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Abstract

Most of the traffic in today’s Internet is controlled by the Transmission Control Protocol (TCP).
Hence, the performance of TCP has a significant impact on the performance of the overall Internet.
Since web traffic forms the majority of the TCP traffic, TCP implementations in today’s web
servers are of particular interest. However, TCP is a complex protocol with many user-configurable
parameters and a range of different implementations. In addition, research continues to produce
new developments in congestion control mechanisms and TCP options, and it is useful to trace
the deployment of these new mechanisms in the Internet. As a final concern, the stability and
fairness of the current Internet relies on the voluntary use of congestion control mechanisms by end
hosts. Therefore it is important to test TCP implementations for conformant end-to-end congestion
control. We have developed a tool called TCP Behavior Identification Tool (TBIT) to characterize
the TCP behavior of a remote web server. In this paper, we describe TBIT, and present results
about the TCP behaviors of major web servers, obtained using this tool. We also describe the use of
TBIT to detect bugs and non-compliance in TCP implementations deployed in public web servers.



1 Introduction

Most of the traffic currently carried on the Internet is
controlled by the Transmission Control Protocol (TCP)
[6,27]. Thus, TCP performance has a significant impact
on the performance of the overall Internet. Understand-
ing TCP behavior can be important for Internet-related
research, ISPs, OS Vendors and application developers.
Since web traffic forms the majority of the TCP traf-
fic [6], the TCP behavior of major web servers is of par-
ticular interest. We have designed a tool called TCP
Behavior Identification Tool (TBIT) to characterize the
TCP behavior of remote web servers, without requiring
any special privileges on those web servers. Several fac-
tors motivated us to develop TBIT.

TCP is a complex protocol with a range of user-
configurable parameters. A host of variations on the ba-
sic TCP protocol [22] have been proposed and deployed.
Variants on the basic congestion control mechanism con-
tinue to be developed along with new TCP options such
as Selective Acknowledgment (SACK) and Explicit Con-
gestion Notification (ECN). To obtain a comprehensive
picture of TCP performance, analysis and simulations
must be accompanied by a look at the Internet itself.

One motivation for TBIT is to answer questions such
as “Is it appropriate to base Internet simulation and
analysis on Reno TCP?” As Section 4.3 explains in some
detail, Reno TCP is a older variant of TCP congestion
control from 1990 that performs particularly badly when
multiple packets are dropped from a window of data.
TBIT shows that newer TCP variants such as NewReno
and SACK are widely deployed in the Internet, and this
fact should be taken into account for simulation and
analysis studies. We believe that this is the first time
quantitative data to answer such questions is being re-
ported. In other words, TBIT helps to document the
migration of new TCP mechanisms to the public Inter-
net.

A second motivation for TBIT is to answer questions
such as “What are the initial windows used in TCP
connections in the Internet?”. As is explained in Sec-
tion 4.2, TCP’s initial window determines the amount
of data that can be transmitted in the first round-trip
time after a TCP connection has been established. The
initial window is a user-configurable parameter, and so
the TCP initial window used at a web server can not be
inferred simply by knowing the operating system used
at that server. Knowing the distribution of configured
values of initial windows can be useful not only in simula-
tions and modeling, but also in standards-body decisions
to advance documents specifying larger values for initial
windows [2].

A third motivation for TBIT is to have the ability to
easily verify that end-to-end congestion control is in fact

deployed at end hosts in the Internet (Section 4.4). The
stability and fairness of the overall Internet currently de-
pend on this voluntary use of congestion control mecha-
nisms by TCP stacks running on end hosts. We believe
that the ability to publically identify end hosts not con-
forming to end-to-end congestion control can help sig-
nificantly in reinforcing the use of end-to-end congestion
control in the Internet.

A fourth motivation of TBIT is to aid in the identi-
fication and correction of bugs detected in TCP imple-
mentations. Using TBIT, we have detected bugs in Mi-
crosoft, Cisco, SUN and IBM products, and have helped
the vendors fix those bugs. As an example, as Explicit
Congestion Notification (ECN) begins to be deployed
in the Internet (Section 4.6), reports are surfacing of
web servers unable to communicate with newly-deployed
clients. TBIT has been used to help identify these failure
modes and the extent of their deployment in the Inter-
net, to identify the responsible vendors, and to track the
progress (or lack of progress) in having these fixes de-
ployed. Information such as this is critical when new
protocol mechanisms such as ECN are standardized and
actually deployed in the Internet. Furthermore, as we
shall see in Sections 4.3 and4.5, subtle bugs can cause
a TCP implementation to behave quite differently from
claims in vendor literature. From a user’s perspective, a
tool like TBIT is essential for detecting such bugs.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the design of TBIT. In Section 3,
we compare and contrast TBIT with related work. In
Section 4, we present the results we obtained by using
the TBIT tool to survey the TCP deployment at some
popular web servers. Section 5 concludes the paper.

2 TBIT architecture

The goal of the TBIT project is to develop a tool to
characterize the TCP behavior of major web servers.
The first requirement for the design of TBIT is that
TBIT should have the ability to test any web server,
at any time. A second requirement is that the traffic
generated by TBIT should not be hostile or even appear
hostile or out-of-the-ordinary to the remote web server
being probed. To satisfy the first requirement, testing
a web server using TBIT can not require any services
or privileges from that web server that are not available
to the general public. In addition, no assumptions can
be made about the hardware or software running on the
remote web server. The second requirement of ordinary
and non-hostile traffic is in contrast with programs like
NMAP [11], which exploit the response of remote TCPs
to extraordinary packet sequences, like sending FINs to
a port without having opened a TCP connection. Signa-



tures of these tactics are usually easy to recognize, and
many web servers deploy firewalls to detect and block
unusual packet sequences. In order to ensure the ability
to test any web server at any time, TBIT only generates
conformant TCP traffic, traffic that, we believe, will not
be flagged as hostile or out-of-the-ordinary by firewalls.

TBIT provides several tests, each designed to exam-
ine a specific aspect of TCP behavior of the remote web
server. We describe the design of TBIT in two stages. In
the following, we describe in detail the Initial Window
test, illustrating several salient features of TBIT archi-
tecture. Several other tests implemented in TBIT are
described in Section 4.

The TBIT process establishes and maintains a TCP
connection with the remote host entirely at the user
level. The TBIT process fabricates TCP packets and
uses raw IP sockets to send them to a remote host. It
also sets up a host firewall to prevent packets from the
remote host from reaching the kernel of the local ma-
chine. At the same time, a BSD Packet Filter (BPF) [17]
device is used to deliver these packets to the TBIT pro-
cess. This user-level TCP connection can then be ma-
nipulated to extract information about the remote TCP.
This functionality is derived from the TCP-based net-
work measurement tool Sting [25].

To illustrate, let’s consider the problem of measuring
the initial value of the congestion window (ICW) used by
web servers. This value is the number of bytes a TCP
sender can send to a TCP receiver, immediately after
establishing the connection, before receiving any ACKs
from the receiver. The TCP standard [3] specifies that
for a given Maximum Segment Size (MSS) ICW be set to
at most 2*¥MSS bytes, and an experimental standard [2]
allows that ICW can be set to:

min(4 * M SS, max(2 x MSS,4380)) bytes

As the majority of the web pages are under 10KB in
size [4,6,19], the ICW value can have a significant impact
on the performance of a web server [15]. The TBIT test
to measure the ICW value used by a web server works
as follows. Let us assume that TBIT is running on host
A, and the remote web server is running on host B.

e TBIT opens a raw IP socket.

e TBIT opens a BPF device and sets the filter to
capture all packets going to and coming from host
B.

e TBIT sets up a host firewall on A to prevent any
packets coming from host B from reaching the ker-
nel of host A.

e TBIT sends a TCP SYN packet, with the desti-
nation address of host B and a destination port

of 80. The packet advertises a very large receiver
window, and the desired MSS.

e The TCP stack running on host B will see this
packet and respond with a SYN/ACK.

e The SYN/ACK arrives at host A. The host firewall
blocks the kernel from seeing this packet, while the
BPF device delivers this packet to the TBIT pro-
cess.

e TBIT creates a packet that contains the HTTP
GET request for the base page (“/”), along with

the appropriate ACK field acknowledging the SYN/ACK.

This packet is sent to host B.

o After receiving the GET request, host B will start
sending data packets for the base web page to host
A.

e TBIT does not acknowledge any further packets
sent by host B. The TCP stack running on host B
will only be able to send packets that fit within its
ICW, and will then time out, eventually retrans-
mitting the first packet.

e Once TBIT sees this retransmitted packet, it sends
a packet with the RST flag set to host B. This
closes the TCP connection.

The ICW value used by the TCP stack running on
host B is given by the number of unique data bytes sent
by host B by the end of the test.

Three salient features of the TBIT architecture are
illustrated by this test. First, this test can be run against
any web server, and does not require any special privi-
leges on the web server being tested. Second, note the
ability of TBIT to fabricate its own TCP packets. This
allows us to infer the ICW value for any MSS, by setting
appropriate options in the SYN packet. This ability is
important for several other tests implemented in TBIT.
Finally, the traffic generated during the ICW test will
appear as conformant TCP traffic to any monitoring en-
tity.

The test incorporates several measures to increase
robustness and ensure the accuracy of test results. Ro-
bustness against errors caused by packet losses is an im-
portant requirement. The loss of the SYN, SYN/ACK,
or the packet carrying the HT'TP request is dealt with
in a manner similar to TCP, i.e. using retransmissions
triggered by timeouts. The loss of data packets sent by
host B is harder to deal with. Some losses are detectable
by observing a gap in the sequence numbers of arriving
data bytes. If TBIT detects such a gap in the sequence
numbers, it terminates the test, without returning a re-
sult. However, TBIT may not always be able to detect



lost packets if consecutive packets at the end of the con-
gestion window are lost. In such cases, the TBIT result
may be incorrect. Some robustness against this error can
be achieved by running the test multiple times. Another
possibility is that the base web page might not be large
enough to fill the initial window for a given MSS. If this
happens, then the remote web server will usually trans-
mit a FIN either in the last data packet or immediately
following last data packet. TBIT can detect this. For
additional robustness, the user can conduct the test with
a different MSS, or specify the URL of a larger object
on the web server, if such a URL is known.

TBIT is designed in a modular fashion. A core set of
functions are used for fabricating, sending and receiving
TCP packets as well as for data logging and user in-
terface functionalities. Various tests, such as the initial
window test described above, use these core functions.
The modular design makes the tool extensible, and new
tests can be added easily. We have implemented several
such tests in TBIT, to verify various aspects of TCP be-
havior of the remote web server. We have described the
ICW test above. Later in the paper, we consider five oth-
ers: a test to determine the version of congestion control
algorithm (Tahoe, Reno, NewReno etc.), running on the
remote web server, a test to determine if the remote web
server reduces its congestion window in half in response
to a packet drop, a test to determine if the remote web
server supports SACK, and uses SACK information cor-
rectly, a test to determine if the remote web supports
ECN, and finally a test to measure the duration of the
time-wait period on the remote web server. We selected
these tests to best illustrate the versatility of TBIT, as
well as to report on interesting TCP behaviors that we
have observed.

3 Related work

There are several ways to elicit information about the
TCP behavior of a remote server. In the previous sec-
tion, we described the TBIT architecture in detail. We
now compare TBIT with related work that has been re-
ported in the literature.

One possible approach to actively eliciting and iden-
tifying TCP behavior would have been to use a stan-
dard TCP at the web client to request a web page from
the server, and to use a tool in the network along the
lines of Dummynet [24] to drop specific packets from the
TCP connection (e.g. as we dropped ACKs for the ICW
test). A more complex alternative would have been to
use a simulator such as NS [8] in emulation mode to drop
specific packets from the TCP connection. However,
both these approaches lack certain flexibilities that we
felt were desirable. As we shall describe in Section 4.3,

for some of the tests we needed to ensure that we would
receive a significant number of packets (20 to 25) in a sin-
gle transfer. Rather than search for large objects at each
web site, the easiest way to do this is to control the TCP
sender’s packet size in bytes, by specifying a small MSS
(Maximum Segment Size) at the TCP receiver. This
would not have been easy to accomplish with either the
Dummynet or the NS emulator. Without the ability to
specify a small MSS, we may not have been able to test
many web server of our choice.

An extensive study of the TCP behavior of Internet
hosts is presented in [20]. The study was conducted us-
ing a fixed set of Internet hosts on which the author had
obtained special privileges, such as the ability to login
and to run tcpdump [17]. Large file transfers were car-
ried out between pairs of hosts belonging to this set, and
packet traces of these transfers captured using tcpdump
at both hosts. The traces were analyzed off-line, to de-
termine the TCP behavior of the hosts involved. The
paper reported on the TCP performance of eight ma-
jor TCP implementations. The paper also discussed the
failure to develop a fully-general tool for automatically
analyzing a TCP implementation’s behavior from packet
traces.

We would note that the methodology used in [20]
would not be well-suited for our own purposes of test-
ing for specific TCP behaviors in public web servers.
First, the restriction to Internet hosts on which the re-
quired privileges could be obtained would not allow the
widespread tests of web servers. Second, certain TCP
behaviors of end-nodes can only be identified if the right
pattern of loss and delay occur during the TCP data
transfer.

In [12], the authors examine TCP/IP implementa-
tions in three major operating systems, namely, FreeBSD
4.0, Windows 2000 and Linux (Slackware 7.0), using
simulated file transfers in a controlled laboratory set-
ting. Specific loss/delay patterns are introduced using
Dummynet [24]. The authors report several flaws in the
TCP/IP implementations in the operating systems they
examined. Since the methodology requires complete con-
trol over both end-hosts, as well as the routers between
them (to introduce loss and delay), it can not be used to
answer questions about TCP deployment in the global
Internet.

NMAP [11] is a tool for identifying operating systems
(OS) running on remote hosts in the Internet. NMAP
probes remote machines with a variety of ordinary and
out-of-ordinary TCP /IP packet sequences. The response
of the remote machine to these probes constitutes the
fingerprint of the TCP/IP stack of the remote OS. By
comparing the fingerprint to a database of known fin-
gerprints, NMAP is able to make a guess about the OS
running on the remote host. TBIT differs from NMAP



in many respects. The goal of NMAP is to detect the
operating system running on the remote host, and not
to characterize the TCP behavior of the remote host.
Thus, NMAP probing is not limited to TCP packets
alone. Beyond fingerprinting, NMAP collects no infor-
mation about the TCP behavior of the remote hosts. So,
information such as the range of ICW values observed in
the Internet can not be obtained using NMAP. Also, as
mentioned in Section 2, NMAP uses out-of-the-ordinary
TCP/IP packet sequences for several of its fingerprinting
probes, while TBIT uses only normal TCP data transfer
operations to elicit information.

One might argue that to characterize the TCP be-
havior of a remote host, it is sufficient to detect the OS
running on the host using a tool like NMAP. The TCP
behavior can be analyzed by studying the OS itself, us-
ing either the source code (when available), information
provided by the vendor (e.g. Microsoft web site offers
information about the TCP/IP stack in the Windows
operating system), or laboratory experiments [12]. We
first argue that identifying the OS of the remote host
is not sufficient, because the TCP standard defines a
number of user-configurable parameters. These are set
differently by different users, and data about these pa-
rameters cannot be obtained by merely identifying the
OS or by analyzing the source code. Second, regard-
less of the claims made by the vendor, the TCP code
might contain subtle bugs [21], and hence, the observed
behavior can be significantly different from claims in ven-
dor literature. Thus, direct experimentation is required,
either in laboratory experiments or across the Internet
with public web servers. While laboratory experiments
are well-suited for a thorough exploration of the behav-
ior of major, widely-distributed TCP implementations,
they are not practical for characterizing the entire range
of TCP implementations in the public Internet. Thus,
we believe that TBIT is complementary to trace analysis,
laboratory experiments, and OS fingerprinting tools.

4 TCP behavior of web severs

In this section, we describe some of the tests imple-
mented in TBIT. We have examined TCP behaviors of
several web servers using these tests. These results are
also included along with the description of each test.
The section is organized as follows. In Section 4.1, we
briefly describe the set of web servers we used for test-
ing. In Sections 4.2- 4.7, we describe the tests and pro-
vide survey results. Finally, in Section 4.8, we provide a
discussion of various factors affecting the test results.

4.1 Web servers used for testing

We used a list of 10,000 web severs (unique IP addresses)
for testing purposes. The list was obtained through two
sources: trace data from a web proxy [14], and the list
published at 100hot.com. We make no claim about the
representativeness of this list, apart from assuming that
this list is likely to contain some selection of high-traffic
web servers in the Internet. We used NMAP [11] to
identify the operating systems running on these remote
hosts.

4.2 Initial value of congestion window

We have described the ICW test in Section 2. We ran
this test on the list of servers described above. The
MSS was set to 100 bytes. We tested each server three
times. To ensure correctness, we consider results from
only those servers which were tested successfully at least
twice, and all successful test instances returned the same
answer.

We found that 81% of the web servers set the ICW to
two segments, while 13.8% of the severs set it to a single
segment. Only 0.5% of the web servers set the ICW to
four segments, in accordance with [2]. A small number
of web servers were found to set the ICW to more than
8000 bytes. We repeated the experiment with MSS of
512 bytes, which confirmed these trends. NMAP results
indicate that many of the web servers that set their ICW
to four segments run a beta version of Solaris 8 operating
system. The web servers that set ICW to 8000 bytes
or more seem to be running various versions of Digital
(Compaq) UNIX operating system.

4.3 Congestion control algorithm

There are a range of TCP congestion control behaviors
in deployed TCP implementations, including Tahoe [13],
Reno [3], NewReno [10], and SACK [16], which date from
1988, 1990, 1996, and 1996, respectively. These different
variants of TCP congestion control are described and
illustrated in detail in [7]. A TCP connection cannot
use the SACK option unless both end nodes are SACK-
enabled. In the absence of SACK, the TCP congestion
control mechanisms used by a remote host are likely to
be either Tahoe, Reno, or NewReno. The different vari-
eties of TCP can have significantly different performance
under certain packet loss regimes. These different TCP
variants are not signaled in packet headers; the only
way to determine which is being used by a particular
host is to observe a trace of a TCP connection that con-
tains packet drops eliciting the desired behavior. Using
TBIT’s ability to create artificial packet drops, we have
designed a test to distinguish between the Tahoe, Reno,



Type Number of web servers
NewReno 1441
Reno 1154
TahoeNoFR 1024
Tahoe 251
Unidentified 47
Total 3917

Table 1: Type of congestion control algorithms

and NewReno TCP congestion control mechanisms. The
test is based on simulations described in [7].

e TBIT establishes a connection with the remote
web server, in a manner similar to the ICW test
described in Section 2. The MSS is set to a small
value (e.g. 100 bytes) to force the remote server to
send several data packets for the test, even if the
requested web page is small in size. TBIT declares
a receiver window of 5*MSS.

e TBIT requests the base web page.

e The remote server starts sending the base web page
to the TBIT client in 100-byte packets.

e TBIT acknowledges each packet according to the
TCP protocol [22], until the 13-th packet is re-
ceived.

e TBIT drops this packet, as illustrated in the tests
in Figures 1(a)-1(c).

e TBIT receives and acknowledges packets 14 and
15. The ACKs for these packets will be duplicate
ACKs for packet 12.

e Packet 16 is dropped. All further packets are ac-
knowledged appropriately.

e TBIT closes the connection as soon as 25 data
packets are received, including retransmissions.

Based on this stream of 25 packets, TBIT can deter-
mine the congestion control behavior of the remote TCP.
NewReno TCP is characterized by a Fast Retransmit for
packet 13, no additional Fast Retransmits or Retransmit
Timeouts, and no unnecessary retransmission of packet
17, as in Figure 1(a). Reno TCP is characterized by a
Fast Retransmit for packet 13, a Retransmit Timeout for
packet 16, and no unnecessary retransmission of packet
17, as in Figure 1(b). Tahoe TCP with Fast Retrans-
mission in this scenario is characterized by no Retrans-
mit Timeout before the retransmission of packet 13, but
an unnecessary retransmission of packet 17, as shown
in Figure 1(c). For a more detailed explanation of this
behavior, we refer the reader to [7].

To ensure the correctness of test results, the test is
terminated without returning any results if any pack-
ets are lost other than those dropped by TBIT itself.
Unwanted packet loss can usually be deduced from un-
expected gaps in sequence numbers. The test is also
terminated if the server does not send a sufficient num-
ber of packets even with the small MSS. The test may
return incorrect results if a timeout or retransmission
is induced because of the heavy loss of ACKs sent by
TBIT. Robustness against these errors can be achieved
by running the test multiple times.

We test our list of web servers using this test. The
MSS was set to 100 bytes to ensure a sufficient number
packets for the test. Each server was tested at least
four times, at different times. To ensure correctness,
we only report results for a web server if the test was
successful at least three times, and the answer returned
in all successful instances was the same. The cumulative
results are shown in Table 1.

The main surprise in these results was the number
of web servers that were categorized as “Tahoe with-
out Fast Retransmit”, characterized by a Retransmis-
sion Timeout for packet 13, and an unnecessary retrans-
mission of packet 17, as shown in Figure 1(d). We did
not expect to find any TCP implementations that did
not use the Fast Retransmit procedure, which has been
in TCP implementations since 1988. For TCP without
Fast Retransmit, the TCP sender does not infer a packet
loss from the receipt of three duplicate ACKs, but has
to wait for a retransmit timer to expire before inferring
loss and retransmitting a packet. Figure 1(d) shows the
clear performance penalty to the user of the absence of
Fast Retransmit.

More than 70% of the web servers classified by our
test as Tahoe without Fast Retransmit were identified
by NMAP to be using versions of Microsoft Windows
operating systems. To investigate this behavior further,
we developed a TBIT test that verifies the web server’s
response to a single packet dropped from a window of
five packets, and verified that most of these servers do
not use Fast Retransmit even in a scenario with a single
packet drop.

Our enquiries with Microsoft have indicated that this
behavior is a result of a failed attempt to optimize TCP
performance for small web pages. The problem seems
to arise when the web page is small enough to fit in the
socket buffer of the sender. With such web pages, the
web server can issue a close call on the socket even
before the first packet is transmitted. This puts the con-
nection in FIN_.WAIT_1 state. It is the attempt to opti-
mize transmission of packets in such cases that does not
seem to be working as intended. The company reports
that it will fix the bug in Whistler, its next-generation
operating system, and has promised a software patch to
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Figure 2: Two unnecessary retransmissions

fix the problem in Windows 2000. However, at the time
of writing this paper, the patch was not available.

Using NMAP identifications, we also find that over
78% of the systems identified by TBIT as using NewReno
run newer versions of Linux (2.1.122 or above) and So-
laris (2.6 or above) operating systems. Almost 60% of
the systems reporting the older Reno behavior seem to
be running various versions of FreeBSD and BSDI. Many
of the others seem to be running various versions of Win-
dows operating systems, but with large base web pages.
Over 67% of the systems reporting Tahoe behavior seem
to be running various version of Linux (2.2 and below).

Most (66%) of the web servers belonging to the “uniden-
tified” category use Fast Retransmit for packet 13, and
unnecessarily retransmit packet 14, as well as an unnec-
essary retransmission of packet 17, but no Retransmis-
sion Timeout. An example of this behavior is shown in
Figure 2. These web servers seem to be running various
versions of Digital (Compaq) UNIX.
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Window after the loss | Number of web servers
5 segments or less 3757
More than 5 segments 213
Total 3970

Table 2: Window reduction after a packet loss, from a
window of eight segments.

4.4 Conformant congestion control

A TCP sender is expected to halve its congestion window
after a packet loss. This aspect of TCP behavior is the
key to the stability of the Internet [9]. Therefore, we
developed a TBIT test that verifies this behavior. The
test is carried out as follows.

e TBIT establishes a connection with the remote
server, using a small MSS, and requests the base
web page.

e TBIT acknowledges all packets until packet 15 is
received. If the remote TCP has been exhibit-
ing correct slowstart behavior, the congestion win-
dow should be at least eight segments at this time.
TBIT drops packet 15.

e TBIT ACKs all packets appropriately, sending du-
plicate ACKs acknowledging packet 14, until packet
15 is retransmitted. The retransmission is acknowl-
edged appropriately. After that, TBIT does not ac-
knowledge any more packets. This will ultimately
force the remote server to time out and retransmit
the first unacknowledged packet.

e As soon as TBIT detects this retransmission, it
closes the connection and terminates the test.

The size of the reduced congestion window, in bytes,
is the difference between the maximum sequence num-
ber received by TBIT and the highest sequence number
acknowledged by TBIT. Comparing it to the size of the
congestion window prior to reduction (8 segments), we
can decide if the remote TCP uses conformant conges-
tion control.

The robustness issues involved in this test are similar
to those discussed in Section 4.3, and when we ran the
test against our target set, we took similar precautions.
(i.e. testing each host four times etc.). The cumula-
tive results are shown in Table 2, and a representative
example of each category appears in Figure 3. Of the
44 servers that did not reduce their congestion window
to five segments or less, most were identified by NMAP
to be running an older system, Solaris 2.5 or 2.5.1. We
contacted colleagues at Sun, who looked at the code and
reported that the behavior was due to a bug in the TCP
stack of adding three segments to the congestion window
after halving it following a Fast Retransmit. We did not
see this problem in any of the more recent versions of
this operating system.

4.5 Response to selective acknowledgments

A number of TCP stacks have implemented the TCP
Selective Acknowledgment option (SACK) [16]. It is
possible to determine from passive traces whether a re-
mote TCP supports the TCP SACK option simply by
observing whether the TCP SYN packet includes the
SACK_PERMITTED option [1]. However, using only
passive monitoring, it is difficult to determine whether
the remote TCP actually uses the information contained
in the SACKs sent by the receiver. We have designed
the following TBIT test to verify this.
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(c) NewReno-like behavior: No SACK usage shown.
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(d) Tahoe without Fast Retransmit.

Figure 4: Examples of response to SACKs

Result No. of web servers
SACK usage verified 440
SACK usage not verified 1037
Total 1477

Table 3: SACK test

e TBIT sends a SYN packet with a small MSS and
the SACK_PERMITTED option to the remote web

server.

e If the returning SYN/ACK does not contain the
SACK_PERMITTED option, TBIT terminates the

test.

e Otherwise, TBIT continues to receive and acknowl-
edge packets until packet 15 is received. Packets

15, 17 and 19 are dropped. TBIT sends appropri-
ate SACKs in response to packets 16 and 18.

e TBIT continues to receive packets, and send appro-
priate SACKs until the retransmissions of packets
15, 17 and 19 are received.

e TBIT closes the connection.

The ideal behavior of a SACK-enabled sender would
be to resend packets 15, 17 and 19 in a single RT'T, and
not send any unnecessary retransmissions. This behavior
is quite different from that of a NewReno receiver, which
will take at least three round trip times to send all the
retransmissions.

The robustness issues involved in this test are similar
to those discussed in Section 4.3. Before carrying out
this test on our list of web servers, we first checked, using



another, simple TBIT test, to see which web servers were
SACK-enabled. This test consisted of sending a SYN
with the SACK_PERMITTED option and examining the
returned SYN/ACK. Based on this test, we determined
that 2,953 web servers from the original set were SACK-
enabled. The results shown in Table 3 are based on this
subset. The MSS value was set to 100 bytes. Each host
was tested three times, and the results are included in
the tally only if the test was successful at least twice,
and all successful instances returned the same answer.

The behavior seen in Figure 4(a) represents the most
optimal usage of SACK information. The TCP sender
retransmits all three packets in a single round-trip time,
and does not retransmit any packets unnecessarily. NMAP
results indicate that most of the hosts exhibiting this
type of behavior are running newer versions of Linux
(2.2.13) or Solaris (2.6 or higher) operating systems.

The behavior seen in Figure 4(b) is slightly less opti-
mal, as the sender takes two round trip times to retrans-
mit lost packets, but the TCP sender still makes clear use
of the SACK information. The sender does not retrans-
mit any packets unnecessarily. This type of behavior is
mostly exhibited by hosts that are running various ver-
sions of the Windows 2000 operating system and have
fairly large base pages. Senders represented in the first
row of Table 3 exhibit one of these two behaviors.

In Figure 4(c), the sender is seen to be taking three
round trip times to finish the retransmissions. This is
the behavior we would expect from a NewReno sender.
There is no indication that the TCP sender is mak-
ing any use of the information in the SACK packets.
NMAP results indicate that most of the hosts exhibiting
this type of behavior are running various versions of the
Linux operating system.

Finally, in Figure 4(d), we see a sender that seems
to be completely ignoring all SACK information. This
is because the sender is using a Retransmission Time-
out, instead of a Fast Retransmit, to retransmit packet
15. A TCP sender is required to discard information
obtained from SACK blocks following a Retransmission
Timeout [16]. Hosts exhibiting this behavior seem to
be running various versions of Microsoft’s Windows op-
erating systems, and seem to have small base pages.
This failure to use Fast Retransmit was discussed in Sec-
tion 4.3.

4.6 Response to ECN

Explicit Congestion Notification (ECN) [23] is a mech-
anism to allow routers to mark TCP packets to indi-
cate congestion, instead of dropping them, when pos-
sible. While ECN-capable routers are not yet widely
deployed, the latest versions of the Linux operating sys-
tem include full ECN support. Following this deploy-

ment of ECN-enabled end nodes, there were widespread
complaints that ECN-capable hosts could not access a
number of websites [14]. We wrote a TBIT test to inves-
tigate whether ECN-enabled packets were being rejected
by popular web servers or routers along the path.

Setting up an ECN-enabled TCP connection involves
a handshake between the sender and the receiver. This
process is described in detail in [23]. Here we provide
only a brief description of the aspects of ECN that we are
interested in. An ECN-capable client sets the ECN_ECHO
and CWR flags in the header of the SYN packet; this is
called an ECN-setup SYN. If the server is also ECN-
capable, it will respond by setting the ECN_ECHO flag
in the SYN/ACK; this is called an ECN-setup SYN/ACK.
From that point onwards, all data packets exchanged be-
tween the two hosts, except for retransmitted packets,
can have the ECN-capable transport (ECT) bit set in
the IP header. If a router along the path wishes to mark
such a packet as an indication of congestion, it does so
by setting the Congestion Experienced (CE) bit in the
IP header of the packet.

The goal of the test is to detect broken equipment
that results in denying access to certain web-servers from
ECN-enabled end nodes. The test is not meant to verify
full compliance to the ECN standard [23].

1. TBIT constructs an ECN-setup SYN packet, and
sends it to the remote web server.

2. If TBIT receives a SYN/ACK from the remote
host, TBIT proceeds to step 4.

3. If no SYN/ACK is received after three retries (fail-
ure mode 1), or if a packet with RST is received
(failure mode 2), TBIT concludes that the remote
server exhibits a failure. The test is terminated.

4. TBIT checks to see if the SYN/ACK was an ECN-
setup SYN/ACK, with the ECN_ECHO flag set
and CWR flag unset. If this is the case, then the
remote web server has negotiated ECN usage. Oth-
erwise, the remote web server is not ECN-capable.

5. Ignoring whether the remote web server negotiated
ECN usage, TBIT sends a data packet containing
a valid HTTP request, with the ECT and CE bits
set in the IP header.

6. If an ACK is received, check to see if the ECN_ECHO
flag is set. If no ACK is received after three re-
tries, or if the resulting ACK does not have the
ECN_ECHO flag set (failure mode 3), TBIT con-
cludes that the remote web server does not support
ECN correctly.

To ensure robustness, before running the test we check
to make sure that the remote server is reachable from



our site, and would ACK a SYN packet sent without the
ECN_ECHO and CWR flags set. Robustness against
packet loss is ensured by the retransmission of a SYN or
of the test data packet as mentioned in steps 4 and 6.

We used a larger set of hosts (about 27,000) to con-
duct this test. This set contains most of the 10,000 hosts
used for other tests described in this section. The reason
behind using a different set for this test is that we were
trying to investigate the problem reported in [14]. The
cumulative findings are reported in Table 4. The first
row reports hosts that do not support ECN, but interact
correctly with clients that do support ECN. The second
and third row represent hosts that deny access to ECN-
capable clients. The fourth row represents hosts that
negotiate ECN support, but fail to respond to CE bits
set in data packets. These three cases, failure modes 1
through 3, are broken implementations that need to be
corrected. The fifth row represents hosts that seem to
support ECN correctly.

NMAP results indicated that most hosts with failure
mode 2 were behind Cisco’s Localdirector 430 [5], which
is a load balancing proxy. This problem was brought to
Cisco’s attention, and a fix has since been made avail-
able. Most hosts with failure mode 1 seem to be run-
ning a version of the AIX operating system. We have
contacted people at IBM, and they are working on the
problem. We also believe that some of these failures are
due to firewalls that mistake the use of the ECN-related
flags in TCP for a signature for a port scanner tool [18].
Most of the hosts with failure mode 3 seem to be run-
ning older versions of Linux (Linux 2.0.27-34). Of the 22
hosts in the fifth row, negotiating ECN and using ECN
correctly, 18 belong to a single subnet. NMAP could
not identify the operating systems running on these 18
hosts. Of the remaining four, three seem to be running
newer versions of Linux (2.1.122-2.2.13).

4.7 Time wait duration

Closing a TCP connection requires a three-way hand-
shake [26] between the two hosts. Consider two hosts, A
and B, with a TCP connection between them. Assume
that host A wishes to close the TCP connection. Host
A starts by sending a FIN packet to host B. Host B ac-
knowledges this FIN, and it sends its own FIN to host
A. Host A sends an ACK for this FIN to host B. When
this ACK arrives at host B, the handshaking procedure
is considered to be complete. The TCP standard [22]
specifies that after ACKing the FIN, the host A (i.e. the
host that initiated the closing sequence) must wait for
twice the duration of the Maximum Segment Lifetime
(MSL) before it can reuse the port on which the con-
nection was established. The prescribed value of MSL
is 2 minutes [22]. During this time, host A must retain

10

sufficient state information about the connection to be
able to acknowledge any retransmission of the FIN sent
by host B. For busy web servers, this represents a signif-
icant overhead [15]. Thus, many major web servers use
a smaller value of MSL. We have developed a TBIT test
to measure this value. The test works as follows.

1. TBIT opens a connection with the remote host,
and requests the basic web page.

2. TBIT receives and appropriately acknowledges all
the packets sent by the remote web server.

3. The remote server will actively close the connection
by sending a FIN.

TBIT acknowledges the FIN, and sends its own
FIN packet.

5. TBIT waits until the remote server acknowledges
its FIN. If necessary, it retransmits the FIN us-
ing the timeout mechanism described in the TCP
standard [22].

6. Once the FIN/ACK is received, TBIT sends a SYN
packet to the remote web server. The sequence
number of this SYN packet is less than the largest
sequence number sent by TBIT to the remote web
server so far.

7. TBIT waits for a fixed amount of time to receive a
SYN/ACK from the remote web server. It ignores
any other packets sent by the remote web server.

8. If no SYN/ACK is received at the end of the wait-
ing period, go to 6. Otherwise, go to 9.

9. Once the SYN/ACK is received, TBIT sends a
packet with the RST flag set to the remote web
server.

The approximate duration of the 2*MSL period is
the time elapsed between steps 6 and 9.

The test can overestimate the time-wait duration if
the SYNs sent by TBIT or the SYN/ACK sent by the
remote web server are lost. Robustness against these
packet losses can be obtained by reducing the wait pe-
riod between successive SYNs (step 7). The accuracy
of measurement is limited by the round trip time to the
server being tested, and the duration of wait period be-
tween successive SYNs.

We carried out this test using a wait of 2 seconds
between successive SYNs. The cumulative results are
shown in Table 5. The first row represents hosts that
replied to the very first SYN (step 6). From the results,
it appears that the most popular values of MSL are 30
seconds and 2 minutes. From NMAP results, it appears



Test result Number of web servers
Server not ECN-Capable 21602
Failure mode 1: No response to ECN-setup SYN 1638
Failure mode 2: RST in response to ECN-setup SYN 513
Failure mode 3: ECN negotiated, but data ACK does not report ECN_ECHO 255
ECN negotiated, and ECN reported correctly in data ACK 22
Total 24030
Table 4: ECN test result
Duration Number of web servers the web, and consider the TCP behavior of only those
No wait 2120 web servers. However, this limits our ability to test every
0<2xMSL < 64 3714 web server of our choice.
64<2xMSL <128 150 Second, we note that to ensure correctness, tests such
128 < 2x MSL < 192 121 as the congestion control algorithm test have to be aborted
192 < 2x MSL < 256 1020 if any spurious packet losses are detected. Since some
2% MSL > 320 101 of these tests require 20 to 25 packets to complete, the
Total 79223 probability that TBIT has to abort a test due to spurious

Table 5: Time wait duration

that the current versions of Solaris and Windows operat-
ing systems provide 2 minutes as the default MSL value,
while Linux and FreeBSD use 30 seconds. Most of the
servers using no wait seem to be running either some ver-
sion of the Windows operating system, or older versions
(2.0.37 or less) of the Linux operating system.

4.8 Factors affecting test results

For each of the tests described above, we have discussed
factors that affect the results of individual tests. We
have also described the measures implemented in each
test to enhance its robustness, and ensure correctness of
results. We now discuss some of these issues further.
For some of the tests described in this section, we
have been able to report behavior of fewer than 50% of
the total web servers tested. There are three reasons.
First, some of the TBIT tests require a large number
of packets to be transferred between the server and the
TBIT client. We tried to increase the number of packets
transferred by specifying a small MSS. However, many
web servers will not send packets smaller than some
threshold, as long as sufficient data is available. For
example, we have observed that most servers running
versions of Windows operating systems will ignore MSS
values smaller than 88 bytes. By default, TBIT always
requests the base web page. In many cases this does not
produce a sufficient number of packets, because the base
web page is not large enough (some pages contain only
a META redirect command). If a sufficient number of
packets is not received, the test is aborted. An alterna-
tive would have been to gather URLs of large objects on
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packet loss can be significant. We are currently working
to improve our tests to reduce the number of scenarios
in which a test must be aborted.

Third, for many of these tests, we repeat the test
multiple times to ensure that spurious, but undetected,
packet losses do not result in TBIT’s reporting an in-
correct result. We report results from each test only if
all successful test instances agree upon the final result.
To overcome this limitation, we are working to improve
TBIT’s ability to detect spurious packet losses.

We used NMAP to identify the operating system run-
ning on the web servers being tested. Any assertions we
make regarding the operating system running on a web
server are subject to the accuracy of NMAP identifica-
tion. In some cases, rather than providing a single guess,
NMAP provides a set of operating systems as potential
candidates. In some cases, the behavior of operating
systems in this set can be significantly different, when
it comes to specific TCP behaviors. For example, we
have found that servers identified by NMAP as running
Linux 2.1.122 - 2.2.13 operating systems exhibit a
wide range of responses to selective acknowledgments.

Finally, we would like to point out that many of to-
day’s web servers are set up behind load-balancing de-
vices, such as the Cisco LocalDirector [5]. Using these
devices, one can configure several different physical ma-
chines to answer to a single IP address. These machines
can run a diverse array of hardware and operating sys-
tems. Thus, it is possible that the same IP address may
exhibit different TCP behaviors at different times. We
are currently investigating ways to use TBIT to reli-
ably gather information about the behavior of such sites.
Running each test multiple times can provide some pro-
tection against this problem.



5 Conclusion

In this paper, we have described a tool called TBIT that
can be used to characterize various aspects of TCP be-
havior of remote web servers. TBIT can be used to probe
any web server, without the need for any special priv-
ileges on that web server. Moreover, TBIT does not
generate any traffic that is hostile or that would appear
hostile to monitoring software. We have described six
TBIT tests in this paper. We ran each of these tests
against a large number of web servers, and presented
the results. We believe that this kind of data (e.g. ver-
sions of congestion control algorithms running on web
servers, sizes of initial window, time wait duration) is
being reported for the first time. As a result of these
tests, we uncovered several bugs in TCP implementa-
tions of major vendors, and helped them correct these
bugs.

We plan to continue this work in several ways. First,
we are working to improve the success rate of TBIT tests
as described in Section 4.8. Second, we plan to develop
tests for more aspects of TCP behavior. Our aim is to
provide comprehensive standards-compliance testing of
TCP implementations. Third, we are exploring the pos-
sibility of using TBIT to automatically generate models
of TCP implementations for use in simulators such as
NS [8]. More generally, we believe that tools like TBIT
are necessary to test other aspects of Internet behavior
as well. We plan to explore several possibilities in this
area.

Acknowledgments

We are grateful to Aaron Hughes for his generosity and
immense patience during the time we used his systems
for NMAP scans. Without Aaron’s generosity, a large
part of this work would not have been possible. We
would like to thank Stefan Savage for giving us the source
code of the Sting tool. We would like to thank Mark
Handley for help with system administration issues and
several helpful discussions about the ECN test. We would
like to thank Vern Paxson for his help in developing the
time-wait duration test. We would also like to thank
Mark Allman, Fred Baker, Nick Bastin, Alan Cox, Ja-
mal Hadi-Salim, Tony Hain, Dax Kelson, Balachander
Krishnamurthy, Alexey Kuznetsov, Jamshid Mahdavi,
William Miller, Erich Nahum, Kacheong Poon, K. K.

Ramakrishnan, N. K. Srinivas, Venkat Venkatsubra, Richard

Wendland and participants of NANOG 20 for helpful dis-
cussions and comments.

12

References

[1] M. Allman. A web server’'s view
of  the transport layer, June 2000.
http://roland.grc.nasa.gov/ mallman /tcp-opt-
deployment/.

[2] M. Allman, S. Floyd, and C. Partridge. Increasing
TCP’s initial window, September 1998. RFC2414.

[3] M. Allman, V. Paxson, and W. Stevens. TCP con-
gestion control, April 1999. RFC2581.

[4] N. Cardwell, S. Savage, and T. Anderson. Modeling
TCP latency. In Proc. IEEE INFOCOM, 2000.

[5] Cisco Systems. How to cost-effectively scale web
servers. Packet Magazine, Third Quarter 1996.

http://www.cisco.com/warp/public/784/5.html.

[6] K. Claffy, G. Miller, and K. Thompson.
The nature of the Dbeast: recent traf-
fic measurements from an Internet back-
bone. In Proceedings of INET’98, 1998.

http://www.caida.org/outreach/papers/Inet98/.

[7] K. Fall and S. Floyd. Simulation-based comparisons
of Tahoe, Reno, and SACK TCP. Computer Com-

munication Review, 26(3), July 1996.

[8] K. Fall and K. Varadhan. ns: Manual, February

2000.
[9]

S. Floyd and K. Fall. Promoting the use of end-to-
end congestion control in the Internet. IEEE/ACM

Trans. Networking, August 1999.

[10] S. Floyd and T. Henderson. The NewReno modifi-
cation to TCP’s fast recovery algorithm, April 1999.

RFC 2582.

[11] Fyodor. Remote os detection via tcp/ip stack
fingerprinting. Phrack 54, 8, Dec. 1998.
URL ”http://www.insecure.org/nmap/nmap-

fingerprinting-article.html”.

[12] T. Gao and J. Mahdavi. On current TCP /IP imple-
menations and performance testing, August 2000.

Unpublished manuscript.

[13] V. Jacobson. Congestion avoidance and control.
Computer Communication Review, 18(4), August

1988.

[14] D. Kelson, September 2000. note sent to Linux ker-

nel mailing list.



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

B. Krishnamurthy and J. Rexford. Web Proto-
cols and Practice: HTTP/1.1, Networking Proto-
cols, Caching, and Traffic Measurement. Addison-
Wesley, 2001.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romonow.
TCP selective acknowledgement options, October
1996. RFC2018.

S. McCanne and V. Jacobson. The BSD packet
filter: A new architecture for user-level packet cap-
ture. In Proccedings of the winter USENIX technical
conference, January 1993.

T. Miller. Intrusion detection level analysis of nmap
and queso, 2000.

K. Park, G. Kim, and M. Crovella. On the rela-
tionship between file sizes, transport protocols and
self-similar network tarffic. In Proc. International
Conference on Network Protocols, 1996.

V. Paxson. End-to-end Internet packet dynamics.
In Proc. ACM SIGCOMM, 1997.

V. Paxson, M. Allman, S. Dawson, W. Fenner,
J. Griner, I. Heavens, K. Lahey, J. Semke, and
B. Volz. Known TCP implementation problems,
March 1999. RFC2525.

J. Postel. Transmission control protocol, September
1981. RFC793.

K. K. Ramakrishnan and S. Floyd. A proposal to
add explicit congestion notification (ECN) to IP,
January 1999. RFC2481.

L. Rizzo. Dummynet and forward error correction.
In Proc. Freeniz, 1998.

S. Savage. Sting: a TCP-based network measure-
ment tool. Proceedings of the 1999 USENIX Sympo-
sium on Internet Technologies and Systems, pages
71-79, Oct. 1999.

W. Stevens. TCP/IP Illustrated, Vol.1 The Proto-
cols. Addison-Wesley, 1997. 10th printing.

K. Thompson, G. Miller, and M. Wilder. Wide-area
internet traffic patterns and characteristics. IEEE
Network Magazine, 11(6), November 1997.

13



