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ABSTRACT

Evaluating the similarity between two Probability Distribu-
tion Functions (PDF) is very important in various research

problems. This paper proposes a new metric that computes

the distance between two PDF's of mixture type directly from

their parameters. It is posed as a linear programming prob-
lem and its theoretical properties and performance are ana-

lyzed, experimented, and compared with existing measures.

In addition, as a proof of concept, we applied the new met-

ric to the problem of audio retrieval where involved PDF's
are GMM's (Gaussian Mixture Model) with 4 mixtures. Ex-

perimental results on both synthetic and real data show that

this new distance measure is quite promising.

1. INTRODUCTION

Under various situations, it is necessary to measure the dif-
ference between two PDF's. For example, in text inde-
pendent speaker recognition using Gaussian mixture mod-
els (GMM)[1], the classi�cation of a given piece of speech
can be done by comparing its GMM model with a set of
given GMM models. Another scenario is to detect the dif-
ference among observation probabilities, often character-
ized by again GMM, of each state of a continuous Hid-
den Markov Model (HMM) [3] so that similar states can be
merged to simplify the overall model in speech recognition
tasks. Although needed, there is no simple way to measure
the distance between two mixture PDF's. In this paper,
we are particularly interested in developing such a measure
and propose a general framework to compute the di�erence
between two mixture PDF's, directly from their component
model parameters.

There are three approaches to measure the di�erence
between two PDF's, which may or may not satisfy the three
well known properties of distance measure. Let G(x), F (x),
and H(x) be three PDF's. Denote D(G; F ) as the distance
between G(x) and F (x), then the three properties are

D(G; F ) � 0; and D(G;F ) = 0 i�.G = F (1)

D(G; F ) = D(F;G) (2)

D(G;H) +D(H;F ) � D(G; F ) (3)

The �rst approach de�nes the distance in Lr space by
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DLr (G;F ) =

�Z
x2X

jG(x)� F (x)j
r
dx

�1=r

;

where commonly used values of r may be 1 or 2. Although
satisfying all three distance properties, DLr is usually com-
puted by numerical method and the complexity can easily
go beyond control with the increased dimension.

The second approach is the relative entropy or Kullback
Leibler distance (KLD). It is de�ned as [4],

DKL(G;F ) =

Z
x2X

G(x) log
G(x)

F (x)
dx

It is obvious that KLD satis�es only the �rst prop-
erty. By extending the original KLD to DKL(G;F ) +
DKL(F;G), the second condition can be met. Although the
third property still does not hold, the extended KLD is pop-
ular in many applications due to the lack of other alterna-
tives. There are practical ways to approximate DKL(G;F ).
For example, data sequences TG and TF can be generated
from models G and F and then the average log-likelihood
ratio of the sequences with respect to G(x) and F (x) can
be used to approximate the extended KLD. That is,

DSeq(G;F ) =
1

N
(j log

p(TGjG)

p(TGjF )
j+ j log

p(TF jF )

p(TF jG)
j);

where N is the length of the data sequences TG and TF .
The performance of DSeq is a function of both the value of
N as well as the data generation procedure. The bigger the
N is, the more reliable the approximation is. At the same
time, it makes the estimation more expensive.

Since the mixture PDF's are characterized by their com-
ponent model parameters, the most desirable solution, in
the third class of approach, is to compute the distance di-
rectly from their respective parameters. Ideally, it is hoped
that such a method can achieve at least comparable perfor-
mance with yet a precise closed form solution which con-
sequently can lead to a more e�cient computational pro-
cedure. The existing method in this category can handle
only simpli�ed cases. For example, suppose G(m1; �1) and
F (m2; �2) are two Gaussians in one dimension, where m1,
m2, �1, and �2 are their means and standard deviations.
Ignoring the constant multiple, the extended KLD between
G and F in this simpli�ed case can be de�ned directly from
the model parameters

DP (G;F ) =
�21
�22

+
�22
�21

� 2 +

�
�21 + �22
�21�

2
2

�
(m1 �m2)

2
(4)

While the computation of DP is simple and it can be
extended to handle higher dimension Gaussian, it can not



handle multiple mixture PDF's. Even with the possibility
of simplifying the models so that (4) can be applied, the
outcome often indicates that it is not e�ective. This can
be illustrated in a simple example. Consider two GMM's
G = 1=3�N(�2; 1)+2=3�N(1; 1) and F = 1=3�N(2; 1)+
2=3 � N(�1; 1), where N(m;�) is Gaussian distribution
with mean m and standard deviation �. Obviously, both
G and F have two components that are distributed very
di�erently. Hence, the distance between them is clearly
not zero. To apply (4), both G and F have to be simpli-
�ed into one mixture Gaussian, denoted by G0(mG; �G) and
F 0(mF ; �F ), where the new mean and standard deviation
can be derived as the weighted average of mean and stan-
dard deviation from their components. This yields the same
mean (mG = mF = 0) and standard deviation (�G = �F )
for both G0 and F 0 which leads to DP (G

0; F 0) = 0. Evi-
dently, the measure derived using extended KLD from the
simpli�ed model failed to capture the obvious di�erence be-
tween the two original PDF's.

Therefore, there is a need to develop other alternatives
that can e�ectively measure the di�erence between mixture
PDF's directly from their model parameters. This paper
proposes such an alternative and, through proof and exper-
imental results, demonstrates its usefulness. In Section 2
we present our proposed metric. In section 3 we prove that
the new metric satis�es the three distance properties un-
der certain constrains. Comparison between the proposed
measure and others is given in section 4. In section 5, some
of the preliminary results on applying the new metric to
audio based content retrieval applications. Finally section
6 concludes the paper.

2. PARAMETRIC DISTANCE METRIC FOR

MIXTURE PDF

Suppose G(x) and H(x) are two PDF's of mixture type,

G(x) =

NX
i=1

�igi(x); H(x) =

KX
k=1


Khk(x); (5)

where G(x) is a mixture of N element PDF's gi(x), H(x)
is a mixture of K element PDF's hk(x), and �i and 
k

are corresponding weights that satisfy
P

N

i=1
�i = 1 andP

K

k=1

k = 1. For simplicity, in rest of this paper, we will

not use x explicitly in other formulae. Denote the distance
between any two element PDF's gi and hk by d(gi; hk), the
overall distance between G and H is de�ned as

DM (G;H) = min
w=[wik]

NX
i=1

KX
k=1

wikd(gi; hk); s:t: (6)

wik � 0; 1 � i � N; 1 � k � K (7)

NX
i=1

wik = 
k; 1 � k � K;

KX
k=1

wik = �i; 1 � i � N (8)

According to the de�nition, any component gi in one
mixture can interact with any other component hk in the
other mixture via weighted element distance wikd(gi; hk).
The degree of interaction is inversely proportional to the
element distance and proportional to the mixture weights �i
and 
k. The weights wik are ultimately determined through

Figure 1: Distance between two mixture type PDF's.

optimizing with respect to the given constraints in (7, 8).
The proposed framework can be visualized in Figure 1.

Clearly, the solution is posed as a linear programming
problem. There are many algorithms available to solve it
e�ciently, such as simplex tableau method. We have a to-
tal of N �K free parameters (wik's) and N +K equality
constrains, where only N +K� 1 of them are independent.
By the optimization theory, at most N+K�1 of the N�K
parameters will not vanish. The above problem has solution
because (1) we can easily �nd a feasible vector that satisfy
all the constrains: wik = �i � 
k and (2) the upper bound
for the objective function exists: maxik d(gi; hk).

The proposed metric is de�ned as a general framework,
constructed based on element distances. Its generality is
due to the fact that the element distance measure is left
unspeci�ed. Depending on di�erent application needs, ap-
propriate element distance measures, which may even be
non-parametric, can be plugged in and the overall distance
between two mixture PDF's can be computed using the
same framework. Furthermore, there is no requirement
about the speci�c type of element distribution or that each
PDF should be the same type.

3. PROOF OF DISTANCE PROPERTIES

In this section, we demonstrate that if the element distance
d(gi; hk) between two mixture components gi and hk satis-
�es the three distance metric properties (1 - 3), the overall
mixture distance DM (G;H), de�ned earlier, also does.

The proof of the �rst two properties is straightforward.
We here focus on the proof of the third property. For any
three mixture PDF's, G, H, and F , we need to show that,

DM (G;H) +DM (H;F ) � DM (G;F ) (9)

The de�nitions of G and H are the same as (5). F is

similarly de�ned as F =
P

M

j=1
�jfj , satisfying

P
M

j=1
�j = 1.

Applying the de�nition in (6) to both pairs (G;H) and
(H;F ), we have their distances as,

DM (G;H) =

NX
i=1

KX
k=1

wikd(gi; hk)

DM (H;F ) =

KX
k=1

MX
j=1

vkjd(hk; fj)

where wik and vkj satisfy
P

N

i=1
wik =

P
M

j=1
vkj = 
k,P

K

k=1
wik = �i, and

P
K

k=1
vkj = �j . Then

DM (G;H) +DM (H;F )



=

NX
i=1

KX
k=1

wikd(gi; hk) +

KX
k=1

MX
j=1

vkjd(hk; fj)

=

KX
k=1

[

NX
i=1

MX
j=1

wikvkj


K
(d(gi; hk) + d(hk; fj))]

�

KX
k=1

[

NX
i=1

MX
j=1

wikvkj

k

d(gi; fj)]

=

NX
i=1

MX
j=1

(

KX
k=1

wikvkj

k

)d(gi; fj) (10)

Let �ij =
P

K

k=1

wikvkj


k
then (10) can be rewritten as,

DM (G;H) +DM (H;F ) �

NX
i=1

MX
j=1

�ijd(gi; fj) (11)

On the other hand, for any set �ij that satis�es the
equation constrains in (8), the following inequality is also
true since DM(G;F ) is the outcome of optimization,

DM (G;F ) �

NX
i=1

MX
j=1

�ijd(gi; fj) (12)

Actually the variables �ij indeed satisfy the required
constrains.

NX
i=1

�ij =

NX
i=1

KX
k=1

wikvkj


k
=

KX
k=1

vjk = �j

Similarly we have
P

M

j=1
�ij = �i. Putting (11) and (12)

together, we proved (9).

4. COMPARISON WITH OTHER DISTANCE

MEASURES

While we have proved that the new metric proposed pos-
sesses certain properties, we also like to demonstrate that
it has similar behavior as other existing measures in ex-
perimentation. In this paper, we compare it with the two
previously de�ned measures: DL2 and DSeq.

For simplicity, we perform the comparison on 2 dimen-
sional GMM's F and G, each with two mixtures. The ele-
ment distance used is KLD de�ned in (4). Speci�cally, F is

F = 0:5N

��
1
0

�
;

�
1
1

��
+ 0:5N

��
�1
0

�
;

�
1
1

��
where N(�; �) is a 2-D gaussian with mean vector � and
diagonal covariance �. The comparison is conducted in four
settings, in each of which, by perturbing the model parame-
ters in G we observe how the three di�erent measures (DL2 ,
DSeq, and DM ) react to the changes.

In setting one, G has exactly the same component Gaus-
sians as F with yet variable mixture weights,

G = �N

��
1
0

�
;

�
1
1

��
+ (1� �)N

��
�1
0

�
;

�
1
1

��
where � varies between 0 and 0:5.

In setting two, the two component Gaussians of G have
the same weights and covariances as those of F but with
variable mean vectors, changed along a circle of radius one.

G = 0:5N

��
cos�
sin�

�
;

�
1
1

��
+0:5N

�
�

�
cos�
sin�

�
;

�
1
1

��
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Figure 2: Behaviors of three di�erent measures under four
testing settings.

where � is in the range 0 to �.
Setting three is similar to setting two except we vary

the mean vectors of G symmetrically in the �rst dimension.

G = 0:5N

��
m
0

�
;

�
1
1

��
+ 0:5N

�
�

�
m
0

�
;

�
1
1

��
where m is from 0:5 to 1:5.

In setting four, G has the same weights and mean vec-
tors for both components but with the covariance changing
along both dimension simultaneously.

G = 0:5N

��
1
0

�
;

�
�
�

��
+ 0:5N

��
�1
0

�
;

�
�
�

��
where � ranges from 0:5 to 1:5.

Figure 2 shows the plotted behavior of the three mea-
sures under four di�erent settings. All the curves are nor-
malized so that the maximum distance is 1. From these
plots, one can see that the overall behaviors of all three are
consistent in all settings. DM curve overlaps with DL2 in
setting one and part of setting three. In setting four, DM

falls between DL2 andDSeq . These plots show that the pro-
posed new metric behaves similarly in di�erent scenarios as
the existing measures that have been widely used in prac-
tice. But the proposed metric is obviously more e�cient in
terms of computation. In addition, with this metric, there
is no need to store or to generate data points in order to
compare the di�erence between two PDF's. This is sig-
ni�cant, particularly in content based search and retrieval
where large amounts of data is pre-indexed, stored, prefer-
ably, in a succinct parametric form, and searched in real-
time. For example, to retrieve the speech segments of a par-
ticular speaker given as an query example, all the pre-stored
speaker segments in a database have to be matched against
the given query sample. In this case, having a measure that
can compare the similarity directly from the speaker model
parameters will be much more e�cient than the ones that
require to generate the data points from the models �rst and
then compare, especially when the search range is large, a
realistic scenario in almost all content based retrieval tasks.

5. ENABLING MORE EFFICIENT AUDIO

BASED CONTENT RETRIEVAL

To further demonstrate the usefulness of the proposed mea-
sure in practical applications, we apply it to the real prob-
lem of audio based query-by-example. Given a database of
audio events, the task is to search and retrieve some given



type of audio event speci�ed by a query example. Each
audio event in the database is stored as a set of parame-
ters of a 4 mixture GMM with diagonal covariance matrix.
By choosing appropriate element distance measures, we il-
lustrate that the query/retrieval task using our proposed
metric yielded comparable performance with yet more e�-
cient computation.

In our experiment, a database containing 278 audio
events is constructed from 7 hours of NBC Nightly News
programs. Each event is an acoustically homogeneous seg-
ment such as a segment of speech from a particular speaker
or a piece of music. A set of acoustic features (Root Mean
Square energy and 12 Mel-Frequency Cepstral Coe�cients)
are extracted from the audio signal and are �tted by a 4
mixture GMM model (see [2] for details), whose parameters
are stored in the database. During query, an audio segment
is provided by users as the query example and the retrieval
process is to �nd all the audio segments in the database
that have the similar acoustic properties as the query ex-
ample. For example, if the query sample is a piece of speech
from president Clinton, the task is to �nd all Clinton speech
segments from the database.

Using the given query example, a 4 mixture GMM is
built and compared with all other GMM's stored in the
database. Two categories of measures are used to perform
the comparison of GMM models. One is the distance mea-
sure by sequence DSeq and the other category is the dis-
tance measure proposed in this paper. Since the proposed
distance measure uses element distance measure as building
block, we choose, in this experiment, two types of element
distance measures to show that the proposed framework has
the 
exibility of adapt to di�erent application needs. One
element distance measure is L1 norm and the other is L2

norm, both satisfy all three distance properties. Formally
the distance between f and g can be written as,

dLr
(f; g) =

 
NX
i=1

j�f
i
� �g

i
j
r
+

NX
i=1

j�f
i
� �g

i
j
r

!1=r

; r = 1; 2

where N is feature dimension, �f
i
, �g

i
, �f

i
and �g

i
are the

the i� th means and standard deviations of f and g.
Even though the mean and standard deviation may have

very di�erent dynamic ranges, the choice is reasonable for
this application because when one range is much larger than
the other, the impact from the smaller one is negligible in
the overall distance value. Plugging in the two chosen el-
ement distance measures, it yields two measures, denoted
by DME1 and DME2. Using each of the three measures,
we compute distance between the given query example and
each of the audio event in the database. When the dis-
tance is smaller than a threshold (can be set by user), the
corresponding audio event is considered as a hit.

To evaluate the retrieval performance, we use Recall
Rate (RR) and False detection Rate (FR) to plot the curve
in Figure 3. Speci�cally, they are de�ned as follows. As-
sume that there is a total of T recorded events in database.
Given a query example, there are Q events in the database
that are the true match. If the retrieval process return R
events as query results, among which C events are the cor-
rect match, then RR is de�ned as C=Q, and FR is de�ned as
(R�C)=(T �Q). Similar to the Receiver Operating Char-
acteristic (ROC) in classical detection theory [5], we can
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Figure 3: Performance comparison using FR-RR curves.

plot a 2D graphs (similar to the PF-PD graph in detection
theory) in Figure 3 to visualize the retrieval performance.

The query is for a particular speaker, the anchor of NBC
Nightly News, Tom Brokaw. In the database, there are
55 segments that are Tom Brokaw's speeches. We used
each of them as a query example and compute the corre-
sponding FR-RR graph. Figure 3 shows the average FR-RR
graph of all the query performance. As it can be seen from
the �gure, DME1 and DME2 display similar performance as
DSeq . When FR < 0:11, DME2 is slightly worse than DSeq

and DME2 is slightly better than DSeq when FR > 0:11.
While computing DSeq , we choose the length of the test-
ing sequence as 5000. For each query, the computation of
DSeq costs 25 times as those of DM1 and DM2. Taking
into account the signi�cant reduction in computation, the
proposed new metric outperforms the existing ones.

6. CONCLUDING REMARKS

A new distance measure based on parameters for mixture
type PDF's is proposed in this paper. The new distance
measure satis�es the three properties of a distance metric
under certain condition. Comparison of the new distance
measure with existing ones is performed using both syn-
thetic and real data sets. Both theoretical and empirical
demonstrations show that the proposed parameter based
distance measure is quite promising. Furthermore, the pro-
posed framework can be adapted to di�erent types of appli-
cations by choosing appropriate element distance measure
as building block.
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