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ABSTRACT
Localization of acoustic sources in reverberant environments by
microphone arrays remains a challenging task in audio signal
processing. As a matter of fact, most assumptions of commonly
adopted models are not met in real applications. Moreover, in
practical systems it is not convenient or possible to employ
sophisticated and costly architectures, that require precise
synchronization and fast data shuffling among sensors.

In this paper, a new robust multi-step procedure for speaker
localization in reverberant rooms is introduced and described.
The new approach is based on a disturbed harmonics model of
time delays in the frequency domain and employs the well-
known ROOT-MUSIC algorithm, after a preliminary distributed
processing of the received signals. Candidate source positions
are then estimated by clustering of raw TDOA estimates.

Main features of the proposed approach, compared to previous
solutions, are the capability of tracking multiple speakers and the
high accuracy of the closed form TDOA estimator.

1. INTRODUCTION

Localization of acoustic sources in reverberant environments is
an important task in many automatic systems for surveillance,
videoconferencing, hands-free talking [1]. Spatial parameters
obtained in the localization process can be used in a variety of
applications: dereverberation of speech, fault prediction and
analysis in machinery, cueing and tracking of TV cameras,
speaker verification, etc.

From a signal processing standpoint, the issue is a proper
treatment of multiple arrivals, corresponding to both useful
signal(s) and reflections. Reflective surfaces in closed
environments are usually modeled by the introduction of virtual
sources [2], whose number typically exceeds the microphone
array size. This fact, coupled with the very large bandwidth of
the signals of interest, makes unsuitable the parametric
techniques used in narrow-band or moderately wide-band array
processing in the presence of far-field sources [3][4][5]. For
these reasons, most approaches to source localization involve the
use of differential time delays (Time Delay of Arrival, TDOA)
among pairs (“doublets”) of co-located microphones

[6][7][8][9]. This process requires a joint parameter optimization
from signals collected by many sensors at a time.

Typically, TDOA estimation is performed by generalized cross-
correlation methods [6][9], that are appealing for their simplicity
and ease of implementation. Anyway, generalized cross-
correlation methods assume a single-source model, which can be
far from reality in many typical operating environments. A
different model and strategies are thus needed to overcome the
limitations of traditional approaches.

From the point of view of system design, it is very important to
reduce synchronization requirements and signal paths to a
minimum, to reduce costs in current applications.

In this work, we propose a novel three-stage strategy for the
robust localization of multiple speakers in reverberant rooms.
The first stage consists of data pre-whitening by use of Linear
Predictive Coding (LPC). The effects of signal pre-whitening are
to generate an approximate concentration of the likelihood
function (under a simplifying Gaussian assumption) [7] and to
reduce the reverberation effects (e.g. the number of significant
TDOA to be estimated) .

In the second stage the TDOAs for the direct path and early
(strongest) reflections are estimated by a closed-form parametric
approach, based on the ROOT-MUSIC algorithm [12].

Finally, the third stage finds the most likely position of the
speakers by means of a clustering in space performed among all
the estimated locations. The most dense clusters are selected as
candidate speakers, thus eliminating most of false detections
generated by outliers (virtual sources, localization ambiguities,
impulsive noise, etc.).

2. PROPOSED APPROACH

In this section we briefly describe the main steps of the proposed
approach.

2.1 Signal whitening through LPC

Array microphones are paired in doublets. Microphones in each
doublet are supposed to be physically close to each other, so that



they can be assumed to receive a time-shifted replica of each
source signal, filtered by the same acoustic transfer function.

Typically, the range of the signal spectrum in acoustic
applications is characterized by high fluctuations (104÷106). This
fact can heavily influence the quality and robustness of the
subsequent TDOA estimation [6][7][9]. For this reason, in the
proposed approach signals coming from each pair of
microphones are pre-processed by a standard LPC algorithm,
which has been recently applied to speech enhancement, also in
reverberant environments [10][11]. The main effect of LPC is to
remove the common spectral features present in doublet signals
(including the pitch) and minimize spectrum fluctuations,
induced by multipath. Whitening produces data matrices that are
better balanced, well conditioned and largely insensitive to
speech nonstationarity, thus enhancing the subsequent parametric
TDOA processing. Being a linear processing, LPC does not
modify either the general signal model (described in the
following section), or the local signal-to-noise ratio (SNR) in the
frequency domain.

Short- and long-term predictors [13] are computed on the basis
of the average autocorrelation of doublet signals. The filter
resulting from the average of the two auto-correlation functions
is smoother in frequency and leads to a negligible loss in
performance with respect to optimal processing [6]. In contrast,
separate filtering of each signal would require compensation of
the different group delay during the estimation of the phase
spectrum, leading to an increased computational cost.

2.2 Robust parametric TDOA estimation by
ROOT-MUSIC

In alternative to approaches based on the generalized cross-
correlation, the TDOA search can be also recasted as a disturbed
harmonics retrieval problem [14][15] from the cross-power
spectrum P12(f). If x1(t) and x2(t) are the signals acquired by the
generic doublet and X1(f) and X2(f) are the corresponding Fourier
tranforms, the cross-power spectrum P12(f) between x1(t) and
x2(t) is defined by the following formula:
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where E[.] indicates the expectation operator and (.)* is the
complex conjugation operator.

Under mild hypotheses, it can be shown that the following
equation holds for P12(f):
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where S is the number of speakers, Kp is the number of
significant arrivals from a single speaker (direct path and
reflections), Sp(f) is the spectrum of the whitened signal at the
doublet centroid, α(f) are slowly-varying transfer functions, and
(τ1pk − τ2pl) = ∆pkl are the TDOAs to be estimated. Based on this
formula, P12(f) can be interpreted as a sum of a few sinusoids,
modulated by slowly-varying envelopes and embedded in a
nearly white noise [15]; this assumption is supported also by
empirical evidence. P12(f) has been estimated at discrete and

equispaced frequencies {fk, k = 1,2,…, M} from consecutive
frames of LPC residuals by means of FFT and time averaging.

The ROOT-MUSIC algorithm [12], which is known to be very
robust to envelope fluctuations, has been used to estimate the
sinusoid frequencies in eq. (1.2). Namely, ROOT-MUSIC is
applied to the covariance of a Hankel-structured data matrix,
formed by estimates of P12(fk) at each doublet [15].

Compared to existing approaches, location estimates obtained
with the proposed approach are characterized by a very good
consistency. Moreover, since strict synchronization and fast data
transfer requirements are confined within each doublet, the
proposed strategy enables a decentralized and asynchronous
processing of TDOAs by use of DSP.

2.3 Estimation of the number of relevant
reflections

The ROOT-MUSIC algorithm requires the estimation of the
number of sinusoids from the effective rank of the data
covariance matrix, which is representative of the number of
significant arrivals and can be used to detect contributions in the
received signals due to the direct paths. In the present approach
the rank has been estimated by setting a threshold on the
eigenvalues of the data covariance via a simple and robust
algorithm.

It is assumed that the smallest eigenvalues are clustered around
the noise power with a distribution which is approximately
Gaussian or Å-Square. In contrast, “signal” eigenvalues [5]
belong to a different and unknown distribution [17] and can be
regarded as outliers when observed on the eigenvalue spectrum.

This interpretation allows to use robust estimators of the noise
eigenvalue distribution to set the threshold among signal and
noise eigenvalues [16]. In particular, the sample median and the
absolute median deviation of the eigenvalues have been
successfully used in this work.

For median-based estimators, it is known that the order of the
data matrix must exceed twice the number of significant
reflections [16]. Information theoretic criteria like MDL or AIC
[17] do not have this limitation but have been discarded for the
excessive sensitivity to modelling errors and approximations.

2.4 Source clustering

From TDOAs generated for each pair of doublets, a candidate
source position is computed by efficient geometric algorithms
available in literature [18]. Estimates that lie inside the room
borders are clustered in space, using a fast fuzzy algorithm [19].

The maximum number Lp of estimates that can be attributed to a
single speaker can be easily computed from the array geometry
[18]. Most of remaining estimates are generated by the pairing of
TDOAs that refer to different acoustic sources and have no
physical meaning. Other incorrect locations arise from
geometrical ambiguities of the array, reverberation, diffractions.

While wrong estimates usually generate disperse clusters
containing few points, dense clusters having an approximately
elliptical shape are formed around the speakers. Centroids of



clusters gathering a number of elements close to Lp are finally
selected as speaker locations. Performance can be improved by
extending the clustering phase over consecutive time frames.

3. EXPERIMENTAL TRIALS

The ROOT-MUSIC TDOA algorithm was compared with the
Cross-Power Spectrum Phase approach (CPSP, [9]) using
simulated data generated by the image method [2] and different
array configurations. Results herein described refer to a room of
size (6x7x4 m), with value β=0.8 for the reflection coefficient of
the walls and β=0.6 for the ceiling and the floor. Four square
arrays of size 4 place on the walls were considered.

Prewithening was found to improve the performance of both
algorithms in any case. Table 1 shows the sample TDOA
statistics obtained from a single doublet in the presence of one
speaker, for different values of SNR. The better performance of
the proposed approach are clearly visible.

Figure 1 demonstrates the tracking capabilities of ROOT-MUSIC
in the presence of three simultaneous speakers. Tracks
correspond to the polynomial roots, ranked with respect to the
smallest distance from the unit circle [12]. Finally, figure 2
shows an example of clustering over time in the presence of three
simultaneous speakers.

4. SUMMARY

A new approach to speaker localization in reverberant
environments has been introduced and described. The better
performance of the proposed method with respect to traditional
techniques have been demonstrated in realistic computer
simulations, even in the presence of multiple speakers. The
computational cost of the new procedure, being based on
standard and optimized building blocks (LPC, FFT, small-size
SVD, polynomial root finders), is affordable by modern DSP
processors and depends on the particular implementation. The
final fuzzy clustering can be implemented in high-level
languages on general-purpose workstations. Finally, the
proposed algorithm is characterized by a high degree of
flexibility and can easily incorporate any enhanced whitening,
TDOA estimation and clustering techniques.
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sample bias and standard deviation (ms)
TDOA Estimator

SNR = 10 dB SNR = 20 dB SNR = 30 dB

CPSP 0.0278, 0.165 0.0153, 0.0264 0.015, 0.025

Root-Music 0.0126, 0.0472 0.0087, 0.0183 0.0065, 0.0151

Table 1: TDOA estimator performance comparison (prewhitened signals)
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Fig. 1: TDOA tracking of three speakers by ROOT-MUSIC TDOA

Fig. 2: Clustering example; x-marks indicate raw location estimates, circles point to final speaker estimates (units are in number
of cT, where c is the propagation speed of sound and T is the sampling period)


