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ABSTRACT
This paper describes a robust method for estimating the funda-

mental frequency (F0) of melody and bass lines in monaural real-
world musical audio signals containing sounds of various instru-
ments. Most previous F0-estimation methods had great difficulty
dealing with such complex audio signals because they were de-
signed to deal with mixtures of only a few sounds. To make it
possible to estimate the F0 of the melody and bass lines, we pro-
pose a predominant-F0 estimation method called PreFEst that does
not rely on the F0’s unreliable frequency component and obtains
the most predominant F0 supported by harmonics within an inten-
tionally limited frequency range. It evaluates the relative domi-
nance of every possible F0 by using the Expectation-Maximization
algorithm and considers the temporal continuity of F0s by using
a multiple-agent architecture. Experimental results show that our
real-time system can detect the melody and bass lines in audio sig-
nals sampled from commercially distributed compact discs.

1. INTRODUCTION

In order to build a computational model that can understand musi-
cal audio signals in a human-like fashion, the detection of melody
and bass lines is essential because the melody forms the core of
Western music and is very influential in the identity of a musical
piece and because the bass is closely related with the tonality. The
detected melody and bass lines are also useful in various practi-
cal applications, such as automatic music indexing for information
retrieval (e.g. submitting a song query by singing a melody), au-
tomatic transcription, computer participation in human live perfor-
mances, analysis of recordings of outstanding performances, and
producing accompaniment tracks for Karaoke or Music Minus One
automatically by making use of compact discs.

This detection requires the estimation of the fundamental fre-
quency (F0, perceived as pitch) of the melody and bass lines. It
has, however, been considered very difficult to estimate the F0 of
a particular instrument or voice in the monaural audio signal of an
ensemble performed by more than three musical instruments. Most
previous F0-estimation methods [1, 2, 3, 4, 5] premised that the in-
put audio signal contained just a single-pitch sound with aperiodic
noises. Although several methods for dealing with multiple-pitch
mixtures were proposed [6, 7, 8, 9], they dealt with at most three
musical instruments or voices and had great difficulty estimating
the F0 in complex audio signals sampled from compact discs. The
main reason for this difficulty is that, in the time-frequency do-
main, the frequency components of one sound often overlap fre-
quency components of simultaneous sounds. In typical popular
music, for example, part of the voice’s harmonic structure is of-
ten overlapped by harmonics of the keyboard instrument or guitar,
by higher harmonics of the bass guitar, and by noisy inharmonic

frequency components of the snare drum. A simple method lo-
cally tracing a frequency component therefore cannot be reliable
and stable. Moreover, sophisticated F0 estimation methods rely-
ing on the existence of a frequency component corresponding to
the F0 not only cannot handle the missing fundamental but are also
unreliable when the frequency component of the F0 is smeared by
the harmonics of simultaneous sounds.

This paper describes a method, called PreFEst (Predominant-
F0 Estimation Method), that can detect the melody and bass lines in
these complex real-world audio signals. Because the PreFEst does
not rely on the F0’s frequency component that tends to be unreli-
able and evaluates the relative dominance of every possible F0 by
using the Expectation-Maximization (EM) algorithm [10] without
assuming the number of sound sources, it can estimate the F0 of
the most predominant harmonic structure in sound mixtures con-
taining simultaneous sounds of various instruments (even drums).
In addition, to obtain a stable estimate in ambiguous situations,
it considers the global temporal continuity of the F0 by using a
multiple-agent architecture.

The following sections describe the details of the PreFEst and
the implementation of a system that can perform the PreFEst calcu-
lation in real time. It then shows the results of experiments detect-
ing the melody and bass lines in monaural audio signals of compact
disc recordings.

2. PREDOMINANT-F0 ESTIMATION METHOD:
PREFEST

The PreFEst obtains the temporal F0 trajectories of the melody and
bass lines under the following assumptions that fit a large class of
music.
• The melody and bass sounds have the harmonic structure. We

do not care about the existence of the F0’s frequency compo-
nent, however.

• The melody line has the most predominant harmonic structure
in middle and high frequency regions and the bass line has the
most predominant harmonic structure in a low frequency re-
gion.

• The melody and bass lines tend to have temporally continuous
trajectories.
Figure 1 shows an overview of the PreFEst. It first calcu-

lates instantaneous frequencies by using multirate signal process-
ing techniques and extracts candidate frequency components on the
basis of an instantaneous-frequency-related measure. The PreFEst
basically estimates the F0 which is supported by predominant har-
monic frequency components within an intentionally limited fre-
quency range; by using two bandpass filters (BPFs) it limits the
frequency range to middle and high regions for the melody line
and to a low region for the bass line. It then forms a probabil-
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Figure 1: Overview of the PreFEst.

ity density function (PDF) of the F0, which represents the relative
dominance of every possible harmonic structure. To form this F0’s
PDF, it regards each set of the filtered frequency components as
a weighted mixture of all possible harmonic-structure tone models
and estimates their weights that can be interpreted as the F0’s PDF:
the maximum-weight model corresponds to the most predominant
harmonic structure. This estimation is carried out by using the EM
algorithm, which is an iterative technique for computing maximum
likelihood estimates from incomplete data. Finally, multiple agents
track the temporal trajectories of salient promising peaks in the F0’s
PDF and the output F0 is determined on the basis of the most dom-
inant and stable trajectory.

2.1. Instantaneous Frequency Calculation

The method first calculates the instantaneous frequency of filter-
bank outputs by using the short-time Fourier transform (STFT)
whose output can be interpreted as a collection of uniform-filter
outputs. When the STFT of a signal x(t) with a window function
h(t) is defined as

X(ω, t) =
∫∞
−∞ x(τ )h(τ − t)e−jωτdτ = a + jb, (1)

the instantaneous frequency λ(ω, t) is given by the following equa-
tion [11]:

λ(ω, t) = ω +
a∂b
∂t
− b ∂a

∂t

a2 + b2
. (2)

To obtain an adequate time-frequency resolution under the
real-time constraint, we designed an STFT-based multirate filter
bank shown in Figure 2. At each level of binary branches, the au-
dio signal is down-sampled by a decimator. The cut-off frequency
of the anti-aliasing filter (FIR LPF) in each decimator is 0.45 fs,
where fs is the sampling rate at that branch. In the current im-
plementation, the input signal is digitized at 16 bit / 16 kHz and
is finally down-sampled to 1 kHz. Then the STFT whose win-
dow size is 512 samples is calculated at each leaf by using the FFT
while compensating for time delays of the different multirate lay-
ers. Since at 16 kHz the FFT frame is shifted by 160 samples, the
discrete time step (1 frame-time) is 10 ms. This paper uses time t
for the time measured in units of frame-time.

Figure 2: Overview of multirate filter bank.

Figure 3: Frequency responses of bandpass filters (BPFs).

2.2. Extracting Candidate Frequency Components

The extraction of candidate frequency components is based on the
the mapping from the center frequencyω of an STFT filter to the in-
stantaneous frequency λ(ω, t) of its output [3, 4, 5]. Finding fixed
stable points of the mapping, we can extract a set Ψ(t)

f of instanta-
neous frequencies of the frequency components by using the fol-
lowing equation [12]:

Ψ(t)
f = { ψ | λ(ψ, t)− ψ = 0,

∂

∂ψ
(λ(ψ, t)− ψ) < 0}. (3)

By calculating the power of those frequencies, we can define the
power distribution function Ψ(t)

p (ω) as

Ψ(t)
p (ω) =

{
|X(ω, t) | if ω ∈ Ψ(t)

f

0 otherwise.
(4)

2.3. Limiting Frequency Regions

The frequency range is intentionally limited by using the two BPFs
whose frequency responses are shown in Figure 3. The BPF for the
melody line is designed so that it covers most dominant harmon-
ics of typical melody lines and deemphasizes a crowded frequency
region around the F0: it does not matter if the F0 is not within the
passband. The BPF for the bass line is designed so that it covers
most dominant harmonics of typical bass lines and deemphasizes a
frequency region where other parts tend to become more dominant
than the bass line. In this paper the log-scale frequency is denoted
in units of cents (a musical-interval measurement). A frequency
fHz in hertz is converted to the frequency fcent in cents as follows:

fcent = 1200 log2
fHz

440× 2
3
12−5

. (5)

There are 100 cents to a tempered semitone and 1200 to an octave.
The filtered frequency components can be represented as

BPFi(x)Ψ′(t)p (x), where BPFi(x) (i = m, b) is the BPF’s fre-
quency response at frequency x (in cents) for the melody line
(i = m) and the bass line (i = b). The power distribution Ψ′(t)p (x)
is the same as Ψ(t)

p (ω) except that the frequency unit is the cent.
The PDF of the filtered frequency components p(t)

Ψ (x) is defined as
follows:

p(t)
Ψ (x) =

BPFi(x) Ψ′(t)p (x)∫∞
−∞BPFi(x) Ψ′(t)p (x) dx

. (6)



2.4. Forming the F0’s Probability Density Function

For each set of the filtered frequency components, the method forms
a PDF of the F0. The basic idea is to consider that the observed
PDF p(t)

Ψ (x) was generated from a model that is a weighted mix-
ture of harmonic-structure tone models. When the PDF of each
tone model whose F0 is frequency F is denoted as p(x|F ), the
mixture density p(x; θ(t)) is defined as

p(x; θ(t)) =
∫ Fhi

Fli
w(t)(F ) p(x|F ) dF, (7)

θ(t) = {w(t)(F ) | Fli ≤ F ≤ Fhi}, (8)
where Fli and Fhi denote the lower and upper limits of the possible
F0 range and w(t)(F ) is the weight of a tone model p(x|F ) that
satisfies ∫ Fhi

Fli
w(t)(F ) dF = 1. (9)

Because we cannot know a priori the number of sound sources
in real-world audio signals, it is important that we simultaneously
take into consideration all the possibilities of the F0 as expressed in
the above equations. If we can estimate the model parameter θ(t)

such that p(t)
Ψ (x) is likely to have been generated from p(x; θ(t)),

p(t)
Ψ (x) can be considered to be decomposed into harmonic-structure

tone models and w(t)(F ) can be interpreted as the F0’s PDF:
p(t)
F 0(F ) = w(t)(F ) (Fli ≤ F ≤ Fhi). (10)

The more dominant a tone model p(x|F ) in the mixture, the higher
the probability of the F0 F of its model.

Therefore the problem to be solved is to estimate the model
parameter θ(t) when we observe p(t)

Ψ (x). The maximum likelihood
estimator of θ(t) is obtained by maximizing the mean log-likelihood
defined as

∫∞
−∞ p(t)

Ψ (x) log p(x; θ(t)) dx. Because this maximiza-
tion problem is too difficult to be solved analytically, the PreFEst
uses the Expectation-Maximization (EM) algorithm [10], which is
an iterative algorithm successively applying two steps — the ex-
pectation step (E-step) and the maximization step (M-step) — to
compute maximum likelihood estimates from incomplete observed
data (i.e., from p(t)

Ψ (x)). With respect to θ(t), each iteration updates
the ‘old’ estimate θ′(t) = {w′(t)(F )} to obtain the ‘new’ improved
estimate θ(t) = {w(t)(F )}. For the initial estimate of θ′(t) we simply
use the final estimate at t− 1.

By introducing a hidden (unobservable) variable F describing
which tone model was responsible for generating each observed
frequency component at x, we can specify the two steps as follows:
1. (E-step)

Compute the following conditional expectation of the mean log-
likelihood:

Q(θ(t)|θ′(t))
=

∫∞
−∞ p(t)

Ψ (x) EF [log p(x, F ; θ(t)) | x; θ′(t)] dx,
(11)

where EF [a|b] denotes the conditional expectation of awith re-
spect to the hidden variable F with the probability distribution
determined by the condition b.

2. (M-step)
Maximize Q(θ(t)|θ′(t)) as a function of θ(t) to obtain θ(t):

θ(t) = argmaxθ(t) Q(θ(t)|θ′(t)). (12)
In the E-step we have

Q(θ(t)|θ′(t))
=

∫∞
−∞

∫ Fhi
Fli

p(t)
Ψ (x)p(F |x; θ′(t)) log p(x, F ; θ(t))dFdx,

(13)

where the complete-data log-likelihood is given by
log p(x, F ; θ(t)) = log(w(t)(F ) p(x|F )). (14)

As for the M-step, Eq. (12) is a conditional problem of variation,
where the condition is Eq. (9). This problem can be solved by using
the following Euler-Lagrange differential equation:

∂

∂w(t)

(∫∞
−∞ p(t)

Ψ (x) p(F |x; θ′(t)) (logw(t)(F ) +

log p(x|F )) dx− λ(w(t)(F )− 1
Fhi−Fli

)
)

= 0,
(15)

where λ is a Lagrange multiplier and is determined from Eq. (9) to
be equal to 1. From the Bayes’ theorem, p(F |x; θ′(t)) is given by

p(F |x; θ′(t)) =
w′(t)(F ) p(x|F )∫ Fhi

Fli
w′(t)(η) p(x|η) dη

. (16)

Finally we obtain the ‘new’ parameter estimate w(t)(F ):

w(t)(F ) =

∫ ∞

−∞
p(t)

Ψ (x)
w′(t)(F ) p(x|F )∫ Fhi

Fli
w′(t)(η) p(x|η) dη

dx. (17)

To compute Eq. (17) we need to assume p(x|F ) that indicates
where the harmonics of the F0 F tend to occur. The PreFEst as-
sumes the following simple harmonic-structure tone models:

p(x|F ) = α
∑Ni

h=1 c(h) G(x;F + 1200 log2 h,Wi), (18)
where α is a normalization factor, Ni is the number of harmonics
considered, c(h) determines the amplitude of the h-th harmonic
component, and W2

i is the variance of the Gaussian distribution

G(x;m,σ) = 1√
2πσ2

e
− (x−m)2

2σ2 . For c(h) it usesG(h; 1,Hi), where
Hi is a constant. These models are very simple but work well for
the purpose of evaluating the relative dominance of harmonic struc-
ture even though they do not coincide exactly with various kinds
of harmonic structure contained in real-world audio signals.

A simple way of determining the most predominant F0 is to
find the frequency that maximizes the F0’s PDF p(t)

F 0(F ), which is
the final estimate obtained by the iterative computation of Eq. (17).
This result is not stable, however, because peaks corresponding
to the F0s of several simultaneous tones sometimes compete in
p(t)
F 0(F ) for a moment and are transiently selected, one after an-

other, as the maximum. It is therefore necessary to consider the
global temporal continuity of the F0. This is addressed in the next
section.

2.5. Sequential F0 Tracking by Multiple-Agent Architecture

To select the F0 trajectory that is most dominant and stable from the
viewpoint of global F0 estimation, the method sequentially tracks
peak trajectories in the temporal transition of the F0’s PDF. To
make this possible, we introduce a multiple-agent architecture that
enables the tracking process to be controlled dynamically and flex-
ibly. It consists of a salience detector and multiple agents that are
dynamically generated and terminated (Figure 4). The salience de-
tector picks up salient promising peaks in the F0’s PDF, and agents
driven by those peaks track their trajectories. They behave at each
frame as follows:

(1) The salience detector picks up salient peaks that are higher
than a dynamic threshold adjusted according to the maximum
peak. The agents generated interact to allocate the salient peaks
among themselves exclusively according to peak closeness. If
more than one agent claims the same peak, the peak is allocated
to the most reliable agent. If the most salient peak has not been
allocated, a new agent for tracking it is generated.

(2) Each agent has an accumulated penalty, and an agent whose
penalty exceeds a threshold is terminated. An agent to which a
salient peak has not been allocated or which cannot find its next
peak in the F0’s PDF is penalized. When a peak is allocated to
an agent, its penalty is reset.

(3) Each agent evaluates its own reliability by using the reliability
at the previous frame and the degree of the peak’s salience at the
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Figure 4: Sequential F0 tracking by multiple-agent architecture.

current frame. The final F0 output is determined on the basis of
which agent has the highest reliability and greatest total power
along the trajectory of the peak it is tracking.

3. EXPERIMENTAL RESULTS

The PreFEst has been implemented in a real-time system that takes
a musical audio signal as input and outputs the detected melody and
bass lines in several forms: audio signals for auralization, computer
graphics for visualization, and continuous values with time stamps
for use in applications.1 The output audio signals are generated by
sinusoidal synthesis on the basis of the harmonics tracked along
the estimated F0. The audio-synchronized graphics output shows
the scrolling candidate frequency components and F0 trajectories
on a time-frequency plane.2 The current implementation uses the
following parameter values: Fhm = 9600 cent, Flm = 3600 cent, Nm

= 16, Wm = 17 cent, Hm = 5.5, Fhb = 4800 cent, Flb = 1000 cent,
Nb = 6, Wb = 17 cent, and Hb = 2.7.

The system was tested on excerpts of 10 songs in popular, jazz,
and orchestral genres. The input monaural audio signals were sam-
pled from compact discs and each contained a single-tone melody
and the sounds of several instruments. The estimated F0s were
compared with the correct F0s that were hand-labeled by using an
F0 editor program we developed. This F0 editor program enables
a user to determine, at each frame, the correct F0 values of the
melody and bass lines while listening to the audio playback of the
original and the harmonic structure of the currently-labeled F0 and
while watching their frequency components. If the F0 error (fre-
quency difference) of a frame was less than 50 cents, the estimated
F0 at that frame was judged to be correct.

The detection rates thus obtained are listed in Table 1. In the
absence of the melody or bass line, the system detected the F0
of a dominant accompaniment part because the method simply
estimates the predominant F0 trajectory every moment and does
not discriminate sound sources. The evaluation was therefore re-
stricted to the periods when the hand-labeled melody or bass line
was present. Typical errors were half-F0 or double-F0 errors and
errors where a short-term trajectory around the onset was missing.

4. CONCLUSION

We have described a method called PreFEst that detects the melody
and bass lines in complex real-world audio signals by estimating
the most predominant F0 trajectory. Those lines can be detected

1The main signal processing is performed on a personal computer with
two Pentium II 450MHz CPUs, and the audio I/O and visualization process-
ing is performed on an SGI workstation with an R10000 250MHz CPU.

2Further information, including screen snapshots, is available at the fol-
lowing URL: http://www.etl.go.jp/˜goto/ICASSP2000/

Table 1: Detection rates of the melody and bass lines.

title genre detection rates [%]
melody bass

My Heart Will Go On (Celine Dion) popular 88.7 92.2
Vision of Love (Mariah Carey) popular 74.5 83.8
Always (Bon Jovi) popular 92.4 84.5
Time Goes By (Every Little Thing) popular 89.9 64.7
Spirit of Love (Sing Like Talking) popular 85.9 80.0
Hoshi no Furu Oka (Misia) popular 89.1 76.6
Scarborough Fair (Herbie Hancock) jazz 93.6 53.4
Autumn Leaves (“Cannonball” Adderley) jazz 81.2 86.2
On Green Dolphin Street (Miles Davis) jazz 90.8 54.3
Violin Con. in D, Op. 35 (Tchaikovsky) classical 78.6 77.6

separately by using only partial information in intentionally limited
frequency ranges. The use of the EM algorithm without assuming
the number of sound sources enables the F0 to be estimated without
relying on the existence of the F0’s frequency component. In addi-
tion, the multiple-agent architecture makes it possible to determine
the most dominant and stable F0 trajectory from the viewpoint of
global temporal continuity of the F0. Experimental results show
that a system implementing the PreFEst is robust enough to esti-
mate, in real time, the predominant F0 of the melody and bass lines
in audio signals sampled from compact discs.

The F0’s PDF estimated by the PreFEst contains the informa-
tion of every harmonic structure in sound mixtures and has not been
fully exploited. We therefore plan to extend the method to track
several sound sources simultaneously in the F0’s PDF by using a
selective-attention mechanism with sound source discrimination.
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