

INTERNATIONAL COMPUTER SCIENCE INSTITUTE
1947 Center St. · Suite 600 · Berkeley, California 94704-1198 · (510) 666-2900 · FAX (510) 666-2956

SchemaDB – An Extensible Schema Database System
Using ECG Representation

Manli Li

TR-04-001

September 2003

Abstract

 How are our language, concepts and thoughts formed? Schemas as the most
primitive conceptual units contribute in forming languages and thoughts. Schemas are studied by
linguists, cognitive scientists, psychologists and computer scientists on various emphases.
However, there is no existing systematic collection of schemas in a formalized representation. As
part of MetaNet Project at ICSI, SchemaDB is an extensible database that aims at not only
collecting all existing schemas through a user-friendly, web-based interface, but is also intended for
formalizing schema using ECG (Embodied Construction Grammar). SchemaDB is to be used in
cataloging, examining, computing metaphor and in many other language and cognitive science
studies. The goal of the SchemaDB project is to create a user-friendly web based application in
order to collect as many cross-cultural, cross-language schemas as possible in a complete, widely
accessible, and human/machine readable manner. Using client/server architecture in addition with
PHP (Hypertext Processor) scripting language and the relational database, MySQL, SchemaDB
system enables secure interactions between users and the database server.

 1

1. Introduction

The word "Schema" is used differently
by different people. Much of the previous
work on schemas by other researchers has
focused on what are often called Image
schemas. These schemas are usually spatial
and largely visually based. However, in ECG
we also include Motor-Control schemas (or X-
schemas), and force-dynamic schemas. The
inventory of ECG schemas will also include
some Experiencer schemas, though no one has
done much work on these.

For ECG, "schema" is the name given

to all the basic structured representations of
embodied meaning. These schemas are
written as a set of role names and various
constraints. The roles are intended to
represent the linguistically relevant parameters
of each schema. Because meaning is assumed
to be embodied, it is ultimately grounded in
how we experience the world. This means
that the hypothesized schemas are intended to
be representations of the innate regularities in
our perceptual, motor and cognitive systems
that structure our experiences and interactions
with the world.

The research on schemas certainly

does not form a large cohesive or clear
picture. This is partly due to different
emphases taken by different people. For
example, linguists often study the image
schemas of a particular word or set of words
in a given language. Others study spatial
relations in many different languages, looking
both at regularities and differences between
the languages, but do not necessarily discuss
these in terms of schemas. And because there
is not really a single clear definition of what
an image schema is, research involving
schemas may sometimes inconsistent because
people are really talking about different
things.

2. Background

There has been similar work (MetaDB)

done by Michael Meisel3 in relation to the
MetaNet project at ICSI. The MetaDB is a
database of metaphors, including information
about source domain, target domain and the
specific role mappings between the two
domains. The structure of schemas is based on
ECG and is similar to what is in the
SchemaDB. MetaDB is able to input schema
role names and role types and to have sub-
case-of (similar to parent in SchemaDB)
relations between schemas. However the
evoke relations between schemas or bindings
between the schemas’ roles are not yet
implemented. Consequently, the important
relations between schemas cannot be captured.

In the following sections, we are going

to put emphasis on the internal structures of
the SchemaDB system, the user interface,
security management, system core
implementation and system software
requirements.

3. Internal Structures

3.1 System Architecture:

In this section we will describe the
internal structure of the SchemaDB
application. First of all, in order to design a
web application, server/client architecture
becomes a necessity. In the SchemaDB
system, the server/client model is designed
such that any internet enabled client (a
browser) can issue request to the web server
and the database server for information. The
following System Architecture figure shows a
complete loop of requesting and retrieving
information from the database system.

Figure 3.1 System Architecture

3.2 System Data Structure:

The data structure design is based upon

the structure of ECG representation of
schemas. There are six tables that are related
to schema; the one table used for user
management will be described in detail in a
later section on security and user management.
The overview is shown in the following
figure:

Figure 3.2 SchemaDB Model

3.2.1 Schema Table and Role Table

In the data model, we have one table
called “Schema” which contains basic
information about a schema, including its id,
name, a brief description and its constraints;
the schema id and name serve as references to
facilitate linking with other tables. For each
schema, the ECG representation consists a set

of Roles, roles are the elements required to
define a schema. Each role has a certain Type,
which restricts what kind of object/entity a
role could be. Therefore, we have another
table called “role”, which consists of the id of
a role, its type and its owner. The roleOwner
refers to the id of the schema in the “schema”
table. This role belongs to the schema whose
id is shown in the “role” table. Thus Schema
and Role has a 1 to N relationship. Internally,
the role table looks like the following figure:

Role table

3.2.2 Parent table and Evoke table

Every schema except the top-level
schema are naturally inherited from some
other schema, meaning that each schema will
have one or more “Parents”; this leads to the
creation of table Parent. Similarly, when a
schema is defined using part of another
schema, we call that schema an evoked
schema, so we create a table named “Evoke”.
The relationships between Schema and Parent
or Schema and Evoke are both 1 to N
relationships. The following figures show the
internals of table Parent and table Evoke.

The child column in table Parent refers

to the id from table Schema. For example,
schema boundedState has the child schema
initiallyBounded, which possesses the id #10.
To explain the necessity of such structures, we
have to evoke a more precise example. Let’s

take closedBoundary schema as an example;
the schema closedBoundary has to be defined

arent Table Evoke Tabl

sing schema Boundary, but partially defined

.2.3 Binding table

The subtle difference between a parent
schema

.2.4 Comment table

Besides the core tables used in ECG
represe

P e

u
using Encircle. The reason is rather simple—a
closedBoundary is one specific kind of
Boundary, without the definition of Boundary,
we cannot define a specific type of Boundary.
Thus, the existence of Boundary determines
the existence of closedBoundary, which is
analogous of a parent-child relationship.
However, we do not need the complete set of
characteristics of Encircle to define the
schema closedBoundary. It does not need the
existence of Encircle to be properly defined,
yet closedBoundary does retain certain
characteristics of schema Encircle. Hence we
say Encircle is an evoked schema of
closedBounday.

3

 and an evoked schema leads to the
issue of binding. Binding is another essential
element of ECG representation. Binding
means the roles of a schema are linked to
those of its ancestors, and have the possibility
to be linked in evoked schemas. Our example
closedBoundary is a schema that is described
as “the boundary is a closed curve or surface,
and it encloses one of the regions”. Schema
Encircle is described as “a topological relation
between two bounded regions in which one of

the regions forms a closed curve or closed
surface, and the other region is within the
bounded region defined by this closed
curve/surface. The two regions are not
coincident.” Obviously, schema
closedBoundary carries partial properties of
schema Encircle, namely one of the roles of
Encircle, region1 of Type closedRegion. From
the description, it is easy to see that the role of
closedBoundary “inside” is really the same as
the role “region1” of Encircle. Therefore, we
can bind these two roles. We use the symbol
“<==>” as operator to represent the binding
relationship and “schema.role” notation to
represent the operands on the two ends (on the
user interface). In this case:
closedBoundary.inside<==>Encircle.region1

Binding Table

3

ntation we described above, another
table named “comment” is established for the
purpose of users’ convenience. It consists of
the id of a comment, the content of the
comment (which is restricted to a length of
255 characters), and the username of the
commenter. Any user comments on any
schemas will be inserted into this table with
the reference of schema id as the
commentOwner. Therefore, there is a 1 to N
relationship between schema and comment.
Similarly, each user can provide multiple
comments on many different schemas;
therefore, the relationship between user and
comment is also 1 to N. It can be illustrated by
the following figure:

--

4. SchemaDB User Interface

4.1 Add

a’s name in two ways:
Method 1. In the page Add/Delete/Edit

n
enter a

presentation as show in figure 4.2, if the
“parent” or “evoke” field of the current

ill
t as

CG information can be added at the

the information
nd then clicking the Add Info button. A

previou

/Role V Role value can
e added one (pair) at a time. A Role can be

ithout its corresponding Role Value.

d one at a time. If the
voke is an undefined schema, then it

 only
th the immediate parents and evoke

ing/Delete Info.

4.1.1 Add schema:

You can add a schem

Schema as shown in the figure 4.1, you ca
 schema name and its description into

the textboxes. It is illegal to enter a description
without entering a schema name.

Figure 4.1 Add/Delete Schema

Meth G od 2. In the page of EC

re

schema is not an existing schema, then it w
be automatically added to the schema lis
an “undefined” schema with a mark ‘*’
followed by the schema name.

4.1.2. Add ECG information:

E
ECG Form page by entering
a

sly undefined schema can be defined
in this way also. All existing and added
information, with the exception of Constraint
and Comment, will appear in boxes at the top
of the page for the user’s convenience. The
following figure represents the ECG Form
page, which is the core of the SchemaDB
system.

4.1.2.1
Add Role

Figure 4.2 ECG Form

alue: Role and
b
added w
A Role Value can be added later to an existing
Role by typing in the existing Role name in
the Role input box and then typing the value
that is to be added in the “Role Value” input
box. However, without a role name, no role
value can be added.
4.1.2.2
Add Parent/Evoke: Parent and Evoke schema
names can be adde
Parent/E
will be added into schema database with a *
mark by it. These undefined schemas can be
defined at anytime (refer to 1.1 and 1.2).
4.1.2.3
Add Binding: Bindings are designed in the
way that the current schema’s roles can
bind wi

schemas’ roles. The first pull down menu
consists of all roles of the current schema, of
which the user can select one at a time. The
second pull down menu consists of a list of all
the schemas which are parents of or are
evoked by the current schema. Once a
parent/evoke in the second column is selected,
the roles of that parent/evoke schema will
appear in the third pull down menu. The user
then selects one of the roles from this third
pull down menu to bind with the selected role
from the current schema.
4.1.2.4
Add Constraint: A schema can only have one
constraint. The newly added constraint

ion will overwrite the old one.

added
ECG Form page. Each comment is

elete ECG information is also done
wn in figure

.2.

e Role: Roles can be deleted one at a
time by first clicking on the role you wish to

nd then clicking the DELETE ROLE

g on the parent schema
h to delete and then clicking the

e by first clicking on the Evoke

e binding you
delete and then clicking the DELETE

page (figure 4.3). It is easy to delete a schema
by cli

informat
4.1.2.5
Add Comment: Each schema can have
multiple comments. Comments can be
through
restricted to a maximum length of 255
characters. The user name of the person
making the comment will also be added into
the database so that later users can see who
has entered what comment on a particular
schema. Once a comment is added it remains
permanent, and will not be removed until the
whole database system is deleted.

4.1.3 Delete ECG information:

D
through the ECG Form page sho
4

4.1.3.1
Delet

delete a
button. The consequence is that any binding
involving this role will also be deleted. If the
current schema is the parent of or evoked by
other schemas, this will result in the deletion
of bindings to this role that have been declared
within other schemas. Role values can be
deleted by editing the role information. Type
in the role name in the "Role" box, leave the
"Role Values" box empty, and then click the

"Add Info" button.
4.1.3.2
Delete Parent: Parents can be deleted one at a
time by first clickin
you wis
DELETE PARENT button. The consequence
is that any binding involving this parent will
be deleted.
4.1.3.3
Delete Evoke: Evoked schemas can be deleted
one at a tim
schema you wish to delete and then clicking
the DELETE EVOKE button. The
consequence is that any binding involving this
evoked schema will be deleted.
4.1.3.4
Delete Binding: Bindings can be deleted one
at a time by first clicking on th
wish to
BINDING button.

4.1.4Delete schema:

Figure 4.3 Add/Delete Schema Page

There is only one place you can delete
a schema, which is at Add/Delete schema

cking the “delete schema” button,
however you have to consider the
consequences, such as 1) If the current schema
is a parent of another schema or is evoked by
another schema, you have to accept the fact
that by deleting current schema, another
schema might become an “orphan”; 2) All
bindings involving the current schema will be
deleted.

4.1.5 Edit Schema Description:

A schema’s description can be added
schema page

igure 4.3). If a schema’s description exists,
the new input will overwrite the old

The ECG information of a schema can
d 1.2.

4.2 B

There are five categories of schemas.
riencer and

elationship. By clicking on these words, the
left col

Schema Inventory is a list that has the
a d its

orresponding constraint and description. This
is displayed in a new browser window,

a complete
st that consists of schema’s name and its

alues, parents,
evokes

This is a list that indicates the schemas
e es

hemas. The user can order the list according
to the n

his is mas

and their corresponding descriptions. These
a o evoke. By

licking the appropriate button, the user can
obtain

ser Registration:

aDB by
registering as a user through the User

). All user names
re unique, the system will complain if you

entered

Figure 4.4 Browse Info.

4.2.4 Orphan Schema summary

or edited through Add/Delete
(f

information.

4.1.6 Edit ECG information:

be edited using steps of 1.4 an

rowse Info. (Accessible for any
registered user)

T a list that indicates the sche4.2.1 Categorized schema lists

schem s either have no parent or n
cThey are Space, Time, Entity, Expe

either the list of schemas that have no
parent or the list of schemas that have no
evoke.

4.3 System Security Management

4.3.1 U

R
umn of the page will show all schemas

in this category.

4.2.2 Schema Inventory information:

 inform tion of a schema’s name an A user can access Schemc

Registration Page (figure 4.5allowing the user to print it easily.

4.2.3 Schema ECG Summary

Schema ECG Summary is

a
 a duplicated user name, or leave blank

on the required field, or type in two different
passwords. Once you are registered, you can
browse information of the SchemaDB.
However, you have no privileges of adding,
editing and deleting information from the
SchemaDB. You need to email the User
Administrator to request such privileges.
Upon reviewing your registration information,
the User Administrator will set your add, edit
and delete rights. You also need to send a
request to the User Administrator in order to
change your email and phone number, etc.

li
corresponding roles and v

 and bindings.

4.2.3 Parent/Evoke Schema summary

and th ir corresponding parents and evok
sc

ame of the schemas or the name of the
parents/evokes. This is to make sure the user
is able to see all parents of one schema or all
children of one parent.

Figure 4.5 User Registration

4.3.2 User Login/Change Password:

A user needs to login in order to enter
the SchemaDB system. Upon login, you can
change your password or directly enter

e main page at anytime in the
rocess.

is feature is designed for the User
Administrator only. The User Administrator

hone number and
ffiliation information for all users and most

importa

Figure 4. 7 User Administration

new password. You can go back the
SchemaDB hom
p

4.3.3 User Management:

Th

c
A
an change email address, p

ntly can set the add/edit/delete
privileges for the users by checking the radio
buttons on the page form (figure 4.7). The
system is designed to protect the critical
information of all users; therefore even the
User Administrator cannot change the user
names and cannot see the passwords. If a user
forgets his/her password, the user has to click
on the “forget password” link on the login
page, which allows the system programmers
who have access to the user database through
MySQL command line to reset a new
password for the user. In addition, the User
Administrator can deactivate a user. For the
time being, “deactivate” means delete, in the
future, “deactivate” could mean that the user
name will be maintained in the database but
the user will be unable to log in to SchemaDB.
The purpose of this potential feature is to
maintain a repository of all users of the
SchemaDB.

Schem DB. After changing your pa
ou h ve to re-login immediately us

a ssword,
a ing the y

Figure 4.6 User Login

4.3.4 System Security:

Since SchemaDB is an application that
involves operation on databases, security is a
major concern. The system is designed such
that all pages are protected. Without user
login, no add/edit/delete operations can be
done on databases. The system uses Cookie
techniques to ensure security by storing
necessary user information on the browser.
This stored information enables the browser to
differentiate from user to user; hence action
buttons are d ccordingly.
One im ortant note is that users should NOT
disable Cookie settings on browsers in order
to have the SchemaDB application function

during the process.

This is the page allows a user to

add/del

T_VARS and
vaScript techniques have to be used to pass

a” table with
e entered description (could be blank if

nothing

\";";
$rslt = m sql_query($sql,$db);

isplayed to the users a
p

properly.

--
5. System Implementation

In this section we will talk in great

detail about some important parts of the
program implementation. Altering information
in the schema database system mainly takes
place in two files, namely Add_Schema.php
and ECG_Form.php. On the other hand, the
whole system security check is implemented
in the file named Authenticate.inc, which is an
include file that is required to be executed
before other files. Finally, a file structure
diagram will be shown to present the flow of
execution

5.1 File Add_Schema.php

ete a schema and add/edit a schema’s
description. First of all, this page is protected
using Cookies; the “Authenticate.inc” file
(refer to section 5.3) is included to check the
cookie information. Therefore, a browser only
displays the page without any action buttons if
the page is not authenticated, i.e. without
proper user login information or if the user
had logged in as “viewer” only. Technically,
in order to display the description and its

comments of selected schema on the same
page, some “hidden” POS
Ja
information between page calls.

In the case of inserting a piece of new
information, there are three possible
outcomes. The system is designed to first
check if the input schema name is an existing
schema; if so, it then to check if the existing
schema is a previously undefined schema or
defined schema. The three results are: a) if
defined, only the description will be updated;
b) if the schema is an undefined existing
schema, both the schema description and
name will be updated, the schema name is
updated by taking away the symbol of
undefined schema, ‘*’; c) if the schema name
does not exist in the database, the new schema
name is inserted into the “schem
th

 entered).

The schema’s name will be updated

only of the original schema is undefined. An
undefined schema name is usually entered in
the ECG_Form page (refer to section 5.2), and
is stored in the “schema” table with a special
mark ‘*’ on the right side of the name as an
indication both to the user and to the system
itself. To check such undefined schema, the
system uses “substr(string, int, int)” function
provided by PHP. PHP Code segment is
shown as follows:

$sql = "SELECT sName FROM schema WHERE
sName=\"$inputName

y

if ($rslt)
{
 if ($row=mysql_fetch_row($rslt))
 {
 $testsuffix = substr($row[0], -1);
 if ($testsuffix == "*")
 {
 # it's previous undefined schema, now
update the name by taking away the ‘*’ mark

$sName = substr($row[0], 0, -1);
}

s a consequence of updating a
d

to be updated with the
f adding ‘*’ mark

 to differentiate an undefined schema from
 schemas, this design is based upon

ers’ visual intuitiveness. However, this set
lt

 the small
as) in the database

 phase, the difference is not

eleting a schema, it has to be
ormation will

e deleted accordingly in connected tables
such as

.e. the whole database will no
nger contain information about the subject

schema

form variables, which are used extensively in
the process of database information altering:

 current schema’s name, also serves as id in
 not a POST_VARS but a GET_VARS variable

id = the parent id of current schema, it is the “id” field in

Val = role value (or type) that is from the form input box

$pName =

e: In order to display
forma

e
ing

e

formation
d

” table.
tion

cript: Operation
uttons such as “Add Info” and “Delete xxx”

Here we illustrate the technique using
e example of the process of schema binding.

A
schema’s name, the “parent” table an
“evoke” table also have
new name. The motivation o
is
all other
us
of operations will create overhead and resu
in system performance penalty. With
set of data (about 40 schem
at current testing
yet observed.

When d
taken into consideration that inf
b

 “role”. This is because we have to
make sure that the “role” table does not
contain any roles of the deleted schema. The
same reasoning applies to the tables “parent”,
“evoke”, and “binding”--it does not make
sense that a schema is deleted but it can be
evoked by other schemas or it could be
counted as a parent of other schemas; bindings
involving the deleted schema should also no
longer exist. Therefore all information related
to the subject schema should be deleted from
these tables, i
lo

.

5.2 File ECG_Form.php

This is the essential part of the system.
ECG stands for Embodied Construction
Grammar; it is a formal representation of
schema. All actions upon ECG representation
take place here. The following sections
describe the implementation of the page form.

5.2.1 Form Variables

In order to describe the program in
detail, we need to introduce some important

$sName=the
URL, this is
$p
the “schema” table (local variable)

rName = role name that is from the input box$
$r

 parent name that is from the input box
$eName = evoke name that is from the input box
$currentRole = role name that is from the selection box
$ancestor = parent/evoke name that is from the selection box
$ancesstorRole = parent/evoke role name that is from the
selection box

.2.1 Displaying the Page 5

.2.1.1 URL Variabl5

in tion on a chosen schema, a schema
“id” (schema name is used here) is passed to
the ECG_Form.php through URL by
including the file “Authenticate.inc”. By
xtracting from the GET_VARS array, the

schema id is identified, thereafter us
MySQL statements to extract the
corresponding role information from th
“role” table, parent and evoke in
from the “parent” and “evoke” tables an
binding information from the “binding
All information is displayed in a selec
box, where the user can select one at a time to
delete.

5.2.1.2 Integrate JavaS
b
buttons are set to be displayed only if the
logged in user has the rights to add/edit/delete
information from SchemaDB. In order to add
information to the database, the form uses
POST_VARS technique particularly with the
hidden variable “DoIt” and JavaScript
change() that allow the page to display
properly. Initially, the value of the hidden
form variable “DoIt” is set to be NULL, upon
user click on the selection box, the JavaScript
“change()” instantly change the variable value
to “notnull” thus evokes the action according
to the variable value.

th
In order to insert binding information to the
database, the user will have to select three

pieces of information, namely, a) the role of
current schema represented by the variable
$currentRole; b) the parent/evoke schema
which the schema needs to bind to, which
represented by the variable $ancestor; c) the
role of the chosen parent/evoke schema, to
which the current schema role needs to bind,
represented by variable $ancesstorRole. Since
information in c) depends on information on
b), we need to submit the information in b) to
the system in order to extract information
from the database, therefore the function
“change()” serves as a “submit button” in the

rm. The simple JavaScript is shown here:

e
ystem first checks if an input string exists in

ither ignore the
ts or insert input to the database

re
put a

 without Value(Type). However, to
dit an existing Role’s Value(Type), the input

imilar technique is used
to enter information for the field of Parent and

rent or Evoke
hema did not exist before, it will be added to

the tab

g cookie techniques and
ppended URL id, the page will be displayed

nd operation
uttons if no user login has occurred and no

schema

p,
angePwd.php, ECG_Form.php and

fo

<SCRIPT LANGUAGE = "javascript">
function change()
{
 window.document.ECG.DoIt.value = "notnull";
 window.document.ECG.submit();
}
</SCRIPT>

Upon receiving the submit information, the
system takes proper action according to the
form variable values, and information is added
into the binding table.

5.2.2 Adding ECG information

In the ECG form, the Role,
Value(Type), Parent and Evoke fields are text
input boxes. Each of these four variables is set
to be a 20-30 character long string. Th
s
the database, then decides to e
input if it exis
otherwise. Since Role and Value(Type) a
paired in the ECG, users are allowed to in
Role name
e
Role name has to match the existing one and
then the Value(Type) of the role will be
UPDATED in the table “role” using the input
Role Value(Type). A s

Evoke. However, if an input Pa
sc

le “schema” as an “undefined” schema
(refer to section 5.1) with an ‘*’ indicator for

search purposes in later use. Binding is the
most complex field in the form. All three
selection boxes are not only for displaying
information, but also serve as input of the
form once information is selected. The first
selection box displays roles extracted from the
“role” table for the current schema; the second
selection box displays the parents and evokes
of the current schema from the table “parent”.
Once the parent/evoke schema is selected, a
“pid” is set by the system (on line 78), its roles
can then be displayed in the third selection
box accordingly. To add a piece of binding
information, refer to the example given in
section 5.2.1.2.

5.2.3 Deleting ECG information

Any deletion decision made on this
page is permanent, there is no “undo” process
to reverse the action. However, a prompt will
be given to the user to remind them of the
serious consequences of deleting such
information. There is no backup information
of data deleted; the information appearing on
the page are extracted from the database
directly and deletion is also executed on the
system database directly. Therefore, any
deletion decision should be made with care.

5.2.4 Security

By usin
a
as a plain form without content a
b

 has been selected. For a more detailed
explanation, refer to the following section 5.3
(Authenticate.inc).

5.3 File Authenticate.inc

In order to retain system security, we
need to check user information. All PHP files
that perform security checks and database
operations include Authenticate.inc. These
files are Add_Schema.php, bottom.ph
ch

User_Admin.php. In the file Authenticatae.inc, it
rst connects to the database (“schemadb”),

then c

ll later be able to display
the appropriate HTML page for the particular

 checks the
HP version in order to use the

arrayK

fi
hecks the cookie settings on the

browser, sees if the user has logged in, and in
what role a user is. It checks the “user” table
and retrieves the Add/Edit/Delete rights for
user. It also checks the URL appended id,
using GET_VARS to extract the information.
Thus the system wi

user. In addition, Authenticate.inc
P

eyExists () function properly.

oftware Requirement

6.1 Client

ape 6.0 or
above. It has not yet been tested on any other

rowsers. Cookies should be enabled in
rowsers.

.2 Server

Refer
ttp://www.icsi.berkeley.edu/sysdocs/

.2.2 Using Personal computer as a Server

link: http://httpd.apache.org/

5.4 System File structure and execution

flow

The following chart shows
systematically how each page is related to the
other. The rectangular boxes are files that are
executed on the runtime but not shown as
pages on browsers. The rest are pages either
individually shown on the browser or in a
frame of a page.

Figure 5.1 Execution Flow Chart

The direction of the arrows indicates
the sequence of execution. The page attached

6. System S

A client of SchemaDB system can be run

on browsers that support JavaScript such as
Internet Explorer 5.0 and Netsc

b
b

6

6.2.1 ICSI Experimental Server

 to the following link:
h

6
The server of the system consists of HTTP
server, database server, and PHP interpreter.

a) An Apache HTTP Server 2.0.46 needs to be
installed. It can be downloaded free from the
ollowing f

H
 .

owever, the server needs to be configured in
odate the PHP interpreter.

he following two lines of code should be
httpd.conf

ver to

he document root should also be configured

ng

order to accomm
T
added at the end of the
configuration file of Apache Ser
cooperate with PHP interpreter:

LoadModule php4_module "c:/php/sapi/php4apache2.dll"
AddType application/x-httpd-php .php

T
so that all files stored under the root directory
can be executed. For example, if your
document root is set to be C:/Username, then
the files under this directory can be browsed
on a local browser by type in the followi
address: http://localhost/filename ; the files
can be browsed by a remote browser by type
in http://ip-address-of-your-server/filename .

to the tail of an arrow executes before the page
attached to the head of the arrow.

b) MySQL 3.23 can be downloaded free from
http://www.mysql.com/downloads/mysql-3.23.html

c) PHP 4.3.2 can be downloaded free from
http://www.php.net/downloads.php

http://httpd.apache.org/

7. Acknowledgements

Jerome Feldman:
Professor of EECS Dept., UC Berkeley
Leader of AI research group at ICSI
(International Computer Science Institute)
Srini Narayanan:
Senior Research Scientist at ICSI
George Lakoff:

luding
nd

Graduate ept. UC
erkeley

eferences

l. “Metaphor Representation

rgen and Nancy C. Chang.
nstruction Grammar in

I TR-02-004

anan.
Embodied Meaning in a Neural Theory of

(accepted for pu

hicago Press

Professor of Linguistics Dept., UC Berkeley
Author of numerous texts inc
Philosophy in the Flesh, Women, Fire, a
Dangerous Things
Ellen Dodge:

student, Linguistics D
B
Michael Meisel:
Graduate student, CS Dept. UCLA

--

8. R

[1] Michael Meise
using a Relational Database System” 2003,
Project Report

[2] Benjamin K. Be
“Embodied Co
Simulation-Based Language Understanding”.
2002, ICS

[3] Jerome Feldman and Srini Naray
“
Language” 2003, Brain and Language

blication).

[4] George Lakoff and Mark Johnson.
Metaphors We Live By. 1980. Chicago:
University of C i

i B.S. Computer Science, San Francisco State University.
Currently is a PHD student at UCSB, Dept. of ECE.

http://localhost/filename
http://ip-address-of-your-server/filename
http://www.mysql.com/downloads/mysql-3.23.html

	schemadbrevised.pdf
	Figure 3.1 System Architecture
	Role table

