
Refactoring Society:
Systems Complexity in an Age of Limits

Barath Raghavan
ICSI

barath@icsi.berkeley.edu

Daniel Pargman
KTH

pargman@kth.se

ABSTRACT
Research in sociology, anthropology, and organizational theory in-
dicates that most societies readily create increasingly complex so-
cietal systems. Over long periods of time, accumulated societal
complexity bears costs in excess of benefits, and leads to a societal
decline. In this paper we attempt to answer a fundamental ques-
tion: what is the appropriate response to excessive sociotechnical
complexity? We argue that the process of refactoring, which is
commonplace in computing, is ideally suited to our circumstances
today in a global industrial society replete with complex sociotech-
nical systems. We further consider future directions for computing
research and sustainability research with the aim to understand and
help decrease sociotechnical complexity.

CCS Concepts
•Applied computing → Law, social and behavioral sciences;
•Software and its engineering→ Software post-development is-
sues;

Keywords
Sustainability; refactoring; complexity

1. INTRODUCTION
Computing systems can be seen as the latest instance in a long

chain of sociotechnical developments that have increased social
complexity at an accelerated pace [4, 23, 24]. Today global in-
dustrial society is particularly dependent upon and highly medi-
ated by many computing systems. Over the past several decades,
the growth of such systems have by and large been a boon as they
have enabled a revolution in the way we communicate, work, and
live. During this time, computer scientists in particular have con-
tributed much to the development and spread of systems that have
subtly, but unmistakably, transformed global society. Computing
systems have also amplified sociotechnical complexity and accel-
erated previous trends far more than prior technologies because of
the inherent complexity of networked systems and the interlinking
of previously independent systems [14].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

LIMITS ’16, June 08-10, 2016, Irvine, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4260-5/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2926676.2926677

While societal complexity generally, and complex computing
systems specifically, brings benefits, it also imposes costs. While
there are some exceptions [3, 18, 28, 34, 35, 40, 41], the sustainable
computing community seldom examines large-scale and long-term
costs associated with the systems we develop. Physical infrastruc-
ture, such as the power grid or Internet backbone, provides an easy
to understand example of how complex systems have both bene-
fits and costs. The costs are often not well understood and pertain
to not only the expense of construction and maintenance, but also
the long-enduring commitments the infrastructure entails (includ-
ing concomitant socioeconomic costs of required social arrange-
ments, of energy sources, and of adjunct technologies each with
their own costs). The benefits of such systems are better under-
stood, including the offsetting of costs due to the prior systems the
new infrastructure obviates.

As Joseph Tainter argues in his classic work [37], societies gen-
erally solve problems in ways that increase complexity (e.g., build-
ing additional and/or more complex sociotechnical systems). In-
deed, it can be argued that civilization itself, including traditions of
great art and writing, “are epiphenomena or covariables of social,
political, and economic complexity” [37]. For a time, increasing
complexity produces benefits in excess of costs, but complexity is
also subject to declining marginal returns as Tainter depicts with a
simple but profound diagram shown in Figure 1, which we refer to
as the Tainter curve.

The Tainter curve indicates that simple solutions with major ben-
efits will eventually be followed by more complex solutions with
modest incremental benefits. Eventually—at point C2 on the Tain-
ter curve—increasing complexity fails to yield net benefits. At that
point, a wise approach would be to control or preferably reduce
complexity. Yet seldom are such circumstances recognized or mea-
sures taken. Tainter (as well as Diamond [10]) showed that, as a
result, many historical civilizations continued to increase complex-
ity until the attendant costs drove these societies into collapse, a
phase of rapid decline in societal complexity.1 To an anthropolo-
gist such as Tainter, “rapid decline” can refer to a period of decades
or centuries. Decline in social complexity includes a variety of
phenomena such as less centralized political and economic control;
reduced use of natural resources; decreased economic and occupa-
tional specialization of individuals, groups, and territories; and a
reduction of population size and density.

Even if a society were wise enough to stop further increases of
complexity at the point of zero marginal benefit, the Tainter curve
is not static and the costs of sociotechnical complexity can become

1That the arrival of a society at point C2 is not widely recognized
appears to strongly relate to Daly’s observations about “uneco-
nomic growth”, which is not apparent in today’s dominant neoclas-
sical economic thinking [9].

Figure 1: The Tainter curve, depicting the benefits of complex-
ity to a society relative to the degree of complexity [37].

harder to bear over time due to decreased access to essential re-
sources. The equivalent example from the biological world is the
decrease in carrying capacity of an ecosystem due to a population
being in overshoot of that carrying capacity, in effect degrading
the functioning of the ecosystem itself for the long term. More
specifically, human societies today are dependent upon the broader
ecosystem from which they extract resources (e.g., fossil fuels and
minerals) and dump wastes (e.g., greenhouse gases). Ecological
limits, which shrink the availability of resources and impose costs
due to environmental calamities, will over time reduce the ability
of societies to maintain a given level of complexity. In an age of the
ecological limits that we face today [42], the declining availability
of non-renewable resources (e.g., fossil fuels and minerals) and the
costs from climate change and other ecosystem damage threaten to
make today’s complexity more difficult to maintain, to say nothing
of further increasing societal complexity.

We argue that it has come time to refactor society. Refactor-
ing in computing is the process by which the internal structure of
a piece of software or larger system is improved, typically reduc-
ing its complexity, while still retaining its core (externally-visible)
functionality [21, 26]. Thus refactoring society would entail sim-
plifying large-scale sociotechnical systems while retaining all or
most of their benefits. We propose the introduction of refactoring
as a goal in development practices for computing generally and as
a core tenet of sustainable computing in particular.

In the rest of the paper we define more precisely, following Tain-
ter, the notion of complexity that concerns us, and consider where
in Tainter’s curve we are today. We then examine complexity in
the context of computing systems specifically, and consider their
impact on the complexity of global society today. Then we exam-
ine how we might go about refactoring society and describe sev-
eral general principles and approaches that can help in this effort,
building upon refactoring approaches that have proved useful for
computing systems. Finally, we propose a set of open research
questions for further study.

2. ON SOCIETAL COMPLEXITY
Studies of social complexity compare simpler societies (for ex-

ample hunter-gatherer bands, tribes, or chiefdoms) with more com-
plex societies (for example kingdoms or states), where the former
are small, homogeneous and minimally internally differentiated
and the latter are large, heterogeneous and highly internally dif-
ferentiated. Human societies, like individuals, are dependent upon
a constant supply of energy. Compared to small groups of self-

sufficient foragers, complex societies are more costly to maintain
and require more energy per capita. All great civilizations in the
past have been forced to manage on a flat energy budget, based on
solar energy and the crops growing in the fields (sometimes receiv-
ing temporary subsidies through conquest of neighbors). Tainter
argues that rather than being primary, the demand for greater en-
ergy flows and their subsequent use are consequences of increased
complexity [38].

Tainter and Patzek suggest that the alternative to making do on
a fixed, solar-based energy budget is the Western strategy of the
past 200 years: to dig for new, inexpensive, abundant sources of
energy that can subsidise ever-increasing levels of sociotechnical
complexity [39]. Fossil fuels (coal, oil, gas) currently constitute
5/6 of all energy consumed globally [5]. However, these fuels are
nonrenewable and should we fail to further increase current levels
of energy production, we too have to manage on a flat (or worse,
shrinking) energy budget [13]. The only alternative as suggested
by Tainter and Patzek is to decrease the costs of complexity by
preemptively, deliberately, and systematically simplifying society.
The costs of doing so would be that we have to give up some of our
accustomed ways of life.

While the aim of this paper is to argue for the reduction of com-
plexity, it is not the case that complexity is intrinsically bad. Com-
plexity brings benefits and complexity has costs. The benefits and
the costs should be considered in relation to each other, but they of-
ten are not. Increased complexity is the typical outcome of solving
problems and it is either useful and affordable or it is not. So-
cieties (indirectly) choose to increase complexity because adding
complexity often solves existing problems and yields net benefits;
solving problems through the use of sociotechnical systems, even
problems that urgently “need to be solved”, will typically (often
inadvertently) increase complexity.

Economic growth, as commonly understood today, typically in-
volves the increase of complexity; growth is measured by an in-
crease in Gross Domestic Product. Each transaction using money,
especially in highly-structured economies, takes place via some
sociotechnical system, and growth typically means additional so-
ciotechnical systems through which (or for which) money is trans-
acted. At some point, even while growth continues in absolute
terms, it can become “uneconomic”, as noted by Daly, and result in
a declining quality of life [9].

Measuring societal complexity is not an easy undertaking. Nor
is it a precise or uncontentious process, though it is an easier task
today than in past decades, as more socioeconomic arrangements
are part of the formal economy and thus can be easily included in
the analysis. Nevertheless, we aim to sidestep the need to quantify
societal complexity, as a precise characterization is unnecessary for
the purposes of this paper. Instead, our focus is on what region of
the Tainter curve we find ourselves today. While even this cannot
be determined with any certainty, we argue that it would be prudent
to consider the consequences of “overshoot”—of taking on more
complexity than is beneficial.

Specifically, we consider four points on the Tainter curve, three
of which are labeled in Tainter’s original diagram (Figure 1):

• C1: This position is one that simpler societies occupy and
is marked by a huge potential increase in benefit for each
further problem solved and for each increase in complexity.
That is, each unit of economic growth (and attendant com-
plexity) produces large societal benefits.

• C1.5: This unmarked position somewhere between C1 and
C2 in Tainter’s diagram is the one global society has re-
mained in for at least a few decades in which each increase

in societal complexity produces benefits but also non-trivial
costs. The benefit from each subsequent unit of growth or
complexity is declining.

• C2: This position is the one of maximum benefits. Here com-
plexity is either too great to find net beneficial changes and/or
the impact of ecological limits is such that each increase in
complexity results in net negative societal benefits.

• C3: This position is one of overshoot and impending col-
lapse. Here society has mired itself so deeply in excess com-
plexity that rapid societal simplification—what Tainter de-
fines as societal collapse—is the likely result.

We believe that C1 and C3 are unlikely to accurately reflect the
state of today’s global industrial society. Instead, we will assume in
this paper that industrialized nations are approximately at C2 on the
Tainter curve. Thus it is prudent for us to consider approaches to
prevent overshoot and instead reign in complexity. Indeed, many
scientists examining the sustainability of industrial society today
have implicitly concluded that we have already passed C2, making
the need to decrease complexity more urgent still [2, 7, 42].

3. SOCIOTECHNICAL SYSTEMS AND
COMPLEXITY

Complexity in technical systems can be quantified through a va-
riety of means. At the purest level, researchers in complexity and
information theory have developed means to measure complex-
ity (e.g., Kolmogorov complexity [15], computational complex-
ity [27]), though these mathematical formulations, while precise
and analyzable, are too narrow for us.

One step removed from such theoretical formulations is Rat-
nasamy complexity, a proposed metric for the complexity of a
network protocol or system, such as an Internet routing proto-
col [8, 36]. Ratnasamy’s metric attempts to capture the amount
of information that must be stored and then conveyed across a dis-
tributed series of nodes (e.g., Internet routers); in this, both the
origin of information and the distance the information must travel,
conveys the complexity of a protocol.

We do not believe it is possible to quantify the complexity
of large-scale sociotechnical systems, since any theoretical fram-
ing that enables quantification would inevitably ignore or abstract
away important real-world (e.g., human- or eco-centric) details
that cannot be captured in the model. Nevertheless, social scien-
tists have developed approaches for understanding complex human
systems [22, 29] and systems theorists have developed approaches
for modeling and understanding complex human and ecological
systems in ways that capture relevant factors and enable reason-
ing [19, 20].

Industrial societies are replete with complex sociotechnical sys-
tems that contribute to most of their complexity today. Many of
these systems are marked by significant use of abstraction and in-
direction, two of the core principles that enable much of computing
design [32]. In examining abstraction and indirection, and think-
ing about sociotechnical systems like we do computing systems,
then, we might be able to uncover a coarse understanding of the
complexity of sociotechnical systems.

The Tainter curve is true not just for societies but also for so-
ciotechnical systems. In computing we are already very familiar
with the Tainter curve: we understand that the complexity-benefit
curve arises in many computing systems, especially in complex
software systems where additional complexity often yields few
benefits. However, when augmenting such systems it is often eas-
ier to add additional complexity to solve an existing problem rather

than do otherwise, ultimately yielding a worse system after cross-
ing the top point of the curve. We are also too familiar with systems
that have gained an undesirable degree of complexity: spaghetti
code, feature creep, and software bloat. The failure of complex
software (and hardware) systems due to unmanageable complexity
is widely documented and the last few decades are littered with ex-
amples. That adding complexity—in the form of additional people
and resources—can cause the demise of a project that is already
struggling is one of the key findings of Brooks’s classic work on
large-scale computing projects [6].

Given the dependence of wealthy industrialized nations on com-
puting systems today, the complexity (and failings) of large-scale
computing systems no longer are isolated from the functioning of
society as a whole. Writing more than 30 years ago, Perrow argued
that accidents should be regarded as an integrated and inevitable
effect of complex technological systems [30]. In the intervening
decades, software and complex computing systems have become
a central source of both societal solutions as well as woes, from
ensuring the availability of basic infrastructure (e.g., the power
grid [31], the Internet [17]), providing access to government ser-
vices (e.g., the U.S. healthcare.gov website [16]) and the function-
ing of military machinery (e.g., the F-35 warplane [1]).

The solution to too much complexity in the context of individ-
ual large-scale computing and/or software systems is to attempt to
reduce or manage that complexity. There is a general recognition
among software engineers that it is not possible to precisely identify
the point at which complexity has exceeded a critical threshold, but
rather that when the system is in the danger zone, attempts should
be made to remedy the situation before it gets worse.

The solution in computing when faced with such undesirable
complexity is to refactor. Refactoring entails identifying and lever-
aging opportunities for code reuse, for removing obsolete or unnec-
essary code that adds no value but increases complexity, for simpli-
fying complex code abstractions, for reducing the number of layers
of nesting or indirection employed, and for many more similar tech-
niques. The resulting system, if refactored effectively, will not only
be more robust and easier to improve and maintain, but will result
in lower costs (both financial and mental toll) for software engi-
neering teams. Some refactoring requires the elision of previously
desired functionality in a deliberate simplification that may result
in fewer features but a more streamlined system.

4. REFACTORING SOCIETY
When the system in question is a sociotechnical system rather

than a purely technical system, the task before us is to refactor so-
ciety. The case we make here is that there is significant value and
reason to attempt to decrease the complexity of society in general
and sociotechnical systems in particular. Sustainability research
generally aims to find new approaches that enable society to pre-
serve ecological function for use by future human and non-human
use, and to thus endure as a society. If, as Tainter and others argue,
complex societies tend to burden themselves with surplus complex-
ity and as a result collapse (which by definition is not sustainable),
attending to the problem of surplus complexity is in fact a core
challenge for sustainability research.

A core assumption of this approach is that sociotechnical struc-
tures in a complex society can be mapped like a complex technical
system, and complexity can be stripped out while retaining all or
most of the benefit. We do not know if this can be achieved in
general, and even in specific cases it is a challenging undertaking.

There are two ways computing researchers and engineers can
help towards this important goal. First, do no harm; that is, we
should aim, at the minimum, to not increase the complexity of so-

ciety through the systems we build, and ideally decrease complex-
ity (due to the replacement of existing more complex alternatives).
Second, refactor; that is, we should explicitly aim to redesign ex-
isting systems to reduce societal complexity, and this should be
considered a worthwhile goal of computing research and engineer-
ing.

4.1 When Designing a System
When designing a system, the challenge of understanding

whether the system does no harm, let alone decreases societal com-
plexity is a daunting one. Thus each evaluation will necessarily
be limited by the time and resources available to the system’s de-
signer(s). Nevertheless, we believe that it is possible to ascertain
the basic complexity of a system and its impacts.

The complexity analysis a designer should perform can be
thought of as both being inside out and outside in. That is, the
analysis should first proceed from the system in its most basic man-
ifestation (e.g., a piece of software or hardware) and then consider
the dependencies and interacting sociotechnical elements moving
outward. Then the analysis should consider large-scale social sys-
tem structures in which the system might play a role, and identify
how those existing structures are affected by the new system. The
approach undertaken here is likely similar in nature to life-cycle
analysis, though with a broader aim.

All new systems will necessarily possess some embodied com-
plexity. All computing systems have a physical basis, and this phys-
ical basis entails dependence upon a complex global supply chain
for the manufacture, distribution, and disposal of computing com-
ponents. In addition, most modern computing systems depend and
place demands upon existing infrastructure such as the electric grid,
the Internet, datacenters, and far more [33,34]. These direct depen-
dencies on energy, resources, infrastructure, human engineers and
technicians, and so forth are first-order impacts. It is rare for a new
system to decrease the complexity of society when these first-order
impacts are considered, as no computing system is without a foot-
print.

Second-order impact analysis considers the changes in adjunct
systems caused by the system in question. For example, a sys-
tem that trains users how to build a smartphone from spare parts
enables them to no longer have to buy new smartphones and there-
fore the burden on the complex systems entailed in manufacturing
smartphones are reduced. Considering third-order and beyond is
difficult, but sometimes worthwhile when there are possible distant
systems that are likely to be impacted by the ripple effect of the
new system in question.

An important approach for new systems is to aim for self-
obviation [41]. A self-obviating system is one whose benefits can
remain even after the system is gone (and with it, its complexity).
Such systems have the potential to increase complexity for a time-
limited duration, helping ensure that society’s overall complexity is
not permanently increased.

4.2 When Refactoring
When refactoring, it is not often the case that the designer or en-

gineer is building an entirely new system; in fact, we believe that
the principles of undesign are likely to be highly relevant here [3].
Such work will often begin from a deep analysis of the sociotech-
nical structures that require simplification.

One of the core aims of refactoring is to beat the complexity-
benefit tradeoff. This is a challenge in itself, as Tainter’s analy-
sis indicates that most or all work to solve problems inherently in-
creases complexity. However, clearly complexity does not always
increase: collapse is a process in which complexity chaotically and

rapidly decreases. Our aim is instead to achieve a deliberate and
controlled decrease and/or moderation of complexity.

4.3 Aiming for the Ideal
The goal of decreasing societal complexity is in some sense to

find the “sweet spot” where complexity is low enough that addi-
tional complexity still yields net benefits, and help ensure that so-
ciety remains as close to that point on the Tainter curve as possible.
The sweet spot will not be the point of maximum benefit, but rather
to the left, at a point of lower complexity but nearly as high benefit.
That is, the ideal point is the point of diminishing returns, when
each increment of complexity yields little additional benefit.

What we desire is a dynamic equilibrium, in which society and
sociotechnical systems continue to change but we ensure that to-
tal complexity does not grow. While in the context of this abstract
discussion it may not be immediately apparent at what point the
diminishing returns are worthwhile, it is the case that in specific
industries this tradeoff is somewhat understood (e.g., in the fossil
fuels industry, the energy return on energy invested must generally
be above some ratio, such as 3:1, before an unsubsidized fossil en-
ergy source is worth extracting).

The identification of a potential sweet spot is a design tool, and
is less about the spot itself. For a specific context, it requires the
designer to evaluate both increasing complexity (and looking at the
potential benefit) and decreasing complexity (and look at the po-
tential loss of benefit), and in doing that we are forced to critically
evaluate the complexity-benefit tradeoffs.

5. APPLYING EXISTING TECHNIQUES
While some of the techniques used for refactoring of software

systems are necessarily specific to such systems, focused on arcane
details unique to computer programs, many of them can be general-
ized to non-software systems. While their generality is not easy to
confirm without years of testing, here we consider how to transform
standard techniques of refactoring known to computer scientists to
the refactoring of larger complex systems.

In his classic book on the subject, Fowler lists indications that
a piece of software needs to be refactored [11]. While there are
certainly other techniques in software refactoring we could look
to as a guide for societal refactoring, Fowler’s list suffices for the
brief discussion we include below. We note in advance that none
of these observations, either from Fowler or our generalizations of
them, are unique or novel, nor would they be surprising to most
engineers. Despite this, we think that enumerating the possibilities
is valuable, as they provide a checklist approach that can help turn
the complex task of refactoring into a procedural one.

Specifically, beyond subjective indicators, Fowler suggests the
following as signs that software should be refactored, which we
now consider in its software context and attempt to extrapolate to a
broader context:

1. Duplicated code typically manifests as slightly different
variations of the same code in two different places in the
system. Generalized, sociotechnical systems that duplicate
some aspects of their core behavior should be consolidated.

2. Long methods often increase the complexity of a program
because the difficulty in understanding a long method (one
that attempts to do too many things) is superlinear in its
length. Generalized, sociotechnical systems that have sub-
systems that consolidate many different (sometimes dis-
parate) tasks should be divided into easier to understand
pieces.

3. Large classes hold too much data and attempt to implement
too many interfaces, and sometimes also have internal re-
dundancy. Generalized, sociotechnical systems that have too
many small subsystems, some of which overlap, should have
the subsystems merged.

4. Long parameter lists are cases in which too many things are
being specified by the caller of a method, rather than being
internal to the method and/or class. Generalized, sociotech-
nical systems should limit the amount of dependence they
have on (and the degree to which they accept) external in-
puts when attempting to achieve their tasks.

5. Divergent changes are cases in which to make one modifica-
tion to a class requires certain changes, but a different mod-
ification requires very different changes, indicating that the
class is overspecialized and/or internally inconsistent. Gen-
eralized, sociotechnical systems should divest specialization
for specific use cases to other associated systems rather than
internally specializing.

6. Shotgun surgery involves making many small changes
across many classes to achieve some specific type of change,
which is hard to do correctly because some of these small
changes may be missed. Generalized, common types of ef-
fects of goals that previously required small changes across
many systems should be consolidated into one simple so-
ciotechnical system that embodies all the required changes.

7. Feature envy involves classes that rely more heavily on
the methods and/or data of other classes than their own,
indicating that the methods and/or data are not appropri-
ately organized. Generalized, sociotechnical systems that
overly depend upon interaction with another should be re-
compartmentalized to include the relevant pieces of function-
ality that change together.

8. Data clumps are groups of data that tend to co-exist in
classes, and should be made into their own class. No nat-
ural generalization.

9. Primitive obsession involves overuse of primitive data types
instead of small classes. No natural generalization.

10. Switch statements involves overuse of switch statements to
make decisions instead of using polymorphism. No natural
generalization.

11. Parallel inheritance hierarchies occur when subclassing
one class requires subclassing of a parallel class. General-
ized, sociotechnical systems that have parallel counterparts
can be made to directly interface in practice rather than cod-
ify the communication they make with each other (and their
corresponding subunits).

12. Lazy classes are classes that don’t do very much of use, es-
pecially if some of their functionality has been moved by
refactoring; such classes should be eliminated. Generalized,
vestigial sociotechnical systems should be periodically iden-
tified and dismantled.

13. Speculative generality occurs when extra general function-
ality is added in advance of it being needed, especially with
extra indirection and abstraction. Generalized, extra layers
of abstraction or indirection should be periodically identified
and their current (rather than speculative) use should be the
guide for whether they are needed.

14. Temporary fields are fields that are not always used in a
class. No natural generalization.

15. Message chains occur when a method asks objects, and in
turn asks those objects for other objects; these can be elim-
inated by encapsulating the delegation. Generalized, so-
ciotechnical systems should be built to have to know as little
as possible about the inner workings and interaction of the
systems upon which they depend, providing greater indepen-
dence and flexibility.

16. Middle man is a problem that occurs when too much delega-
tion is going on, and much of that delegation is pass through.
Generalized, excessive delegation and intermediaries should
be removed from sociotechnical systems where possible.

17. Inappropriate intimacy occurs when classes know or need
to know too much about the inner workings of another class.
Generalized, sociotechnical systems should be designed to
know only about the public interfaces they have with one
another, and even simpler, have only a single-direction rela-
tionship between systems.

18. Alternative classes with different interfaces are cases in
which similar methods appear in different classes with dif-
ferent signatures. Generalized, sociotechnical systems that
have some common functionality should have that function-
ality standardized so as to make their invocation simpler for
those on the outside.

19. Incomplete library classes are an issue when the standard
library does not provide sufficient basic functionality. No
natural generalization.

20. Data classes are classes that hold data and do nothing with
that data. No natural generalization.

21. Refused bequests are classes that do not use most of what
they inherit, indicating that they inherited from the wrong
class. Generalized, subinstances of a sociotechnical system
that do not need to support the behavior of the parent system
should instead have the parent system move the non-general
functionality to a sibling system.

22. Comments are sometimes overused in badly written soft-
ware to cover for poor design. Generalized, an indication
that a sociotechnical system is too complex is that the users,
operators, or engineers need far too much explanation to un-
derstand how to use, run, or change the system.

6. RESEARCH QUESTIONS
We believe that the idea of refactoring society can fundamentally

realign not only the designs we devise but even the research we
deem worthy of pursuit. Next we consider questions, issues, design
ideas, and possible leads for further work on refactoring society.
Some of the directions we suggest are narrow in scope, possibly of
the size of a Masters thesis, whereas others are of large scope and
could be suitable for a PhD dissertation.

1. Extend Ratnasamy Complexity [8, 36] to analyze and quan-
tify the complexity of a broader class of sociotechnical sys-
tems.

2. Identify and characterize the sweet spot in systems for the In-
ternet of Things (IoT), life logging, quantified self, or similar
complex technical or sociotechnical systems.

3. Extend the metaphor of refactoring. Examine bureaucratic
systems in society as code (e.g., laws, government or cor-
porate structures, etc.), since they are codified (i.e., they are
specified and do not change frequently). Apply ideas from
code refactoring to these systems.

4. Extend the metaphor of refactoring further still, and consider
the fact that many bureaucratic systems are now actually be-
ing embodied in actual code (e.g., administrative comput-
ing systems that represent procedural actions), giving a more
precise means for refactoring. Apply ideas from code refac-
toring to these systems.

5. Develop a methodology for diagramming or mapping any so-
ciotechnical system to help in its analysis and possible refac-
toring.

6. Examine Meadows’s arguments about leverage points in sys-
tems [20] to identify which leverage points are most appro-
priate for decreasing sociotechnical complexity, especially
within specific contexts or industries.

7. Extend the connection with Meadows’s leverage points dis-
cussion [20] by directly relating these arguments to specific
techniques in the software refactoring literature.

8. Model complex sociotechnical systems using Meadows’s
systems theory.

9. Study connections between Odum’s energy systems diagram
approach and the modeling of sociotechnical system com-
plexity using other approaches (such as those above) [25].

10. Evaluate whether one metric (e.g., Odum’s concept of so-
lar emJoules [25]) or a small number of metrics (e.g., so-
lar emJoules plus Ratnasamy complexity) yield useful results
in categorizing and describing the complexity of large-scale
systems.

11. Explore connections between specific disciplines in which
efforts to simplify and/or cope with complexity have
yielded significant beneficial results (e.g., checklists in
medicine [12]).

12. Identify means for testing refactored sociotechnical systems
(akin to the test suites that are leveraged during software
refactoring to ensure that the core functionality continues to
work).

13. Study how and whether self-obviating systems convey their
complexity onto other systems so that their (complex-
ity/benefit) impact remains even after the system is re-
moved [41].

14. Study the relationship and causality between complexity and
energy use in sociotechnical systems [38].

7. CONCLUSION
We face a choice today: we can continue to increase societal

complexity and likely suffer the same fate as past societies that
did not respond until far too late, or we can step back and choose
a more sustainable path. While this choice has been known for
some time, we hope that our articulation of the challenge of refac-
toring sociotechnical systems, and thus society, provides a con-
crete approach that is distinct from the traditional sustainability ap-
proaches.

8. REFERENCES
[1] D. Axe. World’s Most Expensive Jet Somehow Gets Worse.

The Daily Beast, January 28, 2016.
[2] A. D. Barnosky, E. A. Hadly, J. Bascompte, E. L. Berlow,

J. H. Brown, M. Fortelius, W. M. Getz, J. Harte, A. Hastings,
P. A. Marquet, et al. Approaching a state shift in earth’s
biosphere. Nature, 486(7401):52–58, 2012.

[3] E. P. Baumer and M. Silberman. When the implication is not
to design (technology). In Proceedings of ACM CHI, 2011.

[4] J. R. Beniger. The control revolution: Technological and
economic origins of the information society. Harvard
University Press, 1986.

[5] BP. Statistical Review of World Energy, June 2015.
[6] F. P. Brooks. The mythical man-month. Addison-Wesley,

1975.
[7] W. R. Catton. Overshoot: The ecological basis of

revolutionary change. University of Illinois Press, 1982.
[8] B.-G. Chun, S. Ratnasamy, and E. Kohler. Netcomplex: A

complexity metric for networked system designs. In
Proceedings of USENIX/ACM NSDI, 2008.

[9] H. E. Daly. Uneconomic growth: in theory, in fact, in history,
and in relation to globalization. Clemens Lecture Series.
Paper 10, 1999.

[10] J. Diamond. Collapse: How societies choose to fail or
succeed. Penguin, 2005.

[11] M. Fowler. Refactoring: improving the design of existing
code. Addison-Wesley, 1999.

[12] A. Gawande. The checklist manifesto: how to get things
right. Metropolitan Books, 2009.

[13] C. A. Hall and J. W. Day. Revisiting the limits to growth
after peak oil. Am Sci, 97(3):230–237, 2009.

[14] T. Homer-Dixon. The upside of down: catastrophe,
creativity, and the renewal of civilization. Island Press, 2010.

[15] A. N. Kolmogorov. On tables of random numbers. Sankhyā:
The Indian Journal of Statistics, Series A, pages 369–376,
1963.

[16] S. Levy. America’s Tech Guru Steps Down—But He’s Not
Done Rebooting the Government. Wired, August 28, 2014.

[17] R. Mahajan, D. Wetherall, and T. Anderson. Understanding
bgp misconfiguration. In Proceedings of ACM SIGCOMM,
2002.

[18] J. C. Mankoff, E. Blevis, A. Borning, B. Friedman, S. R.
Fussell, J. Hasbrouck, A. Woodruff, and P. Sengers.
Environmental sustainability and interaction. In CHI’07
extended abstracts on Human factors in computing systems.
ACM, 2007.

[19] D. Meadows, J. Randers, and D. Meadows. The limits to
growth: the 30-year update. Chelsea Green, 2004.

[20] D. H. Meadows and D. Wright. Thinking in systems: A
primer. Chelsea Green Publishing, 2008.

[21] T. Mens and T. Tourwé. A survey of software refactoring.
Software Engineering, IEEE Transactions on,
30(2):126–139, 2004.

[22] H. Mintzberg. The nature of managerial work. 1973.
[23] L. Mumford. Technics and civilization. Harcourt, Brace and

Company, 1934.
[24] L. Mumford. Technics and Human Development: The Myth

of the Machine. Harvest Books, 1971.
[25] H. Odum. Environmental accounting: emergy and

environmental decision making. John Wiley & Sons, 1996.
[26] W. F. Opdyke. Refactoring: A program restructuring aid in

designing object-oriented application frameworks. PhD
thesis, PhD thesis, University of Illinois at
Urbana-Champaign, 1992.

[27] C. H. Papadimitriou. Computational complexity. John Wiley
and Sons Ltd., 2003.

[28] D. Pargman and B. Raghavan. Rethinking Sustainability in
Computing: From Buzzword to Non-negotiable Limits. In
Proceedings of ACM NordiCHI, 2014.

[29] C. N. Parkinson and R. C. Osborn. Parkinson’s law, and
other studies in administration, volume 24. Houghton
Mifflin Boston, 1957.

[30] C. Perrow. Normal accidents: Living with high risk systems,
1984.

[31] P. Pourbeik, P. S. Kundur, and C. W. Taylor. The anatomy of
a power grid blackout. IEEE Power and Energy Magazine,
4(5):22–29, 2006.

[32] B. Raghavan. Abstraction, Indirection, and Sevareid’s Law:
Towards Benign Computing. In Proceedings of LIMITS,
2015.

[33] B. Raghavan and S. Hasan. Macroscopically Sustainable
Networking: On Internet Quines. In Proceedings of LIMITS,
2016.

[34] B. Raghavan and J. Ma. The energy and emergy of the
internet. In Proceedings of the 10th ACM Workshop on Hot
Topics in Networks, page 9. ACM, 2011.

[35] B. Raghavan and J. Ma. Networking in the Long Emergency.
In Proceedings of the ACM SIGCOMM Workshop on Green
Networking, 2011.

[36] S. Ratnasamy. Capturing complexity in networked systems
design: The case for improved metrics. In Proceedings of
HotNets, 2006.

[37] J. Tainter. The collapse of complex societies. Cambridge
University Press, 1990.

[38] J. A. Tainter. Resources and cultural complexity:
Implications for sustainability. Critical reviews in plant
sciences, 30(1-2):24–34, 2011.

[39] J. A. Tainter and T. W. Patzek. Drilling down: The Gulf oil
debacle and our energy dilemma. Springer Science &
Business Media, 2011.

[40] B. Tomlinson, E. Blevis, B. Nardi, D. J. Patterson,
M. Silberman, and Y. Pan. Collapse Informatics and Practice:
Theory, Method, and Design. ACM Transactions on
Computer-Human Interaction, 2013.

[41] B. Tomlinson, J. Norton, E. Baumer, M. Pufal, and
B. Raghavan. Self-obviating systems and their application to
sustainability. In Proceedings of the iConference, 2015.

[42] M. Wackernagel, N. B. Schulz, D. Deumling, A. C. Linares,
M. Jenkins, V. Kapos, C. Monfreda, J. Loh, N. Myers,
R. Norgaard, et al. Tracking the ecological overshoot of the
human economy. Proceedings of the National Academy of
Sciences, 99(14):9266–9271, 2002.

