mean(var)

1 0.774 (0.013) 0.773 (0.007)
10 0.799 (0.012) 0.797 (0.005)
100 0.797 (0.012) 0.781 (0.009)
1000 0.764 (0.007) 0.730 (0.009)
10000 0.749 (0.009) 0.690 (0.005)

Table 4: Classi�cation performance (mean and variance)
vs SVM capacity for two SVM multiclass architectures. All
results based on a � = �l Fisher score vector and a Gaussian
kernel based SVMs.

4.3.1. A More Complex Multiclass Scheme

In our application, there are only three classes, and the
one vs one and one vs all scheme each require only three
classes. Furthermore, a approximately 10% of the points
were ambiguously classi�ed by the one vs all scheme (all
three classi�ers returned a negative vote or two or more
classi�ers returned a positive vote). Therefore, we experi-
mented in combining both schemes. We �rst classi�ed the
testing data using the one vs all scheme. For those cases
in which the results where ambiguous , the data was sent
to the one vs one classi�er for �nal disambiguation. All
experiments were performed with the choice of � = �l and
Gaussian kernels for all SMVs. Our best classi�cation re-
sult was obtained with a capacity of 100:0 and returned a
classi�cation rate of 0:8179 with a variance of 0:0457.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have explored the use of Fisher kernel
methods for large scale web audio classi�cation. The Fisher
kernel method represents a novel technique that combines
the bene�ts of generative models and discriminative classi-
�ers. It takes advantage of the expressive power of genera-
tive models to map sequences of features of variable length,
such as audio sequences, into a �xed length representation.

This is fundamental in allowing the use of discriminative
classi�ers such as SMVs.

We believe this is one of the �rst results reported on a
large audio corpora (173 hours) randomly1 collected. While
other authors have reported better classi�cation performance
on related tasks, their results are not directly comparable
to ours. In some cases their classi�cation results have been
based on short homogeneous audio segments [3]. In oth-
ers their results have been based on small databases care-
fully selected and more geared to audio similarity and re-
trieval [7].

For future research we will explore how to produce a
more detailed labeling structure for the audio. Since the
database contains �ne grained labels indicating music style,
noise level etc, it should be possible to build classi�ers that
try to guess these labels. We will also study the classi�ca-
tion and retrieval performance of the system when the text
surrounding the audio is also used for classi�cation.
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