
1

INTERNATIONAL COMPUTER SCIENCE INSTITUTE
1947 Center St. • Suite 600 • Berkeley, California 94704-1198 • (510) 666-2900 • FAX (510) 666-2956

A C O U S T I C C H A N G E D E T E C T I O N A N D

C L U S T E R I N G O N B R O A D C A S T N E W S

Javier Ferreiros1, Dan Ellis

TR-00-006

March 2000

Abstract

We have developed a system that breaks input speech into speech segments using an
acoustic similarity measure between two segments. The aim is to detect the time points where the
acoustic characteristics change. These changes are caused mainly by speaker changes but also by
acoustic environment changes. We have also developed another system that performs a clustering
of the speech chunks generated by the former system and creates clusters containing the segments
with homogeneous acoustic conditions. This clustering is fed back to the acoustic change detector
to make more robust decisions based on both the acoustic similarity measurement between two
consecutive segments and using extra information coming from the distance between the two
clusters to which each of them belong. The interaction between the two systems (acoustic change
detection and clustering) improves the results obtained for both aims.

1 Currently with GTH-UPM, Speech Technology Group, Universidad Politecnica de Madrid, Spain.
Research supported by the Spanish Inter-ministerial Commission of Science and Technology (CICYT).

2

1. Introduction

1.1 Objectives of the task

Suppose that you have some speech material to be processed. In our case, this material
comes from recordings from the radio and television as part of the well-known Broadcast News
database [BN 97]. In this material one can find multiple speakers with very different speaking
styles and different acoustic conditions, music, and many other sounds. Suppose that part of the
material has the following aspect:

Then, the acoustic change detection (ACD) task consists of finding the time points where
there is a speaker change (or more generally, an acoustic environment change). So, ACD will just
determine the time points t1, t2, t3, t4 in the following sketch:

A clustering task of the acoustic segments consists of generating some clusters containing
homogeneous acoustic conditions inside each of them. In our example, this procedure will label
each broken segment as belonging to a particular cluster:

John Anne Mary JohnJohn

0 T

Figure 1: Example of original speech material

0 Tt1 t2 t3 t4

Figure 2: After an ACD task

CLUST 1 CLUST 2 CLUST 3 CLUST 1CLUST 1

0 Tt1 t2 t3 t4

CLUST 1

CLUST 2

CLUST 3

0 t1 t2 t4

t1

t3

t3 T

t2

t4

Figure 3: After ACD and clustering tasks

3

Eventually, if we had some speech material labeled from each of the speakers or even for
each acoustic condition, we could properly label the segments with the speaker (acoustic
environment condition in general) label. In this way, we obtain both the acoustic change points and
the recognition of the acoustic condition in each segment:

The interest of the first task (the basic ACD), besides the pure time marks, can reside in the
fact that we are obtaining as a consequence some segments of homogeneous speech. On these
segments we can try short-term adaptation techniques when trying to recognize the speech in each
segment from break point to break point. It has been also suggested that the language model that
could be guiding the speech recognition could be "reset" at these break points to originate a new
sentence [Liu 99]. With segments clustering we will of course obtain larger amounts of
homogeneous speech material to be used for recognition models adaptation. This clustering
information is more robust to make subsequent decisions on acoustic environment identity and can
be fed back to the ACD system to perform better segmentation decisions. Completing the tasks
with speech recognition and understanding, we can use these labels as indexes for powerful
information retrieval.

1.2 Overview

2. Block diagram of the whole system

The whole system that we have developed can be divided into the following main blocks:

2.1 Speech Features Extraction Modules

The first blocks are speech features extraction modules that extract a vector of parameters
for each frame defined as a windowed portion of the input waveform. We have depicted two
different features extraction modules because it is usually the case that a set of features is more
suitable for speech recognition (in our case, for broad class phone recognition) and another

John Anne Mary JohnJohn

0 Tt1 t2 t3 t4

Figure 4: Produced by an acoustic condition labeling task.

Speech Features
Extraction 1

Broad Class
Recognizer

Hypothesis
Generator ACD CLUSTERING

Features
Extraction 2

Figure 5: Block diagram of the whole system

4

different set is more suitable for speaker recognition. In our case, we have used perceptual filtered
cesptrum parameters for our broad class phonetic recognizer and cepstrum parameters without the
perceptual filtering for the ACD and clustering systems. Specifically, for ACD (Features Extraction
2 module), we have studied the behavior of the system using different number of cepstral
coefficients extracted each 16 msec. We have made experiments (described in a later section) with
from as few as 6 to as many as 19 parameter vectors. Some other experiments were also carried out
to check the effects of PLP (Perceptual linear predictive [REFERENCE]) features, critical band
energies, root compression and delta parameters on the performance of the ACD. For the Broad
Class Recognizer, we have always used 12th order PLP cepstrum features normalized per sentence
that were the features that we found already calculated for other tasks on this part of the database.

2.2 Broad Class Recognizer

We are using this module to generate a rather small number of hypothesized break points
(specifically for the experiments presented here, 5180 break points for a total of 686069 frames, i.e.
0.76%, in the current implementation) that the ACD will check. Using the reference hand labeling,
we have found that only 2 of the true 617 break points are not in the set of 5180 hypothesized
points. This means that the false rejection rate of the ACD that uses this hypothesis system has an
absolute minimum of 0.32%, quite a small floor error already introduced by this module. The
generation of the hypothesis is based on the initial assumption that the acoustic changes occur
always on non-speech zones (i.e. the h# symbol in our usual phonetic labeling scheme) that we can
detect making use of a fairly simple neural network. As we have already indicated, this is true for
99.68% of the hand labeled acoustic changes in our target database. The neural network that has
been used has been designed to be in fact a broad-class phonetic recognizer for which we have
defined the following classes:

We have used a 3-layered MLP. The input layer interfaces to 9 consecutive feature input
vectors, as is usual at ICSI, to give the NN the opportunity to extract some time evolving
characteristics. In the hidden layer we have tried NNs with a range from 200 to 6400 hidden units.
We have 4 output units, one for each of the different broad phonetic classes. The NN has been
trained using Train-97 Broadcast material, specifically we have used 20 hours of speech for the
learning phase, another 2 different hours for cross-validation and still another set of 2 different
hours as a development set with which we have obtained the recognition rates presented here. We
have evaluated the frame accuracy of the NN when trying to give the proper broad class label to
each frame in the development set and we have obtained the following results using 12th order PLP
cepstrum features normalized per sentence:

Class0 vowels + nasals
Class1 fricatives
Class2 obstruents
Class3 non-speech

Table 1: Broad classes

5

We have included also the results for a "Recognition NN" that is a neural network trained at
ICSI for recognition purposes, specifically the one defined by the weights file:

boot-plp12N-16k-70h-aI5+117i+2000h+54o.wts

That is a NN that uses the same12th order PLP cepstrum + energy input features normalized
to zero mean and unit variance within each training utterance with input speech sampled at 16k
samples/second. It has been trained with 70 hours of speech against the forced alignment known as
aI5 at ICSI. It uses 117 inputs for 13 features with a time span over 9 consecutive frames, 2000
hidden units and 54 phone outputs. We have required that the output probability for non-speech
(h#) would be higher than 0.5 to decide whether a frame is not speech. Because the NN uses soft-
max output configuration, this will ensure that the h# output will be higher than the sum of the rest
of outputs, i.e., the most probable. Of course this bigger and more powerful NN outperform our
simpler ones but there are no strong differences in the frame accuracy that would advice to
complicate our approach. In the presented results we have found a saturation effect from 1600
hidden units on. This is the reason for us to choose the 1600 hidden units NN as our non-speech
zone detector. We can have a view of the confusion matrix for this NN:

This net was trained in 5 epochs, three with learning rate equal to 0.008, and two more
epochs with 0.004 and 0.002 learning rates using the softmax output type. To our satisfaction, the
NN seems to do a pretty good job recognizing non-speech events with low confusion errors with
the rest of broad classes. Although in our current implementation we are using only these regions
where the neural network detect non-speech zones in the way we will explain later, we have
designed a 4 broad classes recognizer because we want also to check at some point the behavior of

HIDDEN UNITS % FRAME ACCURACY
200 87.71
400 88.19
800 88.43
1600 88.61
3200 88.62
6400 88.65

Recognition NN 91.09

Table 2: Frame accuracy for broad classes

NUMBER OF TIMES LABELED AS

vowels + nasals fricatives obstruents non-speech TOTAL (100%)

vowels + nasals 218000 (92.0%) 7000 (3.0%) 9000 (3.8%) 3000 (1.3%) 237000
fricatives 5000 (7.6%) 54000 (81.8%) 6000 (9.1%) 1000 (1.5%) 66000
obstruents 6000 (8.6%) 6000 (8.6%) 56000 (80.0%) 2000 (2.9%) 70000
non-speech 2000 (3.0%) 2000 (3.0%) 2000 (3.0%) 60000 (90.9%) 66000

439000

Table 3: Confusion matrix for broad class frame by frame recognition

6

the system if we would have hypothesized also as possible break points those where the NN detects
a change between two different classes. We devise two possible effects from this alternative
approach. On one hand, we expect that we could account for these 2 hand labeled changes in our
target database that are not covered with the current NN. Of course, this will mean that many more
possible break points will be hypothesized by the NN and this in turn will make harder for the ACD
to maintain its performance although the new absolute minimum rejection rate be 0%. But, on the
other hand, we expect that we will be able to decrease the probability of missing some high-overlap
acoustic change break points (which may be the case for these 2 misses) where two speakers
overlap, an effect that could be quite common in other tasks of spontaneous speech such as the
speech from a meeting recorder system. Anyway, throughout the work being presented here, we
have just used the zones with more than 3 consecutive frames being labeled by the NN as the
symbol "h#" (broad class 3, non-speech) as the hypothesis break points to be further analyzed by
the ACD system.

3. Acoustic Similarity Test based on the Bayesian Information Criterion

3.1 The Generalized Likelihood Test with Bayesian Information Criterion

To calculate the similarity between two acoustic segments, i.e., between two sets of feature
vectors, we will use a likelihood ratio test based on the Bayesian Information Criterion (BIC). In
general, BIC is a likelihood measurement penalized by the complexity of the assumed model
[Shaobing 98]. If we have a set of N vectors X={xi : i=0,...,N-1} that we are trying to represent
through a model M:

BIC M L X M M N() log[(,)] # () log()= − ⋅ ⋅ ⋅λ 1
2

(1)

where λ should be 1 according to the theoretical justification of BIC. #(M) is the number of
parameters of the model as a measure of its complexity. Bearing this BIC in mind, we formulate
our general segmentation problem as a test between two hypothesis: We have a segment of speech
and a possible break point and we want to decide if either we should consider the whole segment
coming from the same acoustic environment or we should better consider that there are two
acoustically different segments we should break apart using the break point. Thus, if we have the
following situation:

If we choose single gaussian models, we have the two following hypothesis:

H0: x0 ... xN-1 ~ N (σ,Σ)

0 N1 (N-1)(N1-1)

N1 samples N2 samples

Total of N samples

Figure 6: Acoustic similarity test situation

7

H1: x0 ... x N1-1 ~ N (σ1,Σ1)
 xN1 ... xN-1 ~ N (σ2,Σ2)

Now, we will perform a generalized likelihood ratio test of these two hypotheses that would
in general calculate the following ratio [Liu 99]:

L[{x ... x }/N (,)]
L[{x ... x }/N (,)] L[{x ... x }/N(,)]

0 N-1

0 N1-1 1 1 N1 N-1 2 2

µ
µ µ

Σ
Σ Σ⋅

(2)

We conclude H0 if the ratio is higher than 1. Using the BIC, and keeping from the
likelihood estimation only the part that is dependent on the covariance model [Liu 91] (and
consequently independent of the feature means, which can be strongly affected by any filtering
difference) we end up with the following hypothesis test:

N log | | -N log | | -N log | | - 1/2 (d 1/2 d (d 1)) log(N)

H

H

1 1 2 2

1

0

⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅
〉
〈

Σ Σ Σ λ 0 (3)

If this number is positive, we decide H1. If it is negative, we decide H0. Thus, if this
number if positive we break the whole segment into the two sub-segments. In this formula we have
introduced the penalty of the complexity model via the factor d 1/2 d (d 1)+ ⋅ ⋅ + that is the number
of free parameters for a full covariance single gaussian model for d-dimensional feature vectors.
Although the parameter λ should be theoretically 1, we have found throughout our experiments that
its value had to be tuned in order to obtain the desired performance. We have found a strong
dependency of its optimal value with the dimensionality of the input parameter vector (d) that it is
not compensated for by the model complexity factor.

3.2 Basic Acoustic Change Detection Procedure

Once we know how to evaluate if we should or we should not break a speech segment into
two given a possible break point, we face the problem of dynamically produce the acoustic change
detection of a large amount of speech. Instead of hypothesizing a possible break point on each input
frame, the non-speech zones detector based on the broad-class NN recognizer will deliver a
reduced number of frames to check (5180 hypothesis from 686069 frames in our experiments).
Because the outputs of the NN have some "noise", sometimes the non-speech output fires higher
than the other three outputs for only one frame or two. We have filtered out these "glitches" and
have only allowed registering segments where the non-speech identity is detected for three or more
frames. Of course, these non-speech regions are excluded from our acoustic similarity calculations.
Then, we hypothesized the center of the non-speech labeled region as the possible break point that
will try to hit one of the true target regions. Thus, these initial break points hypothesis define the
maximum possible partition of the speech material into small segments. Using these basic
segments, we run the following procedure:

1) Add another segment into a buffer and write down a new possible break point.

8

2) Calculate Likelihood Ratio via the BIC for each hypothesis in the buffer. Find the most
likely break point (the one with the highest likelihood ratio).

3) Is the best likelihood ratio test positive?
YES: Produce a break point. Delete segmented zone from buffer.

Go to 1).
NO: Go to 1).

4. Experimental setup

For the evaluation of our systems we have used the same database than [Liu 99], [Shaobing
98], that is, 3 hours of speech that were defined as the Hub 4 1997 evaluation data. The hand
labeled transcriptions define 618 segments in this database (617 breakpoints) that are mostly
speaker changes but also include changes to and from music, silence, excluded regions, etc. We
will consider them all as true target break points. There are 119 different labels in the hand labeling
of these segments, most of them the speaker proper names but also some others as: generic speaker
labels (like "CNN_WVW_mAnnouncer1" or "female_nonnative3") and special labels (like
"BEGIN", "Inter_segment_gap" or "Excluded_Region"). Following the evaluation directions in
[Liu 99] for the ACD task, we have converted the break points into valid break regions that extend
with the non-speech region around a certain breakpoint. This extension is produced using the
labeling obtained by using the neural network trained at ICSI for recognition purposes that we have
already presented when we compared our non-speech NN detector to it, i.e., the one defined by the
weights file "boot-plp12N-16k-70h-aI5+117i+2000h+54o.wts". 6 frames of 16 msec. (about 100
msec.) are added to both extremes of these regions as an allowance margin. With these criteria, we
have defined the final target regions for our break points evaluation. We present the performance as
two figures: the false rejection and false acceptance percentage rates defined as:

% False Rejection 100
TARGETS - OK

TARGETS
 (1 -

OK
TARGETS

)= ⋅ = ⋅100

% False Acceptance 100
GENERATED - OK

GENERATED
 (1 -

OK
GENERATED

)= ⋅ = ⋅100

where TARGETS are the number of target regions, GENERATED are the number of
generated break points and OK are the number of the generated break points that fell within a
correct target. Only one generated boundary can be matched to each target region. Different
performances can be obtained tuning the value of λ. We can design a large variety of systems from
the ones having high false acceptance with low false rejection to those performing low false
acceptance with high false rejection. That is why when comparing results we have used the Equal
Error Rate (EER) working point where the system has the same false acceptance and rejection
rates. At this point, you can check looking at the formulas that we force the system to generate
exactly the same number of segments than the one in the reference (617 in our case).

9

Another task that we had to evaluate was the clustering of the segments produced in a ACD
session. Because the ACD is not perfect, each component segment contains speech for different
acoustic conditions, not just for one. Eventually, we obtain a set of clusters composed of several
segments each and, in turn, with several acoustic conditions inside each of these segments. Using
again the hand labeling, we may find something like:

where we are representing graphically the material coming from different speakers as
different textures. The first measurement that could be done may be called simple average purity
and would be calculated as:

%
max()

SAP
C

C

j
ij

i

NCLUSTERS

ij
j

NSPEAKERS

i

NCLUSTERS i
= =

==

∑

∑∑
1

11

(4)

 where Cij is the number of frames in cluster i that actually belongs to speaker j.

 This formula is calculating the proportion of all frames that belong to the majority speaker
in their cluster. Thus, this way of calculating the purity of the clustering assumes that the speaker
that has the higher number of frames in a cluster is the one that this cluster is trying to represent and
the rest of frames are incorrect frames for this cluster. Of course, the same speaker can be
represented in different clusters with this approach, but we have decided not to control this effect
because it may be the case that different clusters are representing the same speaker but with
different acoustic conditions. The problem that we see in this formula is that (following our
example) the frames

in cluster 2 will contribute with the same intensity to the numerator of the equation than the frames

in cluster 3, although the latter seem more "pure" in their own cluster. From this thought, we
arrived to the following weighted average purity:

CLUST 1

CLUST 2

CLUST 3

0 t1 t2 t4

t1

t3

t3 T

t2

t4

Figure 7: Example of clustering evaluation

10

%

max()
max()

WAP

C
C

C

C

j
ij

j
ij

ij
j

NSPEAKERS
i

NCLUSTERS

ij
j

NSPEAKERS

i

NCLUSTERS

i

i
=

⋅

=

=

==

∑
∑

∑∑
1

1

11

(5)

 One of the problems of the purity measurement is that as long as we leave the system
generate more clusters, they become more and more pure without much effort or relevance. In the
limit, each cluster could be just only one frame that has to belong to one speaker and the %WAP is
100% (of course, the actual lower limit for us is in the intrinsic purity of the segments that the ACD
system generated). Thus, we also give another measurement that is the weighted average purity per
cluster:

% /
%

WAP cluster
WAP

NCLUSTERS
= (6)

 that somewhat penalizes the generation of too many clusters. We have also used in some
experiments an entropy measurement of the information contained in the clustering as:

Entropy
C

sum C

C

sum C
ij

j
ijji

ij

j
ij

= − ⋅∑∑ ()
log (

()
)2 (bits) (7)

 The measurement that we have found more correlated with the %EER ACD performance is
the %WAP/cluster. The entropy measurement suffers also from a lowering (improvement) as long
as the number of clusters increases. Anyway, neither of these measurements can be used for a
convergence criterion, they are just evaluations of the clustering quality against a known hand
labeling that we will not have in a real application. This is the reason why we will use a no-changes
stopping criterion mixed with a maximum number of iterations in the iterative clustering
improvement algorithm that we will introduce later.

4.1 First Experiments

Our first experiments aimed the use of simple diagonal covariance matrices for the gaussian
models. We began also by using high dimensional feature vectors of 19 cepstrum features. For this
case, _=1 nearly produced the EER. Unfortunately, this has been the only case to hold that and
appears to be a coincidence. We obtained the following performance:

%FR %FA N
30.36 29.67 610

Table 4: ACD performance
for 19 cepstrum features and
diagonal covariance models

11

where %FR is the % False Rejection Rate, %FA is the % False Acceptance Rate, and N is
the number of GENERATED breakpoints (the hand labeled number of true break points is 617).
Thus, our starting point is a system performing EER of about 30%. The behavior of the false
rejection and false acceptance rates as we change the value of the tuning parameter λ can be seen in
the following illustration:

With diagonal covariance models we also evaluated the use of cube root compression of the
parameters and this did not alter the results. Also, we used PLP features and the system performed
very poorly. This is good news to ICSI because it confirms once more that PLP processing
smoothes out acoustic environmental differences while leaving the relevant information for speech
recognition. We have also used plain log-energy band features with results in between PLP and
plain cepstrum features. Thus, we have selected cesptrum

Figure 8: 19ceps

12

Next experiments where devoted to the introduction of full covariance matrix for our
gaussian models. With the same 19 cepstrum feature vectors we found:

This means about 27% EER.

At this point, we made a study of the evolution of the performance of this system with the
dimensionality of the vectors being used. We are using all the time cepstrum no-plp feature vectors.
The results are the following:

These results suggest that about 11 cepstrum no-plp feature vectors are enough to obtain the
best performance from the current implementation. It seems also that there are no significant
changes in the behavior of the system from 11 to 15 parameters. We think that the slightly lower
performance for the 19 features system is due to the increasing number of parameters of the
gaussian models that may cause trouble trying to identify some fast changes (few frames to train
the model for these cases).

4.2 Clustering of ACD generated segments

Using the same likelihood ratio with the bayesian information criterion, we can check if an
acoustic segment belong to anyone of different pools of acoustic segments that we will be calling
from now on clusters. To do this, we first calculate:

%FR %FA N
27.27 27.04 614

Table 5: ACD performance
for 19 cepstrum features and
full covariance models

Number of features %EER
6 32
7 30.5
8 29.5
9 29.5
10 27.5
11 26.5
12 26.5
13 26.5
14 26
15 26.5
19 27

Table 6: ACD performance evolution for
different numbers of cepstrum features and full
covariance models

13

MINRATIO
NC N N NCi C S S i C

i

i i=
+ ⋅ − ⋅ − ⋅

⋅ ⋅ + ⋅ ⋅ + ⋅ +

min

() log log logΣ Σ ΣU

 - 1/2 (d 1/2 d (d 1)) log(NC N)iλ

where
N is the number of samples in segment S
NCi is the number of samples in cluster Ci

and then check if this MINRATIO if greater than zero. If it is positive, this means that we
should separate the segment S from the cluster Ci, even though Ci is the cluster with the minimum
MINRATIO. In this case, we are generating a new cluster composed of the segment S alone by
now. If MINRATIO is negative, this means that we should consider the segment S being the same
acoustic condition than the one represented by centroid Ci. For this case, we update Ci data
accordingly so as to consider the segment S in it. If we repeat this procedure segment by segment
for those generated by the ACD system, we generate a clustering of the speech material in several
classes automatically defined by the BIC likelihood ratio. The number of classes (of different
clusters) is dependent on the value of λ . If we choose high values of λ , it is easier for a new
acoustic segment to fall inside the region of pertinence of a previously existing cluster and we end
up with few clusters. On the other hand, if we use low values of λ , it is more likely that the
minimum ratio remains still positive and we end up with a higher number of clusters. One problem
of this approach to acoustic clustering is that the first segments are classified using far less
information than the last ones. Thus, the decision is increasingly more robust, but could be very bad
for the first processed segments. To address this problem, we have introduced an iterative
improving algorithm that we discuss in the next section.

4.3 Iterative improving algorithm of the clustering

To counteract the effect related in the first approach to acoustic clustering of bad decisions
possibly being made on the first segments, We have introduced an iterative improvement procedure
that will revisit the decision made on each segment. We will even allow new clusters to be
generated.

The basic iteration is:

1) Pick one ACD segment.
2) Remove this segment from its cluster and update cluster data
3) Find the "closest" cluster (if any) to the segment
4) If there is a representative cluster, go to 6)
5) Generate a new cluster with only this segment in it. Goto 7)
6) Update this cluster with the segment information.
7) If last segment then stop, else go to 1)

The algorithm performs several iterations like this one and stops when no change of cluster
is produced for any ACD segment. We have also used another limit of 10 iterations as a maximum
number of allowed iterations. Most of the experiments used less than 6 iterations before stopping.
This algorithm has allowed us to improve significantly the weighted average purity of our

14

clustering. As a way to compare clustering performance and reveal clearly this improvement, we
have realized some experiments tuning the λ factor until we get 119 clusters. We chose 119 clusters
because it is the number of true labels in the hand labeling. Under this condition and using 12
cepstrum parameters and the breakpoints generated by the ACD that performed %FR=26.79 and
%FA=26.67 (the one listed before as having about 26.5% EER) with 615 cuts, we obtained the
following results:

In the first line the baseline performance can be seen. This is the performance of a simple
diagonal covariance model. The first column is the λ factor that allows 119 clusters to be generated.
The other two columns contain the weighted average purity and this purity divided by 119, the
number of clusters that we have generated. In the second line we have the results for a full
covariance model that represent a relevant improvement in itself. The λ factor has to be tuned to a
different value in order to obtain 119 clusters again and allow the comparison. In the third line, we
present the new results obtained using our improvement algorithm. Again, the λ factor has to be
tuned to a different value to obtain 119 clusters.

4.4 Using clustering information in ACD

Clustering defines a set of classes that represent the separate acoustic conditions in our data.
This information can be used to create a new segmentation: rather than comparing adjacent
segments based on their own properties alone, we can assign them both to existing clusters and add
to the breaking decision the information coming from this classification. Following the BIC
criterion and considering the log-likelihoods as "distances", we can think that a segment belongs to
the class defined by the cluster calculated as:

C S NC N N NC

i
i C S S i Ci i

() argmin(() log log log)= + ⋅ − ⋅ − ⋅Σ Σ ΣU
(8)

where
C(S) is the cluster to which the segment S belongs
N is the number of samples in S
NCi is the number of samples in cluster Ci

independently now of whether the value inside the minimum argument function is greater or
lower that the threshold:

λ %WAP %WAP/cluster
Diagonal covariance 4.1 74.58 0.627

Full Covariance 8.5 81.12 0.682
Full Covariance + Improvement algorithm 9.8 84.86 0.713

Table 7: Clustering performance with diagonal covariance models, full covariance models and full
covariance models with the improvement algorithm. We measure the weighted average purity and
the weighted average purity per cluster.

15

λ ⋅ ⋅ + ⋅ ⋅ + ⋅ +1/2 (d 1/2 d (d 1)) log(NC N)i

So, as a first approach we could allow a break only when the two segments to be separated
belong to different clusters. It is a simple condition but a very powerful one because the clusters
have been generated and optimized with the entire speech file. This classification procedure has
also being used to evaluate the performance of our clustering improvement algorithm. While in the
first produced clustering, there were a lot of classification errors of the components of each cluster,
after the improvement algorithm was run, very few and in most of the experiments no classification
errors of the cluster components have been found.

Soft integration of clustering information on ACD

Instead of just checking whether the two segments to be separated belong to different
clusters, we have also tried a soft integration of the clustering information into the ACD general
likelihood ratio test. The idea we were pursuing is to integrate another BIC measurement dependent
on the clusters to which the two segments belong. If we think of likelihood values as if they were
distances, we could define generically a distance between two acoustic segments as:

d X Y N N N NX Y X Y X X Y Y(,) () log log log= + ⋅ − ⋅ − ⋅Σ Σ ΣU

Using this distance, the first idea is to use the function

G d C C N N N NC C C C C C C C= = + ⋅ − ⋅ − ⋅(,) () log log log1 2 1 2 1 2 1 1 2 2

Σ Σ ΣU

where
C1 is the cluster to which the segment S1 belongs
C2 is the cluster to which the segment S2 belongs

as extra information about the suitability of separating S1 from S2. Assuming that C1 and
C2 are good representatives of S1 and S2 correspondingly, the "distance" from one to the other will
be greater when we should separate S1 from S2 and ideally 0 (because C1=C2) when S1 and S2
come from the same acoustic conditions. We wish to integrate this information with that from the
old one we have being using:

F N N N= ⋅ − ⋅ − ⋅log log logΣ Σ Σ1 1 2 2

To begin with, we give the same relevance to the information conveyed by F than to the one
given by G, we decided as a first approach to equalize their dynamic range with the following
formula:

F GF

G

+ ⋅ − ⋅ ⋅ + ⋅ ⋅ + ⋅σ
σ

λ 1/2 (d 1/2 d (d 1)) log(N)

where σF and σG are fixed estimates of the standard deviations of F and G respectively.
Basically, we found first an approximate experimental value for this equalizing parameter and then

16

we realized that it was close to this ratio for the samples we had and then decided to substitute the
experimental value by this more justifiable one. We want to stress that this is a fixed value (it is not
dynamically changing). We then use the same criterion of separating the two segments if this value
is positive. The value λ has to be tuned again to different values to obtain EER. To unbalance the
relevance of each sources of information, we used the formula:

()1 − ⋅ + ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ + ⋅α α σ
σ

λF GF

G

1/2 (d 1/2 d (d 1)) log(N)

where α can be varied from 0 (only the baseline F function takes control on the decisions)
to 1 (only the new G function decides).

finally, we have tried a dynamic α with the expression:

factor

CSdCSd

e
),(),(2211 +−

=α

α is 1 if d(S1,C2) and d(S2,C2) are both zero. In this case, we know that C1 and C2 are
perfect representatives of the segments S1 and S2 and this is an indication that we can thoroughly
rely on the robust information given by the function G of the distance between clusters. On the
other hand, α will be close to zero when these distances will be large and C1 and C2 would be in
this case bad representatives of the acoustic segments. In this case we prefer not to rely so much on
the clustering information, but give more relevance to the information in the function F.

4.5 Iterating ACD with clustering improvement

Another strategy we have tested is to run several iterations between the ACD using
clustering information and the clustering generation and improvement algorithm. We begin by
using the ACD that does not need clustering information to produce the first segmentation of the
acoustic material. With this segmentation we produce and improve a first clustering. The clustering
information is fed back to an ACD that uses this information and so on. Several combinations of
the systems presented have been tried. The first one was using the clustering information using a
"hard decision": only allowing a break when the two hypothesized segments belong to different
classes. We have used a different λ for the ACD procedures than for the clustering generation and
improvement ones. In fact, we have found the best results when the tuning parameter λ for the
clustering is higher than the one used in ACD. A high value in the clustering procedures tends to
generate fewer clusters and a low value in the ACD tends to generate more break points. Thus, our
guess is that combination of higher values for clustering than for ACD produces initially a high
number of segments that are pooled in few clusters by the clustering generation and improvement
procedure. This clustering will in turn be a higher demanding constraint for the following ACD that
begins to generate fewer segments. This dynamics tend to converge to an intermediate number of
segments and clusters through the iterations. This combination yielded:

%FR %FA N
20.94 21.32 619

17

Thus, about 21% EER, a great leap forward from the systems that do not use clustering
information. We force the system to perform 10 iterations of the loop ACD-clustering, although
these results were obtained already in the fifth iteration and then the results stabilized. The second
combination we tested is the use of soft integration of the clustering information into ACD using
the formula:

F GF

G

+ ⋅ − ⋅ ⋅ + ⋅ ⋅ + ⋅σ
σ

λ 1/2 (d 1/2 d (d 1)) log(N)

that is, giving the same relevance to the information coming from both the functions F and
G. No significant differences were found and on the other hand, the system took more CPU time to
calculate the function G. The system performed:

%FR %FA N
20.29 20.93 618

The last combination tested was the use of the unbalancing function α that we talked about:

()1 − ⋅ + ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ + ⋅α α σ
σ

λF GF

G

1/2 (d 1/2 d (d 1)) log(N)

with

α =
−

+

e
d S C d S C

factor

(,) (,)1 1 2 2

but, unfortunately, only an insignificant improvement have been found again. The best we
got is:

%FR %FA N
20.29 20.29 617

Thus, we are close to 20% EER. We have to keep in mind that, with a confidence of 95%
and for 617 true targets, the actual rates may be between 17.1% and 23.5%. So, all this last
performances are surely the same. To know how far we are from the practical limit for this idea of
feeding back clustering information to the ACD system, we have used the true hand labels to
generate the acoustic segments that the human expert indicated. With these segments we passed the
clustering generation and improvement system and the clustering obtained was used for ACD with
soft integration. The result obtained was:

18

%FR %FA N
19.16 18.49 611

This means that we were close to the practical limit for this idea even with the hard-decision
integration of the clustering information and this may be the cause for the lack of success in the rest
of combinations. The rest of the remaining errors must be related to other effects not solved with
this idea.

5. Other issues

5.1 CPU time issues

Mainly inspired by the need of more speed to allow the iterative experiments we have
presented between the ACD with clustering information and the clustering improvement algorithm,
we have tried to optimize the CPU time used. The underlying idea is well known but we will repeat
it here. When estimating a gaussian model, we need to estimate both a mean vector and a
triangular-superior covariance matrix. The mean vector is calculated as the expectation of the data
vectors, i.e., for each vector component we divide the sum of the value of this component in each
data vector by the number of vectors.

sum old x origj ij
i

N

_ _=
=
∑

1

µ _
_

old
sum old

Nj
j=

If we need to re-compute this mean vector after adding some new data vectors to the same
pool, it would be wise to have saved the old values of each component sum (sum_oldj) and the
number of vectors used to estimate it (N). For the new set of N2 vectors to be pooled with the old
ones, we also calculate the sum of components:

sum new x newj ij
i

N

_ _=
=
∑

1

2

thus, the new mean vector is:

µ _
(_ _)

new
sum old sum new

N Nj
j j=
+
+ 2

Something very close happens with the estimation of the covariance matrix. In this case, we
need also to save the sum of all possible products of components:

prod sum old x orig x origjk ij ik
i

N

_ _ _ _= ⋅
=
∑

1

19

 The covariance matrix will then be:

co old
prod_sum_old

N
 - mean_old mean_oldjk

jk
j k_ = ⋅

 And when we need to correct the covariance matrix with new data, we calculate the sum of
products for the new data:

prod sum new x new x newjk ij ik
i

N

_ _ _ _= ⋅
=
∑

1

2

 and then update the covariance matrix to:

co_new
prod_sum_new

(N N)
 - mean_new mean_newjk

jk
j k=

+
⋅

2

 With this organization of the calculations, we can rapidly compute new combinations of
pooled data just saving the sum of the components and of the squared components of the segments
of speech without the need of using the actual values of the data vectors. For our ACD problem we
will need to test several hypothesis until one of them is satisfied and a break is produced. In this
moment, all the data until the breakpoint can be deleted. The part from the actual break to the last
considered segment and other new segments will be involved in the new calculations to find the
following break point. This procedure suggest the use of a circular memory buffer that will hold the
data of each acoustic segment between two consecutive break point hypothesis in a different place.
The perimeter of this circular buffer should be long enough to hold the worst case, i.e., the
maximum number of hypothesized break points without an actual break. In our experiments we
have found a buffer length of 200 hypothesis to work properly. With this organization of the
calculations, we have gone from the first versions that processed 3 hours of speech in 57 minutes
Ultra-Sparc CPU time to the improved version that does the same job in less than 2 minutes on the
same processor.

5.2 Improving the capabilities to detect fast changes

It is a problem to generate a d-dimensional gaussian model from few frames for common
values of d, particularly when trying to estimate the 2/)1(+dd covariance parameters. In our first
implementations we did not allow the algorithm to produce a break for short segments because the
system could not reliably decide with so few information. This minimum was set to 30 frames (480
msec. of speech). Another limit that we also had in the first was that we only processed speech
when we had more than 2 seconds in the analysis buffer. When we plotted the histogram of the
lengths of the segments produced after ACD and compared them to the hand labeling ones, we
realized that there was indeed an effect that our system was producing many fewer short duration
segments than the hand labeling. This histogram is depicted in the following illustration:

20

Figure 9: histoold

Figure 10: histonew

21

With the guess that this effect was producing a lack of better performance and the flatness
of the ROC curve for low values of λ, we decided to be less demanding in the decision of when a
gaussian could be estimated. Basically, now we only check for the determinant of the covariance
matrix not to be singular. In the rest of cases, we will rely on the result although it may come from
very little data. We also removed the limit of the analysis buffer and begun the process as soon as
we have two segments in it. This strategy produced a small improvement of the ACD accuracy
allowing us to reach less than 18% EER. Also, the histograms were now closer to the hand labeling
for short segments. We have still a flat region in the ROC that may be produced by the new
limitation, but now we can force the system to lower false rejection rates in this region. These can
be seen in the following illustrations for the new systems. The segment lengths are distributed as
following:

Anyway, we have to say again that the differences are not significant with the systems we
had before for this testing database. We consider this a small improvement just in this region of fast
acoustic changes.

6. CONCLUSIONS

With the experiments that we have made on this problem so far, our final recommendation
would be to use a full covariance gaussian model for not many more than 12 cepstrum parameters +
energy features, controlling that the determinant of the covariance matrix is not singular and
running a few iterations of the loop composed of our clustering generation and improvement
algorithm and the ACD that uses the hard-decision based on allowing a break only when the two
segments belong to different clusters.

22

REFERENCES

[Her 90] Hynek Hermansky, Perceptual linear predictive (PLP) analysis of speech, J. Acoust. Soc.
Am. 87 (4), April 1990, pp. 1738-1752

[BN97]
NIST, 1997 Broadcast News Speech Corpus,

CSR-V, Hub 4, Produced by the Linguistic Data Consortium, Catalog No. LDC98S71 1997.
http://morph.ldc.upenn.edu/Catalog/LDC98S71.html

[Shaobing 98]
Scott Shaobing Chen, P.S. Gopalakrishnan, "Speaker, environment and channel change

detection and clustering via the bayesian information criterion", 1998 DARPA Broadcast News
Transcription & Understanding Workshop.

[Liu 99]
Daben Liu, Francis Kubala, "Fast speaker change detection for broadcast news transcription

and indexing", Eurospeech 99.

