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Abstract

In thispaper, wedefinetheconceptof aContent-Addressable
Network; a systemthatessentiallyoffersthesamefunction-
ality asa hashtable, i.e. it maps”keys” to ”values”. The
novelty of a hashtable in a Content-AddressableNetwork
is that it may spanmillions of hostsacrossdiverseadmin-
istrative entities in the Internet . We describeour design
of a ContentAddressableNetwork that is scalable,highly
fault-tolerantand completelyself-organizing. We analyse
andsimulatethe performanceandrobustnesspropertiesof
our design.Finally, we discusssomeof thepotentialappli-
cationsfor aCAN.

1 Introduction

A hashtableis a datastructurethat maps”keys” onto
”values”,with thespecialpropertythattheassociations
betweenkeys and valuesarestoredsuchthat given a
key, theassociatedvaluecanbequickly found. In the
implementationof softwaresystems,hashtablesarean
invaluableprogrammingtool.

On theInternet,many large-scale,distributed,appli-
cationsandsystemscould utilise a network wide hash
table(whetherapplicationspecificor not)asacoresys-
tembuilding block. For example,a distributedhashta-
ble could store(key,value) pairsof the form (domain
name,IP addressof nameserver), (URL, IP addressof
web server or cache),(filename,IP addressesof user
PCs on the internet storing the file), (Active Badge
Id, GPScoordinatesof the personwearingthe Active
Badge)etc.More importantly, theabstractionprovided
by ahashtable,givesinternetsystemdevelopersapow-
erful new designtool that could enablenew applica-
tionsandcommunicationmodels.

More specificexamplesof currentInternetsystems
wheredistributedhashtablescanplayanimportantrole
include:

� peer-to-peer systemsin the spirit of Napster,

Gnutella: the index in thesefile sharingsystems
canbestoredin adistributedhashtable.

� large scale storage managementsystems like
OceanStore,Publius

� Ubiquitouscomputingenvironmentssuchasthose
describedin [14] frequentlyrequireservicessuch
asobjecttracking,servicelocationetc. Similarly,
networksof sensorshavelargenumbersof sensors
to bemonitoredandcontrolled.Thelargenumber
of tracked objectsin theseenvironmentsmakesit
difficult to storeandretrieve informationrelatedto
theseobjectsin a scalablemanner. In all thesesit-
uations,a distributedhashtablescanbeusedasa
form of scalable,robust distributednetwork stor-
age.

� distributed,locationindependentnameresolution
services(anenhanceddistributedDNS)

Conceptually, thenotionof a network-widehashta-
bleis quitesimple,andyet,how doesonedesignascal-
abledatastructurethatmillions of nodescaninsertor
retrieve entriesfrom ?

For suchahashtableto scaleto Internetdimensions,
it must be distributed, highly scalableand tolerantto
network andmachinefailures.

Thedifficulty of theproblembeginsto sink in when
weconsidersomeof thelargescaleindexing systemsin
existence.Centralisedsolutionslike Napster[17] have
scalabilityproblemsunderhigh load [18], suffer from
asinglepointof failureandareexpensive. Peer-to-peer
systemssuchasGnutella[10] locatecontentby flood-
ing searchrequestsover a self-organisedoverlay net-
work. While truly distributedin design,floodingsearch
requestsis not scalable[12] and,becausetheflooding
hasto becurtailedat somepoint, mayfail to find con-
tentthatis actuallyin thesystem.SystemsliketheWeb
andtheDNS imposestrict restrictionson how content
may be namedwhich brings its own set of problems
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while systemslike the DNS areheavyweight in
termsof configuration,maintainanceandupdates.

In this paper, we definethe conceptof a Content-
AddressableNetwork; an internet-scale,distributed
hashtable. Viewed from the outside,the basicoper-
ationsperformedon a CAN are the insertion,lookup
and deletionof (key,value) pairs. On the inside, our
designof aCAN resemblesahuge,distributedhashta-
blewith individualnodesin thesystemstoringachunk
of the entiretable. In addition,a nodeholdsinforma-
tion abouta smallnumberof otherchunksin thetable
muchlike IP routersholdstatefor a tiny fractionof the
routersin the Internet. Justas IP routing algorithms
enablecommunicationbetweenany two nodesin the
network, similarly, weproposearoutingalgorithmthat
usesthis hash-tablestateto allow any nodein thesys-
temto retrieve any portionof thehashtable.

We presentthe designof a CAN that is completely
distributed requiring no form of centralisedcontrol,
coordinationor configuration,scalablebecausenodes
maintainonly asmallamountof controlstatethatis in-
dependentof the numberof nodesin the system,and
highly fault-tolerantbecauseof built in redundancy and
theability to routearoundtrouble.Unlikesystemssuch
asthe DNS or IP routing,our designdoesnot impose
any form of rigid hierarchicalstructureto achieve scal-
ability. Finally, our designfacesno hurdlesalongthe
pathto deploymentsinceit canbeimplementedentirely
at the applicationlevel anddoesnot rely on the large
scaledeploymentof technologiessuchasIP multicast
or anycast.Theeventualdeploymentof suchtechnolo-
giescanonly serve to simplify ourcurrentdesign.

On thedownside,aswith all self-organisingoverlay
networks,our designfacestheproblemof factoringin
underlyingnetwork topologyinformationwith applica-
tion level routing. While we incorporatesomesimple
but effective heuristicsin anattemptto captureunder-
lying network characteristics,wecannotguaranteethat
theperformanceof thepathbetweentwo nodesacross
the CAN network is comparableto that on the under-
lying IP Internet.Notehowever thata CAN is primar-
ily usedto look up a table entry and not for the ac-
tual transferof large datafiles becauseof which this
slight performancehit might very well be acceptable
to most applications. In addition, if performanceis
a critical goal of an application,it shouldbe possible
to effectively incorporatenetwork topologyby allow-
ing a small amountof initial configurationin the pro-
cessof building theoverlaynetwork. This kind of ad-
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Figure 1: Example: 2-d coordinate overlay with 5
nodes

ministratorconfiguredoverlaysis commonin commer-
cially deployed overlaynetworks. Finally, a lot of on-
goingresearcheffort focusesonunderstandingnetwork
topologyand building network measurementservices
[2, 19, 8]. Somecommercialcompanies[1] even of-
fer servicesbasedon technologythat help ”map” the
Internet. The resultsof this researchandthe informa-
tion provided by variousmeasurementservicescould
beeffectively utilisedto incorporateIP topologyinfor-
mationinto ourdesign.

In what follows, we describeour designfor a CAN
in section2 ,presentsimulationresultsin section3. Fi-
nally, wedescriberelatedwork andconclude.

2 Design

In this section,we describethe designof our Content
AddressableNetwork. We startwith a descriptionof
ouralgorithmin its mostbasic,strippeddown form and
later describeadditionaldesignfeaturesand compo-
nentsthatgreatlyimproveoverall systemperformance.

Ourdesigncentersaroundthenotionof avirtual co-
ordinatespace.At any point in time, theentire virtual
coordinatespaceis dynamicallypartitionedamongall
thenodesin thesystemsuchthatevery nodeis respon-
sible for its own distinct sub-spacewithin the overall
space. For example,figure 1 shows a 2-dimensional
coordinatespacepartitionedbetween5 CAN nodes.
Thus, every node in the system”owns” a sub-space
within theoverall coordinatespace.

This virtual coordinate space is used to store
(key,value)pairsasfollows: to storeapair( ,.- , /0- ), key
,1- is mappedonto a point 2 in the coordinatespace
usingauniformhashfunction.Thecorrespondingkey-
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valuepair is thenstoredat thenodethatownsthesub-
spacewithin which thepoint 2 lies. To retrieve anen-
try correspondingto key ,1- any nodemerelyapplies
thesamehashfunctionto discover thepoint 2 andthen
retrievesthecorrespondingvaluefrom thenodewithin
whosesub-space2 lies. For improved availibility, a
key may be mappedonto multiple points in the coor-
dinatespaceusingmultiplehashfunctionsandaccord-
ingly the(key,value)pair is storedat multiple nodesin
the system.Note that the ability to routebetweenar-
bitrary pointsin the coordinatespaceimplies that any
nodein thesystemcanretrieve any (key,value)pair i.e.
canretrieve any entryin thedistributedhashtable.

Thenodesin our CAN systemself-organizeinto an
overlay network that representsthis virtual coordinate
space.A nodelearnsandmaintainsasits setof neigh-
borsthe IP addressesof thosenodesthat hold coordi-
natesub-spacesadjoiningits own sub-space.This set
of immediateneighborsservesasa coordinaterouting
table that enablesrouting betweenarbitrary points in
thecoordinatespace.Thus,our CAN systemworksby
creatingand maintaininga virtual coordinateoverlay
network whereinindividual nodesareassigneddistinct
sub-spacesof thecoordinatespace.

In whatfollows, we first describethethreemostba-
sic piecesof our design:CAN routing,constructionof
the CAN coordinateoverlay, andmaintainanceof the
CAN overlay. Wethendiscusscertainadditionaldesign
piecesthatgreatlyenhancesystemperformanceandro-
bustness.

2.1 Routing in a CAN

Intuitively, routing in a ContentAddressableNetwork
works by following the straightline pathfrom source
to destinationcoordinates.

A CAN nodemaintainsa coordinaterouting table,
thatholdsthe IP addressesandvirtual coordinatesub-
spaceof its neighborsin the coordinatespace. This
purelylocalneighborstateis sufficientto routebetween
two arbitrarypointsin thespace.A packet includesthe
destinationcoordinates.Using its coordinateneighbor
set,a noderoutesa packet towardsit’s destinationby
simple greedyforwarding to a neighborwith coordi-
natesclosestto the destinationcoordinates.Thus,the
routing metric, asdescribedabove, is the progress(in
termsof cartesiandistance)madetowardsthedestina-
tion. In practice,in order to factor the underlyingIP
topologyinto theroutingprocess,a nodemeasuresthe

network level round trip time (rtt) betweenitself and
eachof its neighborsandusestheratio of theprogress
madeto the rtt asroutingmetric. i.e. for a given des-
tination,a packet is forwardedto theneighborwith the
maximumratioof progressto rtt. Thisallows therout-
ing processto favor lower latency paths.

Notethatmany differentpathsexistbetweenasource
anddestinationcoordinate.Hence,evenif oneor more
of a node’s neighborswereto crash,a nodewould au-
tomaticallyroutealongthenext bestavailablepath.

If however, anodelosesall its neighborsin a certain
direction,andtherepairmechanismsdescribedin sec-
tion 2.3 have not yet rebuilt thevoid in thecoordinate
space,thengreedyforwardingmaytemporarilyfail. In
this case,a nodeusesan expandingring searchto lo-
catea nodethat is closerto the destinationthanitself.
Thepacket is thenforwardedto this closernode,from
whichgreedyforwardingis resumed.

2.2 CAN construction

As describedearlier, at any point in time, the entire
CAN coordinatespaceis divided amongstthe nodes
currentlyin thesystem.A new nodethat joins thesys-
tem,mustbeallocatedits own portionof thecoordinate
space.This is doneby having anexistentnodesplit its
allocatedsub-spacein half, retaininghalf its old sub-
spacewhile the remaininghalf is assignedto the new
node. This is achieved asfollows: A new CAN node
mustfirst learntheIP addressof any nodecurrentlyin
thesystem.We achieve this initial bootstrapin a man-
nersimilar to thatdescribedin [7] ( It is worthpointing
out however, that all our designrequiresis that a new
nodebeableto learnof atleastonenodecurrentlyin the
CAN andis largely independentof theexactbootstrap
mechanism,i.e. if someonecomesupwith animproved
distributedbootstrapmethod,wecoulduseit)

As in [7] we assumethat a CAN hasan associated
domainname. A CAN alsorunsa bootstraphostsuch
that the CAN domain nameresolves (throughDNS)
to the IP addressof thebootstraphost(for robustness,
onecouldrunmultiplebootstraphostsandDNSround-
robinbetweenthem).A bootstrapnodemaintainsa list
of nodesit believesarecurrently in the system.Sim-
ple techniquesto keepthis list reasonablycurrentare
describedin [7].

To join a CAN systema new node 3 startsby per-
forming a DNS lookup on the CAN domainnameto
retrieve the bootstrapIP address. 3 thencontactsthe
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bootstrapnodeandretrievestheIP addressesof oneor
more randomnodescurrently in the system. We use
thenotation 465 to denotethis setof 3 ’s initial contact
nodes.

3 thenpicks(at random)a point 2 with coordinates798;:=<
, within thespaceandrequestsoneor morenodes

from 4>5 to routea JOIN requestto the point 2 . Us-
ing the routing algorithmdescribedin section2.1, the
JOIN requestis routedto the nodein the systemthat
currentlyownsthesub-spacewithin whichpoint 2 lies.
Thiscurrentoccupantnodecouldthensplit its spacein
half andassignonehalf to thenew node3 . To achieve
auniformpartitioningof theoverallspace,weput in an
additionalvolumebalancingcheckat this time: Instead
of directlysplitting its own space,thecurrentoccupant
nodefirst comparesthe volume of its own sub-space
with thevolumeof thesub-spacesoccupiedby its im-
mediateneighborsin the coordinatespace(this is in-
formationit alreadyholdslocally). Thenodewith the
largestvolume,say ? is thenselectedandits spaceis
split in two halvesof which 3 is assignedonewhile ?
retainstheother. In section3weevaluatetheusefulness
of this addedvolumebalancingcheck.

This volume balancingcheckthus tries to achieve
a uniform partitioningof the total volumeover all the
nodesin thesystem.Since(key,value)pairsarespread
acrossthecoordinatespaceusinga uniformhashfunc-
tion, thevolumeof thesub-spaceanodeownsis indica-
tiveof thesizeof the(key,value)databasethenodewill
have to storeandhenceindicative of theloadplacedon
the node. A uniform partitioningof the spaceis thus
desirableto achieve load balancing. (Note that this is
not sufficient becausecertain(key,value)pairswill be
morepopularthanothersthusputting higher load on
the nodeshosting thosepairs. This is similar to the
“hot spot” problemon the Web. Cachingandreplica-
tion techniquescan be usedto alleviate this hot spot
problemin CANs)

Having obtainedits sub-space,3 mustnow learnthe
IP addressesof its coordinateneighborset @A5 . In a d-
dimensionalcoordinatespace,two nodesareneighbors
if their coordinatespansoverlap along BDCFE dimen-
sionsand abut along 1 dimension. (For example, in
figure2, node1 is a neighborof ? becauseits coordi-
natesub-spaceoverlapswith ? ’s alongtheY axisand
abutsalongtheX-axis,node5 ontheotherhandis nota
neighborof ? becausetheircoordinatesub-spacesabut
alongboththeX andY axes)Thustheset @G5 is asubset
of theset @GH , node ? ’s coordinateneighborset. Thus
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Figure2: Example: 2-d coordinate overlay before node
A joins

3 simplyobtainsfrom ? its coordinateneighborset @GH
andselectsfrom it thosenodesthatarenow its neigh-
bors.Similarly, ? updatesits neighborsetto eliminate
thosenodesthatareno longerits neighbors.Finally, 3
and? ’sneighborsmustbeinformedof thisreallocation
of space.Every nodein thesystemperiodicallysends
updatemessageswith its currentlyassignedcoordinates
to all its neighbors.Thesesoft-statestyle updatesen-
sure that all of 3 and ? ’s neighborswill eventually
learnaboutthe entry of new node 3 and will update
their own neighborsetsaccordingly. Figures2 and3
show anexampleof anew nodejoining a2-dCAN. As
canbe inferredfrom theabove description,theeffects
of addinga new nodeinto the systemarerestrictedto
a smallnumberof nodesin a very small locality of the
coordinatespace.

2.3 CAN maintainance

TheCAN maintainancealgorithmsareusedto recover
from nodefailures.Our CAN maintainancestrategy is
composedof two distinctpieces:thefirst is an imme-
diate”quick-fix” takeover algorithmthatenablesquick
recovery from a nodefailure. The secondpieceis a
backgroundsub-spacereassignmentalgorithmthaten-
suresthat no singlenodeis assigneda disproportion-
atelylargefractionof theoverall coordinatespace.



5

p c

d

e

f

g

hiJ LNMXOPOPQ�RPS TPUPV�WNTPW$S Y�ZP[jOPQ	L$WXV\]_^ m�l n�l o�`IKJ LqMXOPOPQ�RPS TPUPV�WNTPWXS Y�ZP[jOPQ	L$WXV\]K^ k�l m�l o�`

b

Figure3: Example: 2-d coordinate overlay after node
A joins

2.3.1 Immediate takeover algorithm

Whena nodefails,oneof its neighboringnodes“takes
over” thefailednode’s now vacantsub-space.

Ouralgorithmsdraw heavily from thesoft-state[21]
stylerecovery algorithmsdescribedin [6]. Nodessend
periodicupdatemessagesto theirneighbors.Thesepe-
riodic messageupdatesinclude the node’s virtual co-
ordinates,and its list of neighbors(both their IP ad-
dressesandcoordinatesub-spaces)Theabsenceof up-
datesfrom anodeoverapredefinedperiodof time(typ-
ically somemultiple of the updateperiod)is regarded
asan indicationof that node’s failure andtriggersthe
repairmechanisms.

When a node r fails, it stopssendingout periodic
updatemessagesto its neighbors. Eachneighboring
nodethus independentlydetectsr ’s failure andsetsa
takeover timer with timer interval in direct proportion
to thevolumeof its currentsub-space.Whena node’s
takeover timer expiresit sendsout a TAKEOVER mes-
sageto eachof node r ’s neighbors(recall that this in-
formationwasobtainedfrom r ’s periodicupdates).A
TAKEOVER messageincludesthe volumeof the sub-
spaceof the nodeinitiating the takeover. A takeover
bid from a node r is consideredbetter thanonefrom
node s if r ’s sub-spacevolumeis lower than s ’s or if
their volume’s areequaland rutvs . Our recovery pro-
cessthusfavorsnodeswith smallersub-spacesto avoid

having a singlenodeassignedto large fractionsof the
overall space.Additional metricssuchasthe load on
a node,thequality of its connectionto the Internetetc
couldalsobefactoredinto thetakeover process.

A nodethat receives a better takeover bid than its
own cancelsits takeover timer. Becausetimer values
areselectedin proportionto anode’ssub-spacevolume
this form of timercancellationshouldensurethatmany
nodeswill hearbettertakeover bids beforetheir own
timerexpiresandcanrefrainfrom sendingout takeover
bids.

For a predefinedrecovery interval (typically some
multiple of the maximum takeover timer interval) a
nodetracksthe besttakeover bid it hasheard. At the
endof therecovery interval thenodethatmadethebest
takeoverbid takesoverthesub-spaceof thefailednode.

Undercertainfailure scenariossuchasthe simulta-
neousfailure of multiple, adjacentnodes,it is possi-
ble that a node 3 detectsthe failure of a neighboring
node? but doesnotknow node? ’sneighbors.In such
cases,prior to triggering repair mechanisms,node 3
performsanexpandingring searchfor thenodesneigh-
boring ? ’s coordinatesub-space.

Note,that theabove recovery algorithmneednot be
invoked every time a nodeleaves the system.Rather,
if aparticipatingnodegracefullyexits anapplication,it
could,aspartof theexit procedure,handover its state
to a neighboringnodewhich would thentakeover the
departingnode’s sub-space.Theabove recovery algo-
rithms arerequiredfor true nodeand/ornetwork fail-
ures.

2.3.2 Background sub-space reassignment

The immediate takeover algorithm describedabove
mayresultin asinglenodebeingassignedmultiplesub-
spaces.Ideally, we would like to retaina one-to-one
(or many-to-onein thecaseof sub-spaceoverloading)
assignmentof nodesto sub-spaces,both becausethis
reducestheamountof controlstatea nodemustmain-
tain andbecauseit preventsthecoordinatespacefrom
becominghighly fragmented.If for example,themem-
bershipof aCAN dropsin half,wewouldlikethenum-
berof sub-spacesto dropaccordingly.

To achieve thisone-to-onenodeto sub-spaceassign-
ment,we usea simplealgorithmthataimsat maintain-
ing, evenin thefaceof nodefailures,adissectionof the
coordinatespacethatcouldhavebeencreatedsolelyby
nodesjoining thesystem.
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Figure4: Effect of dimensions on path length

At a generalstepwe canthink of eachexisting sub-
spaceasa leaf of abinary“partition tree.” Theinternal
verticesin the treerepresentsub-spacesthatno longer
exist,but weresplit atsomeprevioustime. Thechildren
of atreevertex arethetwo sub-spacesinto whichit was
split. Of coursewe don’t maintainthis partitiontreeas
adatastructure,but it is usefulconceptually.

By anabuseof notation,we usethe samenamefor
a leaf vertex, for the sub-spacecorrespondingto that
leaf vertex, andfor the noderesponsiblefor that sub-
space.Thepartitiontree(like any binary tree)hasthe
propertythat, in thesubtreerootedat any internalver-
tex, therearetwo leavesthataresiblings.Now suppose
a nodewant to hand-off a leaf x. If thesibling of this
leaf is alsoa leaf (call it y) thehand-off is easy. Sim-
ply coalesceleavesx andy, makingtheir formerparent
vertex a leaf, andassignnodey to that leaf. This cor-
respondsto combiningsub-spacesx andy into asingle
sub-spacewhich is assignedto thenodey. If y, thesib-
ling of x, is notaleafperformadepth-firstsearchin the
subtreeof thepartitiontreerootedat y until two leaves
that aresiblingsarefound. Call theseleavesz andw.
Thencombinez andw, making their former parenta
leaf. This correspondsto combiningsub-spacesz and
w into a singlesub-space.Assign the nodez to this
combinedsub-spaceandassignnodew to sub-spacex.
Figure4 shows a simpleexampleof this reassignment
process.In fig 4 let ussaynode9 fails andby the im-
mediatetakeover algorithmnode6 takesover node9’s
place. By the backgroundreassignmentprocess,node
6 woulddiscovernodes10and11. Oneof these,say11
takesover thecombinedsub-spaces10 and11, and10
takesoverwhatwas9’s sub-space.

Of coursewedon’t reallymaintainthepartitiontree;
it is just a conceptualaid. All an individual nodeactu-
ally hasis its coordinaterouting tablewhich captures
the adjacency structureamongthe currentsub-spaces

(the leaves of the deletiontree). However, this adja-
cency structureis sufficient for emulationof all theop-
erationson thepartitiontree

A node r performsthe equivalentof the above de-
scribeddepth-firstsearchon thepartitionasfollows:

� let B_� bethelastdimensionalongwhich node r ’s
sub-spacewashalved (this canbeeasilydetected
by merely searchingfor the highestordereddi-
mensionwith theshortestcoordinatespan).

� from its coordinateroutingtable,node r selectsa
neighbornode s thatabuts r alongdimensionBK�
suchthat s belongsto thesub-spacethatformsthe
otherhalf to r ’ssub-spaceformedasaresultof the
lastsplittingalongdimensionB_� (gross!!).

� if thevolumeof s ’s sub-spaceequalsr ’s volume,
then r and s constituteapairof sibling leafnodes
whosesub-spacescanbecombined.

� If s ’ssub-spaceissmallerthanr ’sthen r forwards
a depth-firstsearchrequestto node s , which then
repeatsthesamesteps.

� The above processrepeatsuntil a pair of sibling
nodesis found.

Section3 measuresthenumberof stepsa depth-first
searchrequesthasto travel beforesibling leaf nodes
canbefound.

2.4 Additional Design components

Theprevioussection,describedour CAN designin its
most basic,strippeddown form. In this section,we
point out certainfeaturesof the above designaswell
ascertainadditionalmechanismsthat greatlyimprove
the performanceand robustnessof the above design.
Eachof the following additionscausequite dramatic
improvementsin systemperformanceand robustness
but comeat the cost of increasedper-nodestate(al-
thoughper-nodestatestill remainsindependentof the
numberof nodesin the system).The extent to which
thefollowing techniquesareapplied(if at all) involves
a trade-off betweenimprovedroutingperformanceand
systemrobustnesson the onehandandincreasedper-
nodestateon the otherandshouldbe madeto satisfy
applicationspecificrequirements.
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2.4.1� Moving to higher dimensions

Thefirst observationis thatourdesigndoesnot restrict
thedimensionalityof thecoordinatespace.Increasing
the dimensionsof the CAN coordinatespacereduces
theroutingpathlengthfor asmallincreasein thesizeof
thecoordinateroutingtable.For a CAN with B dimen-
sionsand � nodes,the path lengthgrows as ����� -a�����
while theamountof neighborstategrowsas ����B � . Be-
causeincreasingthenumberof dimensionsimpliesthat
a nodehasmoreneighbors,thefault tolerancein rout-
ing improves as a nodenow hasmore potentialnext
hop nodesalongwhich packets canbe routed. Simi-
larly, thehighernumberof neighborsimprovestheef-
ficacy of ourvolumebalancingchecktherebyresulting
in a moreuniform partitioningof thecoordinatespace
amongthenodesin thesystem.

2.4.2 Adding multiple realities

The seconddesignobservation is that we can main-
tainmultiple independentcoordinatespaceswith every
nodein the systembeing assignedto different, inde-
pendentsub-spacesonevery coordinatespace.We call
eachsuchcoordinatespacea ”reality”. Every added
reality improvessystemrobustnessandperformanceat
thecostof increasedcontrolanddatastatepernode.

The contentsof the hashtablearereplicatedon ev-
ery reality. i.e. any dataassociatedwith a location,
say(x,y,z), is now storedat the nodesassociatedwith
(x,y,z) on eachreality. This replicationimprovesdata
availibilty. For example,saya pointerto a file ”ABC”
is to bestoredat thecoordinatelocation(x,y,z). With
threeindependentrealities,thispointerwouldbestored
at 3 different nodescorrespondingto the coordinates
(x,y,z) on eachreality. This redundancy meansthatthe
pointer to ”ABC” is unavailable only when all three
nodesaredown.

Further, becausethe contentsof the hashtable are
replicatedon every reality, routing to location (x,y,z)
translatesto reaching(x,y,z) on any reality. Conse-
quently, multiple realitiesimproves routing efficiency
(i.e. routingpathlength).To seethis,considerthestate
held by a singlenode. For a CAN with � realities,a
singlenodeis assigned� coordinatesub-spaces,oneon
every reality. A nodethushas � coordinateaddresses,
and � independentneighborsets.A node’s coordinate
addressesareselectedsuchthat they lie at sufficiently
different locationsof the coordinatespace.What this
implies, is that an individual node,hasthe ability to,

in a single hop, reachdistantportionsof the coordi-
natespacetherebygreatly reducingthe averagepath
length. To forward a packet, a nodenow checksall
its neighborson eachreality and forwardsthe packet
to thatneighborwith coordinatesclosestto thedestina-
tion.

Finally, multiple realitiesimprove routing fault tol-
erance,becausein thecaseof a routingbreakdown on
onereality, traffic cancontinueto be routedusingthe
remainingrealities.

A CAN systemcould thus make use of multiple,
multi-dimensionalcoordinatespaces.

2.4.3 Overloading coordinate sub-spaces

Sofar, ourdesignassumesthatany sub-spaceis, atany
point in time, assignedto a singlenodein the system.
We now modify this to allow multiple nodesto share
the samesub-space.Nodesthat sharethe samesub-
spacearetermedpeers.We definea systemparameter� 3���2�����4�� , which is themaximumnumberof al-
lowablepeerspersub-space(weimaginethatthisvalue
would typically beratherlow, 3 or 4 for example).

At all times,a nodemustmaintaina peer-list, i.e. a
list of thenodessharingits sub-space.Nodescontinu-
ally monitor the livenessof their peers.While a node
mustknow all thepeersin its ownsub-space,it neednot
trackall thepeersin its neighboringsub-spaces.Rather,
a nodeselectsonenodefrom eachof its neighboring
sub-spaces.As describedbelow, a nodewill over time,
measurethe round-trip-timeto all the nodesin each
neighboringsub-spaceandretaintheclosest(i.e. low-
estlatency) nodein its coordinateneighborset. Thus,
while overloadingsub-spacesrequiresa nodeto track
its peernodes,it doesnot increasetheamountof coor-
dinateneighborstateanodemustmaintain.

Overloading a sub-spaceis achieved as follows:
Whenanew node,say 3 , joins thesystem,it discovers
an existentnode,say ? , whosesub-spaceit is meant
to occupy. Ratherthandirectly splitting its sub-space
asdescribedbefore,node ? first checkswhetherit has
fewer than

� 3�� 2¡���G4�� numberof peers. If yes,
the new node 3 merely joins ? ’s sub-spacewithout
any spacesplitting. Node 3 obtainsboth its peerlist
and its list of coordinateneighborsfrom ? . Periodic
soft-stateupdatesfrom 3 serve to inform 3 ’speersand
neighborsaboutits entryinto thesystem.

If thesub-spaceis full (alreadyhas
� 3�� 2¡���G4��

nodes),thenthe sub-spaceis split into half asbefore.
Node ? informseachof thenodeson it’s peer-list that
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thespaceis to besplit. Usinga deterministicrule (for
exampletheorderingof IP addresses),thenodesonthe
peer list togetherwith the new node 3 divide them-
selvesequallybetweenthetwo halvesof thenow split
sub-space.As before, 3 obtainsits initial list of peers
andneighborsfrom ? .

Periodically, a nodesendsits coordinateneighbora
requestfor its list of peers,then measuresthe rtt to
all thenodesin thatneighboringsub-spaceandretains
thenodewith thelowestrtt asits neighborin thatsub-
space.Everynodein thesystemdoesthisfor eachof its
neighboringsub-spaces.After its initial bootstrapinto
the system,a nodecan perform this rtt measurement
operationat very infrequentintervals so asto not un-
neccessarilygeneratelargeamountsof controltraffic.

Thebenefitsof overloadingsub-spacesaremany:

� overloading a sub-spacesignificantly improves
systemfault tolerancebecausea sub-spacebe-
comesempty only when all the nodesin a sub-
spacecrashat the sametime. (in which casethe
repairprocessdescribedabovestill needsto beap-
plied)

� becauseanodenow hasmultiplechoicesin its se-
lectionof neighboringnodes,it canselectneigh-
bors that arecloser(in termsof latency) thereby
reducingpathlatencieson theCAN overlay. Our
simulationresultsin section3 quantify thesela-
tency gains.

� sub-spaceoverloadinghasthe effect of reducing
the averagepath length (in terms of numberof
hopson theCAN overlay)becauseplacingmulti-
ple nodespersub-spacehasthesameeffect asre-
ducingthenumberof nodesin thesystem.Again,
oursimulationresultsquantifythiseffect.

Overloadingsub-spacesaddssomewhat to system
complexity becausenodesmust now track a set of
peersand ensureconsistency of both data and con-
trol stateacrosspeers. And yet, this complexity ap-
pearsworthwhilebothbecausewe do not envisagethe� 3�� 2¡���G4�� parameterbeingsethigherthanmaybe
3-4 nodesandbecause(asour simulationresultsvali-
date)we obtainlargegainsin performanceandrobust-
nessfor what seemslike a small increasein system
complexity.

3 Simulation

We now presentsimulationresultsevaluatingthe per-
formanceof ourCAN algorithm.Webegin with abrief
recapof our designparametersand then presentour
evaluationmetricsandquantify the effect of the vari-
ousdesignparameterson thesemetrics.

Our key designparametersaffecting systemperfor-
manceare:

� dimensionalityof thevirtual coordinatespace:B
� numberof realities: �
� routing metric: Progress-only(denoted 2 ) and

Progress/RTT (denoted2�¢i4 )

� useof the volume balancingcheckdescribedin
section2.2

� number of peer nodes per sub-space:� 3�� 2¡���G4��
We usethefollowing metricsto evalutesystemper-

formance:

� path length: measuresthe numberof hops re-
quired to route betweentwo points in the coor-
dinatespace.Note that this is the numberof ap-
plicationlevel hopsrequiredto routeon theCAN
overlaynetwork andnot on theunderlyingIP In-
ternet.

� neighbor-state:measuresthenumberof entriesin
anode’s coordinateroutingtable

� delay: measuresthe total latency of the routing
pathbetweentwo pointsin thecoordinatespace

� volume: measuresthe volumeof the sub-spacea
nodeis assignedto. The fraction of the hashta-
ble storedat a nodeis directly proportionalto the
volumeof thespaceit owns.

We first presentstatic simulation results evaluat-
ing the CAN constructionand routing processwith-
out modellingnodefailures(i.e. without CAN main-
tainance)andthenaddnodefailuresinto thepictureand
evaluatetheireffect.
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Figure5: Effect of dimensions on path length

3.1 Performance under static system condi-
tions

3.1.1 Path length

The effect of increasingdimensionson routing path
lengthis quantifiedin figure 5 .Figure5 measuresthe
path length(on Y axis) with an increasingnumberof
nodesin thesystem(X axis)for coordinatespaceswith
differentdimensions(bothX andY axesareplottedon»�¼�½;¾

scale).
Similarly, figure6 measuresthepathlengthwith an

increasingnumberof nodesfor an increasingnumber
of realities(againbothaxesareon

»�¼�½¿¾
scale)

3.1.2 Neighbor State

As seenin theprevioussection,theroutingpathlength
canbereducedby increasingthenumberof dimensions
and/orrealities. IncreasingB and � however resultsin
increasedneighborstate.Figure7 plotsthepathlength
(on the Y axis) versusthe averageper-nodeneighbor
state(numberof entriesin theroutingtable)for increas-
ing numbersof dimensionsand realities. As can be
seen,for the sameamountof neighborstate,increas-
ing dimensionsyield shorterpathlengthsthanincreas-
ing realities. Oneshouldnot, however, concludefrom
theseteststhat multiple dimensionsaremorevaluable
thanmultiple realitiesbecausemultiple realitiesoffer
otherbenefitssuchasredundancy andfault-tolerance.
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Figure6: Effect of multiple realities on path length

Rather, the point to take away is that if onewaswill-
ing to incur anincreasein theaverageper-nodeneigh-
bor statefor thesolepurposeof improving routingef-
ficiency, then the right way to do so would be to in-
creasethe dimensionality B of the coordinatespace,
ratherthanthenumberof realities� .

3.1.3 Latency

The end-to-endpath latency is affected by the path
length (i.e. numberof routing hops)and the latency
of eachindividual hop. Reductionin latency canthus
be acheived by reducingthe path lengthor by reduc-
ing the latency of every individual hop. Reducingthe
pathlengthmaybeachievedby increasingthenumber
of dimensions,realitiesor thenumberof peersasseen
above. 2�¢i4 routingandsub-spaceoverloadingaim at
reducingtheper-hop latency. We now quantify the la-
tency reductionobtainedthrough2�¢i4 routingandsub-
spaceoverloading.

Thefollowing simulationswerecarriedoutusingthe
GT-ITM transit-stubtopologygenerator[23]. Transit-
stubtopologiesmodelnetworksusinga 2-level hierar-
chy of routingdomains.Stub domainsonly carry traf-
fic that originatesor terminatesin their domainwhile
transit domainsserve to interconnectlower level stub
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Figure7: Path length with increasing neighbor state

domains. We assignlink latenciesof 100msto intra-
transitdomainlinks, 10msto stub-transitlinks and1ms
to intra-stubdomainlinks (completerubbish.. repeat
with betterlatency distributions).For this topology, the
averageend-to-endlatency of the underlyingnetwork
pathbetweentwo nodesis approximately115ms.

Figure 8 comparesthe end-to-endpath latency us-
ing the 2 and 2�¢i4 routing metrics. The figure plots
thelatency (Y axis)for increasingnumberof nodes(X
axison

»�¼�½;¾
scale).We seethereductionin pathlaten-

ciesusingthe 2�¢i4 routingmetric.Wealsoseethatthe
absolutevaluesof the latenciesaresignificantlylower
with 4 dimensionsthanfor 3 dimensions.This is due
to the reductionin the numberof hopswith increas-
ing dimensions.To factorout theeffect of pathlength
in measuringlatency andthusobtaina clearerview of
theeffect of 2�¢i4 routing,table1 lists theaverageper-
hoplatency obtainedby normalisingtheend-to-endla-
tenciesfrom figure 8 by the averagepath length. As
canbeseen,while theper-hoplatency using 2 routing
matchestheunderlyingnetwork per-hop latency, 2�¢i4
routinglowerstheper-hoplatency by aroundì¿í %.

Figures9 and10 show theeffect of sub-spaceover-
loadingon pathlatency. Figure9 plots theend-to-end

Numberof dimensions 2 routing 2�¢i4 routing

3 116.7 76.08
4 115.8 71.2

Table1: Per-hop latencies using 2 and 2�¢i4 routing
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Figure8: Comparison of ProgressRTT vs. Progress-
only Routing
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latency (Y axis) for an increasingnumberof nodes
with different values of

� 3���2¡�G��4�� , the maxi-
mum numberof peersper sub-space.With increasing� 3�� 2¡���G4�� , anodehasincreasinglymorechoices
in selectingits neighborsandcanthusselectneighbors
thatarecloser(i.e. lower latency) thusreducingthela-
tency of individual CAN links. Onceagain,to isolate
the latency reductionobtainedbecauseof overloading
we normalisetheend-to-endlatency by thenumberof
hopsandplot theper-hoplatenciesin figure10. As can
be seen,sub-spaceoverloadingwith a maximumof 4
nodesper sub-space,yields a reductionof about50%
over thenetwork level per-hoplatency.

3.1.4 Volume

Figure11attemptstoquantifytheusefulnessof ourvol-
umebalancingcheckappliedat the time a nodejoins
theCAN. WeranCAN simulationswith

H -JI nodesboth
with andwithout the volumebalancingcheck. At the
end of eachrun, we computethe volumeof the sub-
spaceassignedto eachnode. Figure11 thenplots the
percentageof the total numberof nodesthat wereas-
signedsub-spacesof a particularvolume. Let thetotal
volumeof theentirecoordinatespacebe /LK and � be
thetotalnumberof nodesin thesystem.Then,aperfect
partitioningof thespaceamongthe � nodes,wouldas-
signasub-spaceof volume /MK / � to eachnode.Weuse
/ to denote/LK / � . In fig 11,we plot differentpossible
volumesin termsof / ontheX axis.Fromtheplot,we
canseethatwithout thevolumebalancingcheckalittle
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Figure10: Reduced per-hop latency with replication

over 40%of thenodesareassignedto sub-spaceswith
volume / ascomparedto almost90%with theuseof
thevolumebalancingcheck.With thevolumebalanc-
ing check,the largestsub-spaceis only

H / compared
to hÚ/ without. Thus,thespreadof different-sizedsub-
spacesin the systemis very low with the useof the
volumebalancingcheckascomparedto without.

3.2 Dynamic metrics

We now presentsimulation resultsquantifying CAN
systemperformancein thefaceof nodefailures.

We first studytheeffect of nodefailureswithout the
useof any CAN maintainancealgorithm.i.e. if a node
fails, its sub-spaceis left vacantandno takeover algo-
rithmsareinvoked.

Welook atwhatfractionof thetimeanodeis unable
to forward a packet on to its destinationusingpurely
greedyforwarding(i.e. no flooding) whenwe do not
make useof any recovery algorithms. Sucha test is
indicativeof theextentto whichtheCAN maintainance
algorithmsarerequired.

Figure 12 plots the probability with which greedy
routing fails (Y axis) as a function of the numberof
nodes(on X axis with

»�¼�½¿¾
scale)for different failure

rates.
Figure13 plots theroutingpathlength(Y axis)asa

functionof thenumberof nodesin thesystemwhena
nodeforwardspackets usinga flooding ERSin cases
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Figure13: Path Length using ERS

Numberof dimensions avg(#hops) max(#hops)

2 1.12 3
3 1.09 3
4 1.07 3

Table2: Background sub-space reassignment

where simple greedyforwarding fails. Once again,
nodesdonotmake useof any recovery algorithms

Figure14 plots the searchradius(Y axis) at which
theERSsuccessfullyterminates.

The backgroundsub-spacereassignmentalgorithm
describedin 2.3 requiresa nodeto sendout a ”depth-
first search”queryto find a nodeto which it canhand
off oneof its extrasub-spaces.

Table2 liststhenumberof hopsawayfrom itself that
a nodewould have to searchin orderto find a nodeit
canhandoff anextrasub-spaceto.

4 Related Work

Underrelatedwork, we first look at algorithmsin the
literaturerelevant to datalocationandcontentrouting.
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Figure14: Search Radius using ERS

Wethendescribesystemsandapplicationsthatinvolve
adatalocationcomponent.

4.1 Related Algorithms

Routingalgorithmssuchasthe DistanceVector(DV)
andLink State(LS) usedin IP routing, requireevery
router to have somelevel of knowledgeof the topol-
ogy of the entire network. The Bellman Ford algo-
rithm usedin DV doesthis iteratively by having every
routerperiodicallyannounceits distancefrom all net-
work destinationsto its localneighborswhile LS works
by simply announcingits link statusto every routerin
the network. Unlike our CAN routing algorithm,DV
andLS thusrequirethewidespreaddisseminationof lo-
cal topologyinformation.While well suitedto IP rout-
ing wheretopologychangesare relatively infrequent,
DV and LS are not well suited to networks wherein
topology changesare frequentsince this would gen-
eratelarge amountsof routing updates. Becausewe
wantedour CAN designto scaleto large numbersof
nodesandcopewell with high degreesof nodeflaki-
ness,we chosenot to useroutingschemessuchasDV
andLS thatrequirearouterto haveafull topologymap.

Anothergoal in designingCANs wasto have a truly

distributed routing algorithm, both becausethis does
not stressa small set of nodesand it avoids a single
point of failure. We henceavoidedany form of hierar-
chicalroutingalgorithms[22, 14, 4].

Perhapsclosestin spirit to theCAN routingscheme
is the Plaxtonalgorithm[20]. In Plaxton’s algorithm,
every nodeis assigneda uniquen bit label. This n bit
labelis dividedinto l levels,with eachlevel having BÀ¿
� ¢ » bits. A nodewith label,say ÁÃÂMÄ , wherex,y andz
ared bit digits,will have a routingtablewith entriesof
theform

�ÆÅ ���
� Á Å �
� ÁÇÂ Å

wherewe usethe notation Å to denoteevery digit inÈMÉ�Ê=Ê=Ê=É�H � C E , and � to denoteany digit in
ÈMÉ�Ê=Ê=Ê=É�H � C E .

Usingtheabove routingstate,a packet is forwarded
towardsa destinationlabelnodeby incrementally”re-
solving” the destinationlabel from left to right. i.e.
eachnodeforwardsa packet to a neighborwhosela-
bel matches(from left to right) thedestinationlabel in
onemoredigit thanits own does.

For a systemwith � nodes,Plaxton’s algorithmthus
routesin ��� »�¼�½ � � stepsandrequiresaroutingtablesize
that is ��� »�¼�½ � � . CAN routing by comparisonroutes
in � ��� -a����� hops(where B is dimensions)with routing
tablesize ����BÚ� � which is independentof � .

Both PlaxtonandCAN routing thushave goodper-
formancebounds. We believe however that for self-
organisingsystems,CAN routingoffersgreaterrobust-
nessandsimplicity in thefaceof fluctuatingnodemem-
bership.

This is bestunderstoodthroughan example: Con-
sidera Plaxtonsystem,whereinnodesareassigned9
bit labelswith 3 levels. Continuingwith the notation
usedabove, let ussaythatatsomepoint in timethereis
nonodein thesystemwith a labelof theform 13X . All
nodeswith labelsof theform 1XX muststorearouting
tableentryof theform 13X. Sincethereis nonodecur-
rently in thesystemwith labelof the form 13X, nodes
insteadstoreapointerto anodecurrentlyin thesystem,
with a labelthatis agood”approximation”of thelabel
13X (detailsof whatconstitutesa goodapproximation
arein [20]). Considerwhathappenswhena node,say
136,entersthesystem,all nodesof theform 1XX must
now beinformedaboutnode136’sentryinto thesystem
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andupdatetheirroutingtables.If node136weretosub-
sequentlycrash,everynodeof theform 1XX mustnow
againlocatea good ”approximation”node. In short,
maintainingaccurate,uptodateroutingtablesin a scal-
ablemanner, with nodesenteringandleaving the sys-
tem, is non-trivial with Plaxton’s algorithm. Because,
theCAN algorithmalwayshasafully occupiedaddress
space(i.e. coordinatespace),it doesnot faceany such
problemsassociatedwith approximationsof nodela-
bels.

It shouldbepointedout however thatthePlaxtonal-
gorithmwasoriginally proposedfor webcachingenvi-
ronmentswhich aretypically administratorconfigured
asopposedto self-organisingandthenumberof caches
in theadministrator’s network is fairly stable.

4.2 Related Applications and Systems

4.2.1 Domain Name System

TheDNSsystemin somesenseprovidesthesamefunc-
tionallity asahashtable;it storeskey valuepairsof the
form (domainname,IP address).While a CAN could
potentiallyprovide a distributedDNS-like service,the
two systemsarequitedifferent.In termsof functional-
ity, CANs aremoregeneralthantheDNS.Thecurrent
designof theDNS closelyties thenamingstructureto
the mannerin which a nameis resolved to an IP ad-
dress,CAN nameresolutionis truly independentof the
namingscheme.In termsof design,the two systems
areverydifferentasshouldbeevidentfrom thispaper.

4.2.2 OceanStore

TheOceanStoreprojectat U.C.Berkeley [13] is build-
ing a utility infrastructuredesignedto spanthe globe
and provide continuousaccessto persistentinforma-
tion. Serversself-organiseinto a very large scalestor-
agesystem.Datain OceanStorecanresideatany server
within theOceanStoresystemandhenceadatalocation
algorithmis neededto routerequestsfor a dataobject
to an appropriateserver. OceanStoreusesthe Plaxton
algorithmfor datalocation.ThePlaxtonalgorithmwas
describedabove.

4.2.3 Publius

Publius[15] is a Webpublishingsystemthat is highly
resistantto censorshipandprovidespublisherswith a
highdegreeof anonymity. Thesystemconsistsof pub-
lisherswhopostPubliuscontentto theweb,serversthat

hostrandom-lookingcontent,andretrieversthatbrowse
Publiuscontenton the web. The currentPubliusde-
signassumestheexistenceof a static,system-widelist
of available servers. Publiuscontentis encryptedby
the publisherandspreadover somesubsetof the web
serverson the list. The self-organisingaspectsof our
CAN designcouldpotentiallybe incorporatedinto the
Publiusdesignallowing it to scaleto largenumbersof
servers. We thusview our work ascomplementaryto
thePubliusproject.

4.2.4 Peer-to-peer applications

Recently, anumberof systemsandapplications[17, 10,
16, 9] have beenproposedthatmake useof whatis be-
ing termeda ”peer-to-peer”modelof communication.
In peer-to-peersystems,files arestoredon individual
usermachines(ratherthana centralserver). Thetrans-
ferof filestakesplacefromoneusermachineto another
directlywithoutpassingthroughaserver. Anotherway
of statingthis is to saythateverymachinein thesystem
playsthe role of both client andserver. Becausefiles
can potentially be locatedat any nodein the system,
peer-to-peersystemsrequireameanswherebyanodein
thesystemcandiscover theIP addressesof thosenodes
in thesystematwhichaparticularfile is stored.In Nap-
ster[17] the index mappingfile namesto IP addresses
is storedat a centralserver hencethe searchprocess
itself doesnot fall underthe peer-to-peerbanner, only
the only the actualfile transferprocessis peer-to-peer
based.

The index in Gnutella[10] is distributedacrossthe
set of users. Searchrequestsare essentiallyflooded
(with someformof scoping)overtheGnutellanetwork.
Thedistributedsearchcomponentof Gnutellathushas
scalingproblems[12] and,becausethefloodinghasto
becurtailedatsomepoint,mayactuallyfail to find con-
tentthatis actuallyin thesystem.

In all the above applications,our CAN designcan
beusedfor theconstructionandmaintainanceof a dis-
tributedindex thatis atoncescalableandfault tolerant.
Hence,while our CAN designdoesnot by any means
solve all the problems(such as anonymity, security,
accountabilityetc) tackled by systemslike FreeNet,
GnutellaandMojoNation,it canserve asa coreappli-
cationbuilding blockwithin all of them.
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4.2.5Ë Distributed Data Structures

In [11], Gribbleet al. implementa distributedhashta-
ble designedto run on a clusterof workstations.Their
goal is to easethe developmentof scalable,available
servicesrunningon a clusterof workstationsby pro-
vidingpersistentdatastructuresthatencapsulatetheva-
gariesof clusteredplatforms. Becausetheir targetted
environment,i.e. clustersof workstations,is very dif-
ferentfrom thewide-areaInternet,we view their work
asorthogonalto ourown.
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