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ABSTRACT

This paper describes a hands-free speech recognition
method based on HMM composition and separation
for speech contaminated not only by additive noise but
also by an acoustic transfer function. The method re-
alizes an improved user interface such that a user is not
encumbered by microphone equipment in noisy and re-
verberant environments. In this approach, an attempt
is made to model acoustic transfer functions by means
of an ergodic HMM [1]. The states of this HMM cor-
respond to different positions of the sound source. It
can represent the positions of the sound sources, even
if the speaker moves. The HMM parameters of the
acoustic transfer function are estimated by HMM sep-
aration [2]. The method is obtained through the reverse
of the process of HMM composition, where the model
parameters are estimated by maximizing the likelihood
of adaptation data uttered from an unknown position.
Therefore, measurement of impulse responses is not re-
quired. In this paper, we record the speech of a distant
moving speaker in real environments. The results of
experiments for the speech of a distant moving speaker
clarified the effectiveness of HMM composition and sep-
aration.

1. INTRODUCTION

In hands-free speech recognition, one of the key issues
as regards practical use is the development of a tech-
nology that allows accurate recognition of noisy and re-
verberant speech. Many methods have been presented
for solving problems caused by additive noise and con-
volutional distortion in robust speech recognition. Two
common examples of such methods are the speech en-
hancement and model compensation approaches. For
the speech enhancement approach, spectral subtrac-
tion for additive noise and cepstral mean normalization
for convolutional distortion have been proposed (e.g.,

[3, 4]). For the model compensation approach, the con-
ventional multi-template technique, model adaptation
(e-g., [3, 6]) and model (de-)composition methods (e.g.,
[1, 7, 8,9, 10]) have been developed.

We applied HMM composition to the recognition of
speech contaminated not only by additive noise but
also by the reverberation of the room [1]. We also
proposed HMM separation for estimating the HMM
parameters of an acoustic transfer function [2]. The
model parameters are estimated by maximizing the
likelihood of adaptation data uttered from an unknown
position. This paper describes the performance of the
HMM composition and separation for recognition of
the speech of a distant moving speaker. The speech
of the distant moving speaker is recognized by using
an ergodic HMM of acoustic transfer functions. Each
state of the ergodic HMM of acoustic transfer func-
tions corresponds to a position in a room, where all
transitions among states are permitted. Therefore, the
ergodic HMM of acoustic transfer functions is able to
trace the positions of sound sources.

First, we give a brief overview of HMM composition
[1]. Following this, we describe a method for estimating
the HMM parameters of the acoustic transfer function,
based on HMM separation [2]. We also describe the
performance of HMM composition and separation for
the speech of a distant moving speaker.

2. HMM COMPOSITION FOR NOISY AND
REVERBERANT SPEECH

The observed speech in a noisy and reverberant room
is represented by

O(w;m) = S(w;m) - H(w;m) + N(w;m),

where O(w;m), S(w;m), H(w;m), and N(w;m) are
short-term linear spectra for observed speech, clean
speech, an acoustic transfer function, and noise in the
analysis window m, respectively.



HMM composition is applicable if two stochastic
information sources are additive. To apply HMM com-
position, the equation can be rewritten as follows:

O(w;m) = exp(cos(Scep(t; m) + Heep(t;m))) +N (w;m),
(1)
where Scep(t;m), and Heep(t;m) are cepstra for the
clean speech, and the acoustic transfer function of que-
frency t in the analysis window m. Accordingly, a com-
posed HMM of the observed speech in the cepstral do-
main is represented by
X0.., = Cos™ ' [Log{Exp(Cos(As.., BAn..,)) BkAN,, };
where A represents an associated HMM model, and the
suffixes of cep and lin represent the cepstral domain
and the linear-spectral domain, respectively. Cos, Log,
and Exp are the cosine transform, logarithm transform,
and exponential transform of the Gaussian pdf, respec-
tively. To adjust the signal-to-noise-ratio (SNR), a co-
efficient, k, is used, and & denotes the model composi-
tion procedure.

The HMM recognizer decodes observed speech on a
trellis diagram by maximizing the log-likelihood. The
decoded path will find an optimal combination of speech,
noise, and the acoustic transfer function.

2.1. Modeling of the Acoustic Transfer Func-
tion

Figure 3 shows the acoustic transfer function HMM in
the case of three states. Each state of the acoustic
transfer function HMM corresponds to a position in a
room, and all transitions among states are permitted.
Therefore, the acoustic transfer function HMM is able
to represent the positions of sound sources, even if the
speaker moves.

3. ESTIMATION OF THE ACOUSTIC
TRANSFER FUNCTION ON THE BASIS
OF HMM SEPARATION

Model parameters are estimated in an ML manner by
using the expectation-maximization (EM) algorithm,
which maximizes the likelihood of the observed speech:

An = argmax Pr(O|Ag, An, As).
AH

Here, A\ denotes the set of HMM parameters, while the
suffixes of S, IV, and H denote clean speech, noise, and
the acoustic transfer function.

The observed speech is now represented by equa-
tion (1). Accordingly, the acoustic transfer function is
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Figure 1: Illustration of model separation. The com-
posed HMM is separated into a known HMM and an
unknown HMM.

represented by

H.ep(t;m) = cos '[log{exp(cos(Oeep(t;m)))

—N(w;m)}] — Seep(t;m).
The estimation equation of the acoustic transfer func-
tion HMM is written as
An,., = Cos™' [Log{ Exp(Cos(Xo..,)) © AN, 1O As.., »

cep

where the separation of HMMs is represented by the ©
operator.

This equation shows that HMM separation is ap-
plied twice to noisy and reverberant speech. First,
HMM separation is applied in the linear-spectral do-
main to estimate the distorted-speech HMMs by ML
estimation. Then, the distorted-speech HMMs are con-
verted to the cepstral domain, and HMM separation
is applied again in the cepstral domain to estimate
the acoustic transfer function HMM by ML estimation.
Figure 1 illustrates HMM separation.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Conditions

The recognition algorithm is based on tied-mixture di-
agonal covariance HMMs. Each HMM has three states
and three self-loops. The models of 55 context-indepen-
dent phonemes are trained by using about 9600 sen-
tences uttered by 64 speakers, which are contained in
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Figure 2: Recording conditions for the speech of a dis-
tant moving speaker
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Figure 3: Example of a composed ergodic HMM in
experiments with a distant moving speaker

the Acoustical Society of Japan (ASJ) continuous-speech
database.

The speech signal is sampled at 12 kHz and win-
dowed with a 32-msec Hamming window every 8 msec.
Then FFT is used to calculate 16-order MFCCs (mel-
frequency cepstral coefficients) and power. In recogni-
tion, the power term is not used, because it is only
necessary to adjust the SNR in HMM composition.
Sixteen-order MFCCs with their first-order differentials
(AMFCC), and first-order differentials of normalized
logarithmic energy (Apower), are calculated as the ob-
servation vector of each frame. There are 256 Gaussian
mixture components with diagonal covariance matrices
shared by all of the models for MFCC and AMFCC,
respectively. There are 128 Gaussian mixture compo-
nents shared by all of the models for Apower. A sin-
gle Gaussian is employed to model an acoustic transfer
function.

Figure 2 shows the recording conditions for the speech
of the distant moving speaker. One male is walking

Table 1: Phrase accuracy [%)] for a distant stationary
speaker

| Models | sl [ 82 | 83 | Average |
Clean-speech HMMs || 58.1 | 72.6 | 77.7 69.5
Parallel models 67.0 | 76.3 | 86.1 76.5

Ergodic HMMs

(e1, g2, g3) 66.1 | 73.5 | 87.0 75.5

Table 2: Phrase accuracy [%] for a distant moving
speaker

| Models | Phrase accuracy |
Clean-speech HMMs 63.3
Parallel models 76.7
Ergodic HMMs (g1, g2, g3) 82.3
Ergodic HMMs (g1, g2) 78.6
Ergodic HMMs (g1, g3) 76.3
Ergodic HMMs (g2, g3) 80.0

from the “starting position” shown in figure 2. The
speaker utters 31 sentences while moving. We also
record the speech of a distant stationary speaker from
the positions of sound sources gl, g2, and g3. One sen-
tence is used for estimation of each acoustic transfer
function. Figure 3 shows the composed ergodic HMM
in experiments.

4.2. Experimental Results

The points to be investigated are the performance of:
e Parallel models of acoustic transfer functions:

Composed HMMs for each acoustic trans-
fer function (each position) are individ-
ually set. Likelihood scores for their
composed HMMs are calculated, and
composed HMMs having the maximum
likelihood are then selected.

e Ergodic models of acoustic transfer functions

A phrase recognition experiment was carried out
for continuous-sentence speech, in which the sentences
included 6 to 7 phrases on average. The task contained
306 phrases with a phrase perplexity of 306. The phrase
accuracy for a close-talking microphone was 90.4%.

Table 1 shows the phrase accuracy for a distant
stationary speaker. The phrase accuracy with clean-
speech HMMs was 69.5%. Next, we compose the clean-
speech HMMs and each of the acoustic transfer func-
tion HMMs, gl, g2, and g3. The performance of the
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Figure 4: Estimated transition probabilities from the
initial state to each state.

parallel models, where composed HMMs having maxi-
mum likelihood are selected, is 76.5% on average. The
performance of the composed ergodic HMMs (shown in
figure 3) is 75.5% on average. Comparison of this re-
sult with that for the parallel model shows a difference
in performance of 1.0%. This is because all transition
probabilities of acoustic transfer functions in the er-
godic HMM are set equally, and a wrong path might
be chosen. This table also indicates that the closest po-
sition, g3, results in the best performance. The greater
the distance between the microphone and the positions
of sound sources, the more the phrase accuracy will be
decreased. This is because the SNR decreases.

Table 2 shows the phrase accuracy for the distant
moving speaker. The phrase accuracy with clean-speech
HMMs is 63.3%. The performance of the parallel mod-
els, where composed HMMs having maximum likeli-
hood are selected, is 76.7%. In comparison with the
case of the distant stationary speaker, the performance
for the distant moving speaker is slightly better, be-
cause there were few speech data to be recorded while
the distant moving speaker was in the vicinity of gl.
The performance with the ergodic HMMs of acous-
tic transfer functions at gl, g2, and g3 is improved to
82.3%. These experimental results show the effective-
ness of the ergodic HMMs for recognition of the speech
of the distant moving speaker. Figure 4 shows the esti-
mated transition probabilities from the initial state to
each state: these are estimated by maximizing the like-
lihood of one sentence of testing data every 0.8 msec.
As the testing speaker is walking from position gl to
position g3, the transition probability from the initial
state to position gl is highest in the first interval. The
more time elapses, the more the transition probability
to position g3 increases.

5. CONCLUSION

This paper has detailed a robust speech recognition
technique for acoustic model adaptation based on HMM

composition and separation in noisy and reverberant
environments, where a user speaks from a distance of
0.5 m — 3.0 m. The aim of the HMM composition
and separation methods is to estimate the model pa-
rameters so as to adapt the model to a target environ-
ment by using a small amount of a user’s speech. In
this approach, an attempt is made to model the acous-
tic transfer functions by means of an ergodic HMM.
The states of the acoustic transfer function HMM cor-
respond to different sound source positions. This HMM
can represent the positions of sound sources, even if the
speaker moves.

This paper investigated the performance of HMM
composition and separation for recognition of speech of
a distant moving speaker. Such speech is recognized by
using an ergodic HMM of acoustic transfer functions.
The experimental results show that the ergodic HMM
can improve the performance of speech recognition for
a distant moving speaker. In future work, we will in-
vestigate how to choose the number of states in the
ergodic HMM.
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