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Abstract

This paper investigates the correlation between fundamental frequency and resonant
frequencies in speech, exploiting this relation for vocal tract length normalization
(VTLN). By observing a speaker’s average pitch, it is possible to estimate the ap-
propriate frequency warping factor which will transform a spectral representation
into one with less variation of the formants. I use a function of pitch that maps
to a corresponding frequency warping factor. An exploration of speaker and vowel
characteristics in the TIMIT speech corpus is used to optimize the parameters of
this function. The approach presented here is a potentially simpler alternative to
existing VTLN algorithms which derive the warping factor by other means. Recog-
nizer results indicate that the pitch-based approach compares favorably against other
methods; furthermore, performance could be further improved by using a warping
function that is not strictly linear.
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Index Terms
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I. INTRODUCTION

UTOMATIC speech recognition systems generally strive to be robust — capable

of performing under adverse conditions such as noise and unaffected by the con-
siderable diversity of speech produced by different speakers in a population. Toward
this latter goal, vocal tract length normalization (VTLN) is an attempt to improve
recognition perfomance by compensating for some of these differences and transform-
ing the system’s input accordingly.

The sizes of speakers’ vocal tracts is a physiological factor which is directly related
to the vocal tract’s resonant frequencies, phonetic attributes known as formants.
Phone discrimination, particularly of vowels, relies on observations of the formants,
especially the lowest two (F; and F5). Small variations in these frequencies are not
always salient to human auditory perception but can affect the pattern classification
of an automatic speech recognition system. To address this complication, VTLN is
utilized to predict the vocal tract length of a speaker and appropriately rescale the
frequency axis of the spectral representation.

This paper reviews some existing VI'LN schemes and introduces a novel pitch-based
approach which performs comparatively well. Contemporary approaches are either
based on speaker characteristics that are difficult to measure accurately or involve
a complex probabilistic procedure that is not straightforward to implement. The
proposed VTLN approach is simple and effective, and could be an easily integrated
benefit to a speech recognition system.

The following sections of this paper briefly discuss the major approaches to VTLN
before presenting the pitch-based approach. I then explain the determination of warp
factors as a function of pitch, along with several ways to optimize the parameters
of such a function. Additionally, frequency warping functions are examined, and I
present an alternative method of realizing warping functions by directly processing
the input speech signal prior to feature calculation.

Lastly, some results from recognizers trained with pitch-based VTLN demonstrate
that the proposed approach is feasible; moreover, the pitch-based approach is capable
of considerable gains. Experiments with the alternative warping function suggest that
this promising performance could even be improved.

II. ApPPROACHES TO VTLN

Approaches to vocal tract length normalization differ in the processes by which
they calculate the warp factors that are used to transform the input to a speech rec-
ognizer. The existing approaches can be considered in two classes: the Maximum
Likelihood (ML) approach choses the warp factor that makes a speaker’s utterances
most probable in a given model; other approaches are based on speaker-specific acous-
tic characteristics that are intrinsically related to the vocal tract length.
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Fig. 1. The ML approach to VTLN

A. Maximum Likelihood warp factors

The Maximum Likelihood method [1] [2] [3] for determining warp factors involves
maximizing the likelihoods of speakers’ utterances based on a given model, usually a
Hidden Markov Model. For a speaker %, given a set of models A\ along with a set of
utterance observation vectors X; and their transcriptions W;, the optimal warp factor
a; is defined:

a; = argmax Pr (XA, W;) (1)

where a is the factor that is applied to create the warped observations X. Because
Equation 1 is difficult to solve analytically, the optimal a; is found by a search over
a discrete set of factors [1]. The process is illustrated in Figure 1.

The training procedure for ML VTLN is fairly intricate and usually consists of a
two-pass process: half of the train set is used for training an HMM while a; is found
for the other half; then the sets are swapped. This is iterated until the estimated as
are stabilized between iterations. The testing procedure involves decoding with every
discrete value for @ and warping with the a that maximizes the probability of the X}
given the normalized model Ay.

The primary advantage of the ML approach is that it is designed to find a warp fac-
tor that is optimal, in a probabilistic sense. However, the process is computationally
intensive, especially as the resolution of the warp factor search grid increases. It is
worth noting, however, that much work has been done to streamline the ML approach
[3], and that the argument against computational inefficiency becomes less severe as
computing power grows with time. The greatest disadvantage of this approach — from
an implementation standpoint — is its complexity and scalability.

Nonetheless, the ML approach works rather well and is regarded as a standard for
VTLN.

B. Formant-based approaches to VILN

Unlike the ML approach which has no acoustic motivation, there are a number
of VTLN approaches which calculate the warp factors by observing speaker-specific
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speech characteristics. Most commonly, the warp factors are based on the ratio of
speakers’ third formants, F3. The reason for this is well-founded, given the depen-
dency of resonant frequencies on vocal tract length according to the open-tube model.
Presumably, the third formant should be influenced by vocal tract length in the same
manner as the first two formants. The third formant is chosen because it is fairly
constant, not changing as much as the more phonetically informative lower formants.

In [4], a warp factor based on F3 is used to improve recognition on mismatched
train and test sets. For example:

w = F3,child’ren (2)
F3,adults

For a more general warp factor, a speaker’s average F3 is compared to the average F3
of the entire speaker set [5]:

Fs
k. — 3,speaker (3)

8

F3 o

Warp factors based on F3 seem to have a very strong relation to the vocal tract length
— and thus the appropriate scaling of the first and second formants. In practice,
however, this approach is limited by the difficulty of isolating the third formant in
a spectrum. Algorithms for tracking formants are not always reliable, and a mis-
estimated formant could result in a substantial magnitude of error.

ITI. EVIDENCE OF PITCH-FORMANT CORRELATION

The motivation for the pitch-based approach also has a physiological basis; unlike
the formant-based warp factors discussed previously, though, fundamental frequency
(pitch) is not a characteristic of vocal tract length and does not directly affect the
resonant frequencies. Rather, fundamental frequency represents the rate of vocal
cord excitations. Thus pitch is more closely related to the physical size of a speaker’s
larynx.

Pitch-based VTLN exploits the assumption that speakers with large voiceboxes also
have large vocal tracts; similarly, speakers with higher Fy will have smaller larynxes
along with shorter vocal tracts, and thus higher formant frequencies. Therefore, to
predict frequency warping factors it is adequate to observe a speaker’s pitch.

To investigate this effect, one can explore the vowel characteristics in a large group
of speakers:

« For this survey, the TIMIT corpus was used. This is a phonetically balanced
corpus of 630 speakers from eight dialect regions of the United States.

« The vowels considered (transcribed /iy/, /ae/, /aa/, /uw/) occurred in utter-
ances sal and sa2 of the corpus, corresponding to the two common sentences
that every speaker read. This assured that all phones were in a similar context.

« A pitch-tracking tool' was used to estimate a speaker’s median F, over the
duration of each utterance

! The pitch-tracking tool is called get_f0, in a software package distributed and copyrighted by Entropic
Research Laboratory
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Fig. 2. Pitch versus formants F;1 and F2 of the vowel /iy/

o A formant-tracking tool? was used to locate the first and second formants.
This experiment demonstrated a clear correlation between the pitch and formants as
seen in Figure 2, where the fundamental frequency is plotted against the F; and F,
of the high-front vowel /iy /3.

IV. DETERMINATION OF A PITCH-BASED WARP FACTOR
A. The warp factor k as a function of Fy

Considering the correlation between pitch and formants examined above, it is pos-
sible to derive appropriate warp factors that will transform the formants according
to the vocal tract size estimated from pitch. This indicates a warp factor k£ that is a
function of Fy:

k= f(Fo)

Suppose that it were possible to average the frequencies of a certain formant for a
particular speaker and characterize that as F. In applying VTLN, the warp factor &
is the multiplicative constant that accounts for the inter-speaker frequency variations
of the formants F and can be used to shift those formants to the normalized F’:

F = kF (4)

Given the correlation evident in Figure 2, it is possible to have a function y that
represents the linear best fit, minimizing error in a least-squares sense. This represents
the approximate locations of a particular vowel’s formants, as a function of Fy:

F~y(F) = aFo+b (5)

To determine the function for the pitch-based warp factor, first consider that the
function y has a fixed point at which y(Fy) will be equal to the desired F', repre-
senting the mean frequency to which all other F are normalized. The value of Fy

% The tool is formant, from Entropic Research Laboratory
3 The vowel /iy/ was chosen for inspection because its formants are spread widely and less susceptible to
error in the formant-tracking tool. Also, /iy/ is the most common vowel in the TIMIT corpus.
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corresponding to this point is u, the “average” pitch for which the VTLN warp factor
equals 1.

F =y(u) (6)

Combining (4), (5), and (6) gives the desired k as a function of Fy, along with linear
fit coefficients a and b for a particular formant, and the parameter p:

k= F(Fo) = ;’((F“O)) _ ;;01’; (7)

B. A linear approximation for k

To simplify the process of locating optimal parameters for the equation in (7), it is
helpful to represent the function’s linear approximation. This approximation should
be done at the value y to minimize the errors at the extremes of the fundamental
frequency domain. Given the function f defined in (7):

k= f(Fo) = Lu(Fo) = f(u) + f'(1) (Fo — )

v\ —alap+b)
f'(Fo) = (aFo+0)?
L,(Fo)=1— Py b(Fo — ) (8)

The function f and its linear approximation L, are compared in Figure 3, which uses
the linear fit coefficients calculated for the second formant of /iy/:

F2,/iy/ ~ CLFO + b= 4F0 + 1600 (9)

C. Finding optimal parameters

Rewriting the slope of (8) as a,
k= £(Fo) % L,(Fo) = 1 a(Fo — 1) (10)

will allow us to search for the optimal parameters o and p of the function f. The
actual slope of the linear approximation to f will vary depending on the coefficients
of the linear fits for pitch versus formants of different vowels, as seen in Table I.

In order to simulate the effect of performing VTLN, warp factors were multiplied
by the values for the formants of the TIMIT corpus, as measured in Section III. These
scaled formants represented the expected result of a corresponding VTLN frequency
warping of the input speech signal or features. In order to locate the optimal values
for the parameters « and p, this simulated frequency warping was tested for values
of a in the range [—0.005,0.005] and g in the range [50,250].
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Fig. 3. f and its linear approximation L, for F; /;,,

TABLE I
LINEAR FIT COEFFICIENTS AND a FOR FORMANTS OF FOUR VOWELS

Formant | «a b o

F1, /iy 4.03 | 1587 | 1.84 x 1074
Fy iy 0.68 | 309 | 1.66 x 10~
Fi/a; |0.33] 132 | 1.83x107*
F2 /e, |0.14| 48 |2.00x 1074
Fi,aa) |0.51] 65 |3.60x10°*
F2 /ey |0.12] 49 |1.79x10°*
Fijuw/ |0.59| 52 |4.21x10°*
Fo/uw/ |0.16| 16 |3.98x107*

Fig. 4. Normalized standard deviation of warped F; i,

PITCH-BASED VTLN
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Fig. 5. Distribution of F; for the vowels /aa/ and /iy/, before and after a warp determined with a = 0.002
and p = 150

Figure 4 depicts the normalized standard deviation? of the values of Fy Jiy/ When
warped by « and p. It is apparent that an a value of about 0.002 seems to result
in the lowest standard deviation of the warped data. An « of 0 corresponds to no
warping.

Another measure by which to optimize these parameters is to consider the separa-
bility of the data. Consider a binary classification of a signal, such as discriminating
the F5 of the vowels /aa/ and /iy/, as illustrated by the histograms in Figure 5. Bor-
rowing the d-prime metric from signal detection theory, the separability of these data
may be described by a discriminability index in terms of the means m and standard
deviations o of each class:

_ My — my|

!
d V0102

Maximizing the discriminability of the formants of two vowels, as reflected by the
d-prime scores in Figure 6, it can be seen once again that an a of about 0.002 is
optimal.

Observing Figures 4 and 6, there does not appear to be any statistically optimal
value for p® . Intuitively, the value for p should probably be somewhere near the
average of the speakers’ F values, so as to balance the distribution of warp factors.
A suitable value for y would be in the range from 130 to 170 Hz.

In conclusion, a suitable formula for the warp factors derived by the pitch-based
VTLN approach is

k =1-0.002(F, — 150) (11)

* Standard deviation divided by mean
5 ...although the optimal a depends slightly on the selected value for p, since « is the slope of the linear
approximation to (7) at p.
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2 D-prime

Fig. 6. D-prime scores, indicating discriminability of data

V. WARPING FUNCTIONS

The determination of the pitch-based warp factor was the most significant portion
of this paper’s alternative approach to VTLN. Following that step, there are a number
of options for performing the appropriate frequency scaling.

A. Shapes of warping functions

The most straighforward way to implement VTLN is with a linear warping function.
The warped frequencies f' are the product of the warp factor & and the original
frequencies f:

£ =kf

Another approach, which accounts for the need to scale higher formants slightly more
than lower formants, is a nonlinear warping function, such as described in [5]:

f' = ko f

Alternatively, a commonly used warping function is piecewise linear [2]; it is identical
to the linear warping function up to a certain frequency f,, and then the slope is
adjusted so as to intersect with the Nyquist frequency fy:

p (o gsh
kfo—gae ¢+ fo<[f</[x
The piecewise linear warping function ensures more complete usage of the full warped
bandwidth. One potential hazard of the linear warping function is that it multiplies by
a uniform factor over the entire spectrum, causing considerable changes to the higher
frequencies (above the second formant). This region of the spectrum is significant
in characterizing fricatives, such as /s/ and /sh/, whose articulation is not at all
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dependent on vocal tract length. Applying a large frequency shift to the higher
frequencies can increase the confusability of these phones. This effect is especially
pertinent for signals sampled at higher sampling rates (such as the TIMIT data at 16
kHz).

B. Two ways of shifting frequency

After determining a warp factor and choosing a type of warping function, the actual

frequency shift can be applied to the speech input signal in two manners:
o Resampling or otherwise transforming the original audio signal.
« Adjusting the spacing of filters during the feature calculation stage.

In almost all VTLN implementations, the second of these is utilized. For this
project, the principal results were generated using a linear warping function during
feature calculation. However, I will also present a different way to achieve the fre-
quency shift, applying time-scaling and resampling prodedures in signal processing
prior to feature calculation. This is beneficial in circumstances where the tool for
calculating features is a blackbox that does not allow reconfiguration of filter place-
ments.

C. A warping function during pre-processing

Despite an inability to alter the feature calculation stages, I was able to devise
a set of processes that effect the equivalent of a linear or piecewise linear warping
function by transforming the input audio signal before it is passed on to the feature
calculations.

One way to achieve a linear warp in the frequency axis of a signal is to scale it in
the time domain; for discrete-time signals, this involves resampling. Given a warp
factor k, the warped spectrum X (’T“’) can be derived via the time-scaling property of
the Fourier Transform:

2(kt) &7 % (%)

An unfortunate side-effect of resampling is that the input’s time axis is also scaled.
Since a great deal of important linguistic information is sensitive to temporal features
(see [6]), such as phone duration and voice onset timing, it would be better to retain
the original signal’s timescale®.

It is possible to achieve the desired frequency warp without modifying the time axis
by utilizing some tools more commonly employed for speech synthesis. The SOLAFS
time-scale modification algorithm [7] is an example of a function that can transform
a signal’s time axis independent of its frequency axis:

£(t), X (jw) — g (;) X (jo)

8 Additionally, modifying the time axis could require adjusting transcriptions or phonetic labels, as would
be the case with TIMIT.
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Fig. 7. A warping function realized by time-scaling and resampling a lowpass-filtered portion of a signal
and adding it to the highpass-filtered portion of the original signal.

The resulting signal can then be resampled to derive the warped frequency axis along
with the original time axis:

¢ ; : Jw
: <k) X (je) — | Resample| — ' (t), X (I)

Using the above sequence of time-scaling followed by resampling can produce a
linear warp of the frequency axis. From this basis it becomes trivial to approximate a
piecewise linear warp. First, the signal is split by two filters into a portion containing
high frequencies and a portion containing only low frequencies. The low portion
undergoes the frequency warp and is then added back to the higher frequencies of the
original signal. The cutoff frequency for the lowpass filter should be determined by
the warp factor k. For example:

3500
fcutoff = T

The cutoff for the highpass filter could be similarly scaled, although a fixed value, such
as 4000 Hz in this example, might be equally suitable. This piecewise (discontinuous)
warping function is shown in Figure 7.

VI. EXPERIMENTAL DESIGN AND RESULTS

The pitch-based approach to vocal tract length normalization was implemented
and tested to determine the approach’s feasibility and relative performance against
established VTLN schemes.

A. Comparing warp factors

Evaluation of the pitch-based approach consisted of a comparison of recognizer
performance using gender-independent warp factors derived in three ways:
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1. Fy-based warp factors were calculated for each speaker by using the warp
factor formula in (7) and using the speaker’s average pitch. The pitch was
detected using a fairly reliable pitch-tracking algorithm and the average pitch
for a speaker was taken to be the mean of the medians over eight utterances.

2. Maximum Likelihood warp factors were calculated while training Gaussian
Mixture Models with mel frequency cepstral coefficients (MFCC) features.

3. Fs-based warp factors were calculated by tracking the third formant in all
voiced frames of eight utterances per speakers. As with the pitch-based warp
factors, the speaker’s average F3 was the mean of the medians per utterance.
The warp factor was calculated as in (3): the ratio of the speaker’s average F3
to the mean value for the entire set, about 2900 Hz.

These warp factors were linearly warped during the feature calculation stage by
the feacalc in-house software at the International Computer Science Institute. Using
the standard 25ms frames stepped by 10ms, three types of features were generated:

o Mel-PLP: MFCC-like features. Triangular mel-spaced filters; 12 features de-
rived from 22 by DCT truncation.

« PLP-12: trapezoidal bark-spaced filters; 12th order.

o PLP-5: trapezoidal bark-spaced filters; 5th order.

All features included energy plus first-order and second-order derivatives. For each
feature, per-utterance normalization shifted the means to zero and variances to one.

An additional set of MFCC features was calculated using tools from the Stan-
ford Research Institute (SRI); these features were identical to the features used for
determination of the ML warp factors.

Neural network recognizers were trained on 3696 utterances from 462 speakers
in the TIMIT train set. Each neural network was configured with an input layer
comprising features with 9 windows of context; the hidden layer had about 164,800
weights”; the output consisted of 61 phones. About 10% of the train set was used for
cross-validation. The TIMIT test set included 1344 utterances from 168 speakers.

The results are presented as frame accuracy rates, the percentage of phones in a
test set that are correctly identified during a forward-pass of a neural net. The results
for the experiments with 16 kHz TIMIT data are in Table II; the TIMIT corpus was
downsampled to 8kHz and resulting recognition performance is evidenced in Table III.
Tests using the MFCC features calculated by SRI’s tools ® are presented in Table IV,
which also includes cross-validation rates and evidence of improvement using twice
as many hidden units.

In general, the pitch-based warp factors compared quite favorably in relation to the
warp factors derived by the formant-based approach. Perhaps this is because pitch is
a better indicator of vocal tract length than F3; more likely, the better performance
of the Fy-based warp factors can be attributed to the greater reliability of the pitch-
detection tools, as opposed to the formant-tracking software. This is consistent with

" The MFCC-like, SRI MFCC, and PLP12 features all comprised 39 features and thus had 400 hidden
units. PLP5 had 18 features and 739 hidden units.
8 The SRI tool also differs from ICSI’s feacalc in its piecewise linear frequency warping function.
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TABLE II

RECOGNITION OF TEST SET (FRAME ACURRACY RATES) WITH DIFFERENT METHODS FOR DERIVING VTLN

WARP FACTORS (16KHZ)

Feature | Baseline | Fg-based | ML | F3-based

Mel-PLP | 57.29 59.16 | 59.01 57.09

PLP-12 61.74 61.81 | 61.82 60.85

PLP-5 60.19 60.31 | 60.35 60.20
TABLE III

WARP FACTORS (8 kHz)

RECOGNITION OF TEST SET (FRAME ACURRACY RATES) WITH DIFFERENT METHODS FOR DERIVING VTLN

Feature | Baseline | Fy-based | ML | F3-based
Mel-PLP | 52.58 54.03 | 55.41 52.17
PLP-12 60.17 60.21 | 60.26 60.14
PLP-5 59.81 59.95 | 59.98 59.83

results independently obtained in

[8]. Compared to the ML-based warp factors,

however, the pitch-based performance is fairly close.

It is interesting that VTLN seemed to work well with MFCC or MFCC-like features,
while there was hardly any difference between warped and unwarped PLP features.
This perhaps owes something to differences between triangular and trapezoidal filters
used in the respective feature calculations.

It is also interesting or suspicious that the results using SRI features showed such
a dramatic difference between training cross-validation rates and test accuracy rates,
where the improvement of VTLN is reflected in the CV rates, but not in a forward-pass
of the test set. Nonetheless, these results still show that Fy-based VTLN performs
very similarly to the ML approach.

TABLE IV
RECOGNITION OF TEST SET, AS WELL AS CV RATES FROM TRAINING, FOR MFCC FEATURES CALCULATED
WITH SRI’S TOOLS. AN ADDITIONAL SET, WITH 800 HIDDEN UNITS, WAS ALSO EVALUATED.

Baseline | Fy-based | ML | Fs-based
400HU, test | 60.73 60.19 | 60.09 60.00
800HU, test | 61.41 60.87 | 60.75 60.69
400HU, CV 61.79 62.41 | 62.73 61.17
800HU, CV 62.69 63.31 | 63.44 62.00
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TABLE V
BEST CROSS-VALIDATION FRAME ACURRACY RATES (% CORRECT) WITH DIFFERENT WARPING FUNCTIONS
(16 xHz)
Feature Baseline | Linear | Piecewise Linear
PLP-12 63.09 55.01 56.16
CRB19+d 61.32 52.58 53.47
CRB19+d+dd | 61.11 52.35 53.83

B. Comparing warping functions

In addition to looking at results for various approaches to warp factor determina-
tion, the effect of a linear versus (discontinuous) piecewise linear warping function was
also examined. These warpings were accomplished before features were calculated,
using the time-scaling and resampling procedure detailed in the previous section.
Three sets of features were calculated: PLP12, as above; CRB19+d, 19 critical band
filters plus first-order derivatives; CRB19+d+dd, 19 critical band filters plus first and
second-order derivatives.

The results for this experiment are provided in Table V and show that the uniformly
linear warping function performs consistently worse than the warping function that
splits the audio signal into halves and warps only the lower frequencies. The cross-
validation frame accuracies for VTLN are lower than the baselines because there were
some signal distortions caused by the SOLAFS algorithm.

These results should be tempered by the fact that observing cross-validation rates
is an imperfect way to measure recognizer performance. A better test would have
been to connect these phone recognition systems to a language model, allowing a full
decoding that returns word error rates.

VII. CONCLUSION

Pitch-based vocal tract length normalization is a new approach to determine warp
factors that are experimentally shown to succeed in improving speech recognition
performance. At the very least, it seems to give results comparable to using the
established ML approach. This could contribute to ASR systems incorporating VTLN
as an easy yet effective alternative to existing speaker normalization approaches.
Especially when pitch is already being observed — used in prosody-based utterance
segmentation, rich transcription, or emotion classification — then the calculation of
pitch-based warp factors requires minimal computational expense.

In addition to these good results, there are indications that pitch-based VTLN
using a different warping function could yield even greater improvements.
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