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Abstract.

Due to the incompletely understood nature of prosodic stress, the implementation
of an automatic transcriber is very difficult on the basis of the currently available
knowledge. For this reason, a number of data driven approaches are applied to a
manually annotated set of files from the OGI English Stories Corpus. The goal of
this analysis is twofold. First, it aims to implement an automatic detector of prosodic
stress with sufficiently reliable performance. Second, the effectiveness of the acoustic
features most commonly proposed in the literature is assessed. That is, the role played
by duration, amplitude and fundamental frequency of syllabic nuclei is investigated.
Several data-driven algorithms, such as Artificial Neural Networks (ANN), statistical
decision trees and fuzzy classification techniques, and a knowledge-based heuristic
algorithm are implemented for the automatic transcription of prosodic stress. As ref-
erence, two different subsets from the OGI English stories database were hand labeled
in terms of prosodic stress by two individuals trained in linguistics. The agreement
between the two transcribers on a set of common files is only slightly higher than
that obtained by the automatic systems. While the ANN based approach achieves
the highest performance (77% primarily stressed vocalic nuclei vs. 79% unstressed
vocalic nuclei in average for the two transcribers data sets), the other methods show
that both transcribers grant a major role to duration and (to a slightly lesser degree)
to amplitude. Pitch relevant features of the syllabic nuclei appear to play a much less

important role than amplitude and duration.
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1 Introduction

Prosodic stress is an integral component of spoken language [1], particularly for languages such as
English that so heavily depend on this parameter for lexical, syntactic, and semantic disambiguation.
Therefore, automatic detection of prosodic stress should provide useful information for topic spotting
and pronunciation modeling germane to automatic speech recognition.

Experimental and descriptive studies [2, 3] indicate that such prosodic information is mainly
based on a complex constellation of information pertaining to the duration, amplitude, and fun-
damental frequency (pitch) associated with syllabic sequences within an utterance. However, the
role played by each one of these acoustic parameters is controversial for American English. For this
reason, an automatic detection of prosodic stress is hard to implement, if based only on the cur-
rently available knowledge. The traditional perspective attributes the perception of prosodic stress
primarely to pitch height and variation [4]. Recent studies focusing on spontaneous speech and on
prosodic stress automatic transcription found pitch to be less effective than duration and amplitude
[10].

In the current work, several different data-driven approaches are used to implement an automatic
transcription of prosodic stress. A set of manually labeled prosodic stress material was created
from the OGI English Stories Corpus to train and test the different systems. The goal of this
analysis was twofold. First, it sought to implement an automatic detector of prosodic stress with
sufficiently reliable performance. Second, the effectiveness of various syllabic acoustic features —
duration, amplitude and fundamental frequency — was assessed.

These three basic acoustic features assume very different values across utterances. An investiga-
tion of prosodic stress based on the whole syllabic utterance should take into account such differences
and provide an adequate normalization to allow meaningful comparisons.

Because a large amount of prosodic stress information is carried by the vocalic nucleus [2, 5] and in
order to avoid complicated normalization problems, the role of duration, amplitude and fundamental
frequency of only the vocalic nucleus was investigated. Plain, unstressed vowels reasonably produce
comparable measures of amplitude, duration and fundamental frequency. In this case an adequate
normalization is required only for diphthongs and lengthened vowels.

Some examples of stressed vocalic nuclei in a spoken sentence is shown in figure 1.a), where five
vocalic nuclei were marked as stressed by the two transcribers. The last four are characterized by a
longer duration and the two diphthongs “ay” also have a higher amplitude. Figure 1.b) shows the
corresponding fundamental frequency plot. Here the first stressed vocalic nucleus is characterized by
a high constant value of the fundamental frequency.

The automatic transcription system is structured with a pre-processing stage for the isolation of
vocalic nuclei and the extraction and normalization of the input features and with a classification
stage to distinguish between stressed (S) and unstressed (N) vocalic nuclei.

A number of different data-driven algorithms are implemented for the classification stage of the
automatic system. Indeed, the use of different classification strategies makes it possible to determine
the best performance, but also provides a means to analyze the problem from different perspectives.
The interpretation of the different decision processes might produce interesting insights about the
underlying pattern characterizing stressed vocalic nuclei.

In order to obtain an automatic transcription system with sufficiently reliable performance, we
first use a Multi-Layer Perceptron to develop a classification algorithm. Artificial Neural Networks
(ANN) are by now well known for their capability of constructing extremely accurate decision sur-
faces on the training set, which usually leads to very good performance on the test set [6]. On the
other hand, the interpretation of ANNs’ decision process is usually very hard to achieve.
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Fig.1. a) Examples of stressed vocalic nuclei in“uh, one of the things I like to do is to [pause] ride with
bikes with my kids”. On the bottom is the phonetic segmentation of the spoken sentence and on the top the
stressed vocalic nuclei; b) fundamental frequency plot for the spoken sentence in (a)

For this reason, different classification algorithms with a more interpretable structure, such as
statistical decision trees [7, 8] and fuzzy systems [9], are also evaluated. The analysis of the structure
of the decision trees and of the rules of the fuzzy systems allows us to make certain inferences about
the influence of the input features on the final decision process.

Finally, a heuristic algorithm [10] was designed, based on the hypothesis that prosodic stress may
be identified as a local maximum of a combination of duration, amplitude and pitch of the vocalic
nuclei. Several evidence variables are evaluated to assess the effectiveness of the input features, alone
or in combination, in discriminating between stressed (S) and unstressed (N) vocalic nuclei.

As a reference, two different subsets from the OGI English Stories database [11] were manually
marked in terms of prosodic stress by two linguistically trained individuals. The agreement between
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the two transcribers on a set of common files is only slightly higher than what is obtained using the
ANN classifier.

2 The Transcribed Corpus

The corpus contains 50-60 second files about a large variety of topics. A phonetic transcription of the
files is also supplied. Two different subsets of files are extracted from the database and separately
annotated in terms of prosodic stress. The first subset, annotated by transcriber # 1, includes 83
files, with 49 men and 34 women voices. The second subset, annotated by transcriber # 2, contains
51 files, with 38 men and 13 women voices (Table 1). 10 files, 5 men and 5 women voices, are common
to both subsets of files, annotated by both transcribers (Table 1). The agreement between the two
transcribers on this overlapping part of the two annotated subsets represents one metric of human
performance for recognizing prosodic stress and therefore provides a performance benchmark for an
automatic transcription system.

Many levels of prosodic stress are usually reported in the literature. However, the concordance
among linguists decreases as the number of stress levels increases [12]. It can safely be assumed that
only three levels of prosodic stress can be reliably detected by trained linguists: primary stress (S+),
absence of stress (N) and an intermediate category with weak stress (S-). Thus, the annotations in
the transcribed part of the OGI Corpus refer to primary stressed (S+), to slightly stressed (S-), and
to completely unstressed syllables (N).

Table 1. Number of files from the OGI Stories database labeled by each transcriber.

voices [first transcriber|{second transcriber|both
men 49 38 5

women 34 13 5
total 83 51 10

2.1 Transcribers Agreement

The agreement between the two transcribers on the common files is shown in Table 2, in order to
compare the algorithm’s performance with the transcribers’ agreement. To simplify the problem
of automatic transcription of prosodic stress, only two levels of stress are considered: stressed (S),
including primary and minor stress (S+ and S-), and unstressed (N) syllables. The agreement be-
tween the two transcribers is evaluated accordingly. Stress labeled as S+ or S- by one transcriber is
considered in agreement with the other transcriber, if it was labeled as either S+ or S-.

The first three columns of Table 2 refer to the agreement percentage of transcriber # 1 vs.
transcriber # 2, partitioned into utterances spoken by men (M), women (W) and both together
(W+M). The second set of three columns refer to the agreement of transcriber # 2 with transcriber
# 1. The last three columns refer to the average agreement percentages. The two transcribers roughly
agree in recognizing unstressed syllables (N: 84-93%) and primary stress (S+: 90-78%). Much more
disagreement occurs in labeling minor stresses (S-: 67-57%). Many syllables marked by transcriber



4

# 1 as minor stressed are labeled by transcriber # 2 as primary stressed or unstressed. In general,
transcriber # 2 seems to be more biased towards marking primary stress than transcriber # 1. The
strongest disagreement about minor stresses regards female speakers.

Transcr. # 1 vs. # 2|Transcr. # 2 vs. # 1|Average agreement
% agreement % agreement % agreement
S+ S- N S+ S- N S+ S- N
W+M|90 67 84 78 57 93 84.0 62.0  88.5
M (93 76 84 81 58 94 87.0 67.0  89.0
W |87 46 85 74 56 92 80.5 51.0  88.5

Table 2. In the first three columns, agreement of transcriber # 1 with transcriber # 2 and, in the second
three columns, agreement of transcriber # 2 with transcriber # 1 and in the last three columns the average
agreement of the two transcribers on all the common files (W+M), only the male speakers common files (M)

and only the female speakers common files (W). S+ primary, S- minor stressed, N unstressed vowels.

3 Extraction of Acoustic Features

Assuming that a phonetic segmentation of the speech file is given, automatic detection of stressed
vowels should rely on the analysis of their duration, amplitude and pitch features. In the following
subsections, procedures for estimation of fundamental frequency and extraction of acoustic features
are described.

3.1 Estimation of Fundamental Frequency

From the original speech signal z(t), n signals {&;(¢)}|j=1,..» are derived by filtering z(¢) over n
octaves. The autocorrelation functions, R; »(7), are calculated over a 2N,,-sample long time window,
T € [h— Ny, h+ N, ], for each one of the n filtered signals, {#;(7)}. For each time window centered
around time h, all of the resulting auto-correlation functions, R; »(7), are summed together across
the n frequency channels, as:

Ry(r) = ZRj,h(T) (1)

If the time window [h — Ny, h + N, ] corresponds to a vowel in the original signal z(t), the total
autocorrelation function, Rp(7), usually presents a dominant peak at time m(h), 6-12 ms for male
and 3-6 ms for female speakers from the onset of the time window. The fundamental frequency fo(h)
of this time window can be calculated as in eq. 2 [13]. The entire procedure is summarized in figure

2.
fo(h) = (2)

In order to obtain a more robust detection of the peak at time m4(h):
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Fig. 2. The procedure for the estimation of fundamental frequency using a time window 2N,-sample long

and centered around time h.

— a moving average filter is applied to the total autocorrelation function Rp(7);
— the signal baseline is approximated by the line joining the average of five Ry(7) values at the
onset and at the end of the time window, h, and then subtracted from the Ry(7) signal.

Generally three situations occur in the detection of the peak at m(h):

1. only a few peaks are found, indicating a vocalic nucleus (Fig. 3.a);

2. no appreciable peaks are observed, corresponding to a pause or unvoiced consonant (Fig. 3.b);

3. Rp(7) presents an oscillatory behavior with peaks of comparable amplitude, corresponding to a
voiced consonant (Fig. 3.c).

Since we are interested only in vocalic nuclei, in the latter two cases fo(h) is not considered. In the
first case, the peak with the closest position to the dominant peak in the time window at time h—1 is
chosen. This technique neutralizes residual outliers reflecting vowel-consonant and consonant-vowel
transitions.
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Fig. 3. Autocorrelation functions for short segments of speech, including a) [ah] b) [kh] and c) [r] for a male
voice. After 5 ms from the beginning of the window, a dominant peak is clearly identified only for the vowel
utterance and it is located at around 6ms. This corresponds to a ca 166.67Hz fundamental frequency.

In this study, 25-ms and 15-ms time windows are considered, both overlapping 5 ms with the
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previous and following time window. This corresponds to 20 ms and 10 ms time steps, respectively,
for the original signal z(t).

3.2 Acoustic Features

For the following analysis, the duration, amplitude and pitch-related features are defined for a generic
k-th vocalic nucleus as follows.

1. Duration is the number, Dy, of signal samples between its onset and end.
2. Amplitude, Ay, is defined as the Root Mean Square of the Dy signal samples z(¢) contained in
the k-th vocalic nucleus.

3. Awerage pitch, P Ay, refers to the average value of the Nj fundamental frequencies, fo(h), inside
the k-th vocalic nucleus (eq. 4).

1
PA, = N—k;fo(h) (4)

4. Pitch Range, PRy, is given as the range covered by the Ni fundamental frequencies fo(h) in the
k-th vocalic nucleus, as:

PRy = h) — i h 5

=, max fo(h) ponmy fo(h) (5)

Every speaker appears to use a different combination of duration, amplitude, average pitch and pitch

range, in their pronunciation of stressed vowels. To normalize the variance among speakers, these

acoustic features are expressed in terms of variance units from the mean value of their probabilistic
distribution estimated inside each utterance.

4 Marking Prosodic Stress

After the pre-processing phase described in the previous section is completed, a classification algo-
rithm is applied. For this task, only two classes — stressed (S) and unstressed syllables (N) — are
considered. Finer distinctions among different kinds of stress are not yet taken into account.

The proposed stress assignment procedure focuses on the properties of syllabic vocalic nuclei.
Consonants are then discarded before the analysis is performed. Diphthongs, such as [ay] and [oy],
that present a longer duration than plain vowels, are divided in two parts. For the same reason,
artificially elongated vowels, longer than 250 or 400 ms, are split into three or five parts respectively.
The maximum value assumed by each acoustic parameter across all the resulting parts is retained
for the analysis. Each acoustic parameter is measured with reference to its average value over the
past fifteen vocalic nuclei.

The two subsets of files, annotated by the two transcribers, are evaluated separately. Two thirds
of the files of each subset are used to form the training set and the remaining one third forms the
test set. In order to give more robustness to the evaluation of the performance of the final system,
the training and testing procedure is repeated using a Jack-knifing procedure [14]. The two thirds
of the files used as training set and the one third used as test set are cyclically exchanged so that
three different pairs of training and test sets are obtained.



4.1 ANN’s Classification

In terms of performance of the final transcription system we chose an Artificial Neural Network
(ANN) classification paradigm. ANNs have been shown to construct very accurate separation borders
among the output classes in training sets and have produced very reliable results in many data
analysis fields [6].

In this case, the input vector of the neural network consists of four parameters: duration, ampli-
tude, average pitch and pitch range of each vocalic nucleus. The output layer consists of two neural
units, one that is active for stressed (primary or secondary) vocalic nuclei and the other which is
active for unstressed vocalic nuclei.

The problem does not present a very high degree of dimensionality either for the input or for the
output space and there is not sufficiently reliable knowledge available that could be used to design
the ANN architecture. Consequently, the most commonly used ANN paradigm, the MultiLayer
Perceptron (MLP), is adopted, consisting of a two-layer, fully connected feedforward architecture
and the Back Propagation learning algorithm [6]. In table 3 the performance of an MLP with 2 hidden
units is reported as the average percentages of correctly classified vocalic nuclei across the three pairs
of training and test sets derived from the Jack-knife method for the two data subsets marked by the
two transcribers. The average performance of the system across the two data subsets is shown in the
three columns on the right. S+ and S- indicate respectively the percentage of primary and minor
stressed vocalic nuclei recognized as stressed by the ANN; N indicates the percentage of unstressed
vocalic nuclei correctly recognized as unstressed. Some more experiments are performed, by varying
the number of hidden units of the network without obtaining any dramatically different results. The
average ANN’s performance over the test set is close to the average agreement percentage between
the two transcribers reported in the first row of table 2.

data transcr. # 1|data transcr. # 2 average

% correct % correct % correct

S+ S- N S+ S- N S+ S- N

TRAINING| 78 54 81 78 55 76 78.0 54.5 78.5
TEST 78 54 81 77 55 7 77.5 54.5 79.0

Table 3. Stressed vs. unstressed discrimination: ANN’s performance. S+ primary, S- minor stressed, N

unstressed vocalic nuclei.

4.2 Probabilistic Decision Trees

The ANN’s average performance over the two data subsets is encouraging and shows the practical
feasibility of an automatic detector of prosodic stress. However, the role of the different input features
could not be assessed, since the analysis of a neural network’s structure is usually a quite complex
and time-consuming procedure. Our attention moved to classification algorithms, that are easier to
interpret, such as statistical decision trees and in particular its C4.5 implementation for continuous
data as described in [8]. Statistical decision trees represent another commonly used data analysis
technique. At each step the most informative cut on the input features i1s performed, where the most



8

informative cut is evaluated in terms of entropy-gain maximization. As a result a more interpretable
decision process is generated, because for each step a simple decision (the cut on a given dimension)
is made.

The same data configuration used for the ANN 1is also used for the decision tree. The input
vector includes duration, amplitude, average pitch and pitch range of each vocalic nucleus. Two
output classes, stressed (S+ and S-) and unstressed (N) vocalic nuclei are considered. The two data
subsets are evaluated separately and for each of them a Jack-knifing procedure is applied. The results
are shown in table 4 for each transcriber’s data set and on average show the decision tree to obtain
very similar performance to the ANN.

data transcr. # 1|data transcr. # 2 average

% correct % correct % correct

S+ S- N S+ S- N S+ S- N

TRAINING| 78 57 81 82 66 77 80.0 61.5 79.0
TEST 77 54 80 75 57 74 76.0 55.5 77.0

Table 4. Stressed vs. unstressed discrimination: statistical decision tree’s performance. S+ primary, S- minor

stressed, N unstressed vocalic nuclei.

The structure of the decision tree is shown in figure 4 for one of the three Jack-knife instances of
training sets annotated by the first transcriber. The nodes are indicated as circles and the leaves as
squares. The letter inside each node indicates the input feature on which the decision is made, the
corresponding threshold value is reported on the left and the number of training patterns analyzed
by this node is the number on the side of the arrow reaching the node. Inside each leaf the output
class attributed to the upcoming training patterns is reported. In this instance no nodes using pitch-
related features are found. The decision tree structure for the other two instances are very similar
to the one depicted in figure 4, with a few nodes using pitch features added at the bottom layer.
The structure of the decision trees constructed on the data labeled by the second transcriber is more
complex, producing more than fifty nodes for each training set.

For the sake of clarity a summary of the tree structures for the two sets of data is presented
in table 5. The upper rows indicate the percentage of nodes that perform the decision on a given
input feature; the rows on the bottom indicate the percentage of training patterns analyzed through
a given input feature; that is the percentage of nodes using a given input feature is weighted by the
number of training patterns analyzed. From table 5, we can see that the additional complexity in
the decision trees constructed on the data labeled by the second transcriber includes a fine-tuning of
the classification based on the pitch-related input features. In fact, the number of nodes are roughly
equally distributed across the input features, but the number of training patterns that they analyze
is not. This means that most of the training patterns are classified by using duration and amplitude
and only a few ambiguous training patterns are classified on the basis of pitch-related features.

For both transcribers’ data sets, duration and amplitude play a major role in the discrimination of
stressed vs. unstressed vocalic nuclei. Pitch-related features are used only to classify a small number
of training patterns on the bottom layer of the decision tree.
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Fig. 4. Decision tree structure for one of the training set instances from the subset of data labeled by the

first transcriber. Nodes are indicated as circles and leaves as squares. The letter inside each node indicates

the input feature on which the analysis is performed; the corresponding threshold is reported on the left and

the number of analyzed training patterns is shown on the side of the arrow reaching it.

data transcr. # 1

data transcr. # 2

% nodes using:
duration amplitude average pitch pitch range

% nodes using;:
duration amplitude average pitch pitch range

1st training set 42.9 50.0 7.1 0.0 40.3 23.4 18.2 18.2
2nd training set|| 44.4 55.6 0.0 0.0 34.5 27.6 17.2 20.2
3rd training set| 46.2 46.1 0.0 7.7 32.9 31.4 17.1 18.6

average 44.5 50.6 2.4 2.6 35.9 27.5 17.5 19.0

% training patterns analyzed
through nodes using:

duration amplitude average pitch pitch range

% training patterns analyzed
through nodes using:

duration amplitude average pitch pitch range

1st training set 51.6 47.6 0.8 0.0 52.7 41.3 3.9 2.1
2nd training set|| 57.4 42.6 0.0 0.0 39.0 49.8 5.1 6.2
3rd training set| 50.5 48.8 0.0 0.7 49.3 43.2 2.6 4.9

average 53.2 46.3 0.3 0.2 47.0 44.8 3.9 4.4

Table 5. Summary of the structure of the decision trees constructed on each instances of training set and

for each one of the data subsets labeled by the two transcribers and on average.
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4.3 Fuzzy Classification

Another classification paradigm usually appreciated for its easy interpretability is based on fuzzy
logic. Fuzzy logic derives from a qualitative rather than a statistical characterization of the involved
variables and output classes [9]. Nowadays, several automatic algorithms constructing fuzzy rules
from a set of examples are available [15] [16]. Even though the performance of fuzzy systems usually
do not compare with the ones yielded by ANNs, some insights about the underlying system can
come from the interpretation of fuzzy rules. For this reason, an investigation of a possible fuzzy
automatic labeling of prosodic stress has also been performed and, for this purpose, the algorithm
described in [16] was adopted.

The performance. As in the previous analysis, two thirds of the annotated files for each subset
of data are used as a training set to implement a fuzzy model [16], that discriminates stressed (S)
from unstressed (N) vocalic nuclei. The resulting fuzzy model is tested on the remaining third of
material. Even here, the training and testing procedure is repeated using a Jack-knife method and
the average performance of the fuzzy algorithm across the three instances of training and test sets
are shown in table 6 for both transcribers’ data sets.

data transcr. # 1|data transcr. # 2 average

% correct % correct % correct

S+ S- N S+ S- N S+ S- N

TRAINING|100 100 100 100 100 100 100.0 100.0 100.0
TEST 71 53 7 60 40 80 65.5 46.5 T78.5

Table 6. Stressed vs. unstressed discrimination: fuzzy-logic-based algorithm performance. S+ primary, S-
minor stressed, N unstressed vocalic nuclei.

The system’s performance on the test set drops down a few percent with respect to the ANN’s
performance, mainly for the recognition of stressed vocalic nuclei. Let us try now to interpret the
sets of fuzzy rules generated by the system on the three different instances of the training set for the
two data subsets. Due to the problem’s complexity, the fuzzy algorithm generates about a thousand
rules, which makes a detailed visual analysis prohibitive.

We are mainly interested in the discriminative power that the proposed fuzzy classification yields
for each input feature. It is possible to automatically calculate the fuzzy information gain that derives
from the use of a given input feature in a fuzzy model [18]. Such an information gain can be used
to quantify the discriminative power of each input feature in the fuzzy model.

The information gain. Given a number m of output classes C;, i = 1, ..., m, and an n-dimensional
input space, a fuzzy algorithm derives a set of Ng fuzzy rules {R;(C;)} - with £ = 1,...,Q;,
i=1,...,mand )", Qi = Ng - mapping the n-dimensional input into the m-dimensional output

T

space. Each input pattern x = [z1,...,2,]" is associated with each output class C; by means of a

membership value ,u]él(x). Let us consider @@; = 1 for purposes of illustration.
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The membership functions lulél(x) quantify the degree of membership of input pattern x to
output class C;. The average degree of membership, V(C}), of patterns x to output class C; across
the input space D C R” is given in eq. 6.

_ chnn /'LCI(X) dx

v(C) = (6)

fDCRn

The usual information functions, such as entropy or the Gini function [18], could be applied to
V(C;) to quantify the amount of information contained in the system. Such information functions,
however, require variables summing up to one across the output classes, which is not necessarily true
for the average membership degree V(C;). To solve this problem, the relative average membership
function, v(C;), of output class C; can be used, as described in eq. 7.

V(Ci)
Z}nﬂ V(Cj)

If trapezoids are adopted as membership functions, the relative average membership function,

v(C;) = (7)

v(C;),of each output class C; becomes particularly simple to calculate [17]. A measure of the infor-
mation, I(C'), contained in the fuzzy model, can be obtained by applying the traditional information
functions to the variables v(C;) (eq. 8).

() = - Z v(Ci) log, (v(Ci)) (8)

=1

At this point, a criterion is necessary to quantify how much of the information 7(C') contained
in the model is exploited by each input feature z; for classification purposes. In a fuzzy model,
each input dimension z; consists of a number, Fj, of linguistic values, L. To classify along input
dimension z; means to define F; fuzzy sub-models, one for each linguistic value z; = Lj. The
information still available in the fuzzy model, after the fragmentation along input feature z;, is
given by the average - I(C|z;) - of the information still available in all sub-models - I(Clzj = Lk)
- as defined in eq. 9 and described in figure 5.

(Clay) = 3 S° H(Clas = 1) ©)

Thus the information gain g(C'|z;) associated with the use of input feature z; can be expressed as
the relative difference between the intrinsic information available in the system before - I(C) - and
after using the variable z; for the analysis - I(C|z;) - as in eq. 10.

1(C) = I(Clzy)

(Ol = = (10)

The proposed information gain g(C|z;) expresses the effectiveness of parameter z; in performing
the required classification on the basis of the given fuzzy rules and therefore can be adopted as a
feature-merit measure of input parameter x;. The less effective the input feature z; is in the original
set of fuzzy rules, the closer the remaining I(C|z;) is to the original information I(C) and the lower
the corresponding information gain is. The input features z; with the highest information gain are
the most used by the fuzzy model to represent the training set and therefore are the most effective
for the proposed analysis.
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Fig.5. a) Example of a two-class fuzzy model on a two-dimensional input space. b) and c) sub-models

generated by cutting the original fuzzy model in a) along input feature b) z2 and c) ;.

The discriminative power of the acoustic features in the fuzzy models. This analysis is
applied here to assess the role of the different input features in the implemented fuzzy classification
process. In table 7 the information gain related to the use of the input features is reported for
the systems with the average performance shown in Table 6. An information gain of 1.0 indicates
perfect discriminability of the output classes along this input feature; linearly decreasing values of
the information gain (eq. 10) describe increasingly overlapping output classes on the analyzed input
feature; an information gain of 0.0 indicates that this input feature is not used by the classifier.

Table 7 shows that the fuzzy system does not use much pitch information when classifying the
data labeled by the first transcriber. Indeed the information gain associated with duration and
amplitude are dominant in comparison to those pertaining to the pitch-related features. Pitch range
gains some importance for one of the three Jack-knife training sets for the data labeled by the second
transcriber. It should be mentioned, however, that pitch range and duration are related, because a
vocalic nucleus has to be adequately long to allow a high variation of pitch. In general pitch related
features, and particularly average pitch, do not seem to be very important for the fuzzy transcriber
of prosodic stress for both data subsets, which agrees with the analysis of the decision trees structure
described in the previous subsection.

A similar evaluation is conducted to discriminate between primary stressed (S+4) and unstressed
(N) vocalic nuclei and between minor stressed (S-) and unstressed (N) vocalic nuclei. The corre-
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Table 7. Information gain of the input features in the fuzzy models implementing a stressed vs. unstressed

vocalic nuclei discrimination for the two transcribers data sets.

data transcr. # 1 data transcr. # 2
information gain for: information gain for:
Svs. N duration amplitude average pitch pitch range|/duration amplitude average pitch pitch range
1st training set 0.09 0.21 0.03 0.03 0.11 0.08 0.04 0.08
2nd training set 0.11 0.11 0.02 0.01 0.20 0.12 0.03 0.27
3rd training set 0.10 0.09 0.01 0.01 0.20 0.23 0.04 0.04
average 0.10 0.14 0.02 0.02 0.17 0.14 0.04 0.13

sponding average performance and information gain are reported in table 8 and 9 respectively.

As it was to be expected, performance goes down when only one kind of prosodic stress is
considered, until reaching insufficiently reliable values for minor stressed vs. unstressed vocalic nuclei
classification. This shows the difficulty of distinguishing between minor stress and the absence of
stress and illustrates the difficulty of dealing automatically with many different levels of stress. The
discrimination of primary stressed vs. unstressed vocalic nuclei still relies on duration and amplitude
for both transcribers’ data (Tab. 9). For the S- vs. N classification, average pitch acquires some
importance.

Table 8. Primary stressed vs. unstressed (upper rows) and minor stressed vs. unstressed (bottom rows)
discrimination: fuzzy logic based algorithm performance. S+ primary, S- minor stressed, N unstressed vowel
nuclei.

data transcr. # 1|data transcr. # 2 average

% correct % correct % correct

S+ S N S+ 8 N S+ s N

TRAINING|100 - 100 100 - 100 100.0 - 100.0
TEST 54 - 88 53 - 83 53.5 - 855
TRAINING| - 100 100 - 100 100 - 100.0 100.0
TEST - 36 85 - 10 95 - 23.0 90.0

5 A Heuristic Algorithm

In the previous sections, we examined the performance of some of the most common data-driven
classification methods, like ANNs, statistical decision trees and fuzzy logic based clustering tech-
niques. By applying ANNs to the problem of automatic detection of prosodic stress, the reference
performance of a possible algorithm was determined. By applying statistical decision trees and fuzzy
logic, the role of the different input features was investigated.
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Table 9. Information gain of the input features in the fuzzy models implementing a primary stressed

vs. unstressed and minor stressed vs. unstressed vocalic nuclei discrimination on the two transcribers data

sets.
data transcr. # 1 data transcr. # 2
information gain for: information gain for:

S+ vs. N duration amplitude average pitch pitch range|/duration amplitude average pitch pitch range
1st training set 0.18 0.18 0.05 0.03 0.23 0.11 0.15 0.12
2nd training set 0.34 0.18 0.01 0.02 0.23 0.16 0.06 0.01
3rd training set 0.04 0.15 0.01 0.02 0.21 0.07 0.07 0.11

average 0.19 0.17 0.02 0.02 0.22 0.11 0.09 0.08

information gain for: information gain for:

S-vs. N duration amplitude average pitch pitch range||duration amplitude average pitch pitch range
1st training set 0.04 0.05 0.01 0.01 0.54 0.29 0.40 0.01
2nd training set 0.12 0.05 0.03 0.03 0.14 0.04 0.01 0.00
3rd training set 0.15 0.04 0.07 0.01 0.09 0.02 0.10 0.00

average 0.10 0.05 0.03 0.01 0.26 0.12 0.17 0.00

In this section, the analysis is performed from a “knowledge” rather than from a data-driven
point of view. Let us assume that, to a first approximation, prosodic stress — both primary and
secondary — is perceived when a combination of duration, amplitude, average pitch and pitch range
of vocalic nuclei produces a local maximum inside the spoken utterance [4]. This could be translated
into an automatic algorithm, by defining an evidence variable as a combination of these four acoustic
parameters and by detecting its local maxima within the utterance. According to this strategy, after
the four acoustic input parameters, described in section 3.2, are expressed in terms of their variance
units, they are combined together to form the evidence variable EV; (Fig. 6).

However, not all local maxima can be considered, because sometimes the speech becomes so soft
and almost unintelligible that is not possible to perceive any stress. Thus a local threshold value,
Ty, 1s defined, that states the minimum value of the local maxima to be accepted as pertaining to
prosodic stress. Threshold T}, can not be fixed, but has to evolve along with the sentence according
to the dynamic of the acoustic features. However, it can not be too flexible, otherwise it follows too
closely all possible acoustic variations in the utterance. A compromise is to define threshold T} as a
linear combination of an initial fixed value — Ty derived from the histogram of the evidence variable
over the whole file — and of the average value of the evidence variable over the last n vocalic nuclei,

1 n
Ty =aTy+b | = EV; 11
r=alp+ (n; ) (11)

being 0 < a < land 0 < b <1 and a4+ b = 1.0. Parameter a defines the influence of 7Ty and
parameter b the influence of the average past evidence variable in the definition of threshold, 7.

as follows:

Only local maxima E'V;, of the evidence variable time series above threshold T} can be accepted
as related to prosodic stress. Let us assume the hypothesis that P% vocalic nuclei are stressed in
the utterances. Thus the initial threshold Ty is determined for each file from the histogram of the
evidence variable as this value above which P% of the vocalic nuclei are located (Fig. 7). To verify
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Fig. 6. One possible algorithm for automatic stress detection. Local maxima of the evidence variable, con-
structed from duration, amplitude, average pitch and pitch range of the vocalic nucleus of every syllable,

correspond to stressed syllables.

whether the current value of the evidence variable, F'V}, is a local maximum, it is compared with an
« portion of the evidence variable for the previous vocalic nucleus, FVj_1, and with a § portion of
the evidence variable for the following vocalic nucleus, EVj 1. E'Vj then qualifies as a local maximum
if EVy > a EVi_q and EVy > B EViy1. The complete algorithm is summarized in figure 8.

5.1 The training phase

A number of parameters still have to be defined before the algorithm is applied, including the
percentage P% of stressed vocalic nuclei in a spoken sentence, the number n of previous vocalic
nuclei to keep as reference for the expression of the acoustic features, the portions o and g of the
previous and following vocalic nucleus for the local maximum condition, and the coefficients a and b
for the threshold updating. A training phase is designed to estimate the optimal values of all these
free parameters.

The training i1s performed separately for each transcriber’s dataset on two thirds of the files, in
order to assess the best values for the algorithm’s parameters. The best values are intended here in
terms of the best performance of the algorithm on the training set. The algorithm’s performances
for the different values of the algorithm’s parameters are evaluated by means of Receiver Operator
Characteristic (ROC) curves [19].

An ROC curve describes the performance of a system for a two-class discrimination task when
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Fig. 7. Histogram of the evidence variable (duration x amplitude) of the entire file shown in figure 1. The
threshold 7Tp is chosen as that value of the evidence variable above which P% of vocalic nuclei of the sentence

are located.

one of the system parameters varies. The proportion of correctly recognized events of each one of the
two classes 1s reported on the z- and y-axis for different values of the varying parameter. A system,
correctly classifying every pattern of the two output classes, would have 1.0 on both the z- and
y-axes, producing a point on the right upper corner of the graph. In the optimal case, varying one
of the system’s parameters in one direction causes the proportion of the correctly recognized events
of one of the two output classes to decrease, while the other proportion stays constant. Varying the
parameter in the other direction yields the opposite effect. Thus, the point on the curve representing
the system’s performance moves on a line parallel to the z- or to the y-axis respectively. ROC curves
are generally used to compare systems’ performances. The system with the highest ROC curve

produces the best performance.

For the purpose of training, the ROC curves of primary stressed, S+, vs. unstressed nuclei, N, are
drawn for different values of n, «, 3, a and b. The proportion of S+ vowel nuclei correctly recognized
as stressed is reported on the z-axis and the proportion of correctly detected unstressed (N) vowel
nuclei on the y-axis while one of the free parameters of the algorithm is varied. The resulting ROC
curve gives a measure of the system’s performance in classifying primary stressed vowels as stressed
(S+) vs. unstressed (N) syllables. The value, producing the point on the curve closest to [1.0,1.0],
is selected for the considered parameter and evidence variable. An example is shown in figure 9,
where the evidence variable consists of the product of duration, amplitude and average pitch. The
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Fig. 8. The complete algorithm proposed for prosodic stress automatic transcription.

free parameters are @ and b. The values, a = 0.5 and 6 = 0.5, or a = 0.6 and b = 0.4, yield the point
on the ROC curve closest to [1.0,1.0] and are then chosen for this evidence variable.

For the estimation of the optimal algorithm’s parameters, ROC curves are preferred to the most
commonly used DET curves for speech recognition [20]. DET curves offer a very good visualization
of the error plot only if the error is relatively small (below 30-20%). In the proposed analysis, many
of the evaluated evidence variables offer an error around 40-30%, making it hard to visualize of the
DET curve.

The test for each evidence variable is finally performed on the remaining one third of the files.
In order to give robustness to the algorithm’s performance, the Jack-knife procedure is also applied
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Fig.9. Example of ROC curve to estimate the best values of a and b taking the product of duration,
amplitude, average pitch (10 ms) as the evidence variable. The points with ¢ = 0.56 = 0.5 and a = 0.6b = 0.4
are the closest ones to [1.0,1.0]

As described in section 3.2, two different time windows (25 ms and 15 ms) are used for the
estimation of the fundamental frequency fo(h), leading to 20 ms and 10 ms time grids respectively.
The average pitch was calculated initially by using both time grids and the tighter one led to slightly
better performance. Hence the 10-ms time grid was used to estimate the fundamental frequency and
to calculate the average pitch and pitch-range measures. A number of evidence variables, constructed
as a combination of the four acoustic parameters, are evaluated:

— duration (D);

— amplitude (A);

— average pitch with 20-ms time grid (PA(20 ms));
— average pitch with 10-ms time grid (PA(10 ms));
— pitch range (PR);

— pitch range normalized by duration (NPR);

— pitch range x average pitch(10 ms) (PRxPA);

— duration x amplitude;
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— duration x pitch range;

— duration x average pitch(10 ms);

— average pitch(10 ms) x amplitude;

— pitch range x amplitude;

— pitch range x amplitude x duration (PRxAxD);

— average pitch(10 ms) x amplitude x duration (PAxAxD);

— normalized pitch range x amplitude x duration (NPRxAxD);

— pitch range x average pitch(10 ms) x amplitude x duration (PRxPAxAxD).

In general, for any adopted evidence variable, the hypothesis of one stressed syllable out of four
(P = 25%) leads to the best point on the ROC curve, which confirms what is already known from
the literature [4]. Also, the optimum number, n, of past vocalic nuclei to use as reference for the
expression of the current value of the evidence variable seems to be quite constant across the different
evidence variables and is ca. n = 15. Not many different best values are found for o and 3, usually
between 0.5 and 0.8 for all the evaluated evidence variables. Their value was fixed to 0.6 for both.
Parameter a quantifies the contribution of the initial threshold Ty while parameter b specifies the
contribution of the average value of the evidence variable over the past 15 vocalic nuclei in the
definition of the adaptive threshold T} . Both seem to depend on the chosen evidence variable. Table
10 reports the best values for @ and b as derived from the ROC curve analysis for the evaluated
evidence variables and averaged across the three Jack-knife iterations of training sets.

data transcr. # 1|data transcr. # 2| average

evidence variable a b a b a b
duration 0.3 0.7 0.4 0.6 0.35 0.65
amplitude 0.9 0.1 0.8 0.2 0.85 0.15
average pitch (10ms) (PA) |1.0 0.0 1.0 0.0 1.00 0.00
average pitch (20ms) 0.9 0.1 0.9 0.1 0.90 0.10
pitch range (PR) 0.5 0.5 0.4 0.6 0.45 0.55
normalized pitch range (NPR) |0.2 0.8 0.1 0.9 0.15 0.85
PRxPA 0.1 0.9 0.1 0.9 0.10 0.90
duration x amplitude 0.7 0.3 0.7 0.3 0.70 0.30
duration x pitch range 0.0 1.0 0.0 1.0 0.00 1.00
duration x average pitch(10ms) 0.3 0.7 0.3 0.7 0.30 0.70
average pitch(10ms) x amplitude|0.4 0.6 0.4 0.6 0.40 0.60
pitch range x amplitude 1.0 0.0 0.9 0.1 0.95 0.15
PRxAxD 0.1 0.9 0.2 0.8 0.15 0.85
PAxAxD 0.5 0.5 0.6 0.4 0.55 0.45
NPRxAxD 0.1 0.9 0.1 0.9 0.10 0.90
PRxPAxAxD 0.0 1.0 0.1 0.9 0.05 0.95

Table 10. The best a and b parameters for each evidence variable from the ROC curves.

When the four acoustic parameters are used alone, amplitude and average pitch refer to an almost
constant threshold 7y = Ty derived from the file’s histogram. This means that the amplitude and
average pitch of stressed vowels do not depend so much on their past average value. On the other
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hand, duration and pitch range define the adaptive threshold 7} by taking into account their past
average value.

5.2 Training and Test Performance for the Evaluated Evidence Variables

To measure the different discriminative power of the implemented evidence variables, the system’s
performance on the test and training set were evaluated. In general these two evaluations do not
exhibit different percentages, which indicates that no over-training occurs. Moreover, the ROC curves
are constructed on the training set by varying the threshold 7} as ¢ T with ¢ = 0.0,0.1,...,2.0,
and are also compared in order to provide a broader evaluation of the effectiveness of the different
evidence variables.

Pitch-Related Acoustic Features. In the literature [4] pitch is cited as one of the most important
acoustic features for the perception of prosodic stress by humans. However, extrapolating from
human perception to automatic detection may not be warrantal. Indeed pitch variation or high
pitch can be a sufficient condition for stress perception, but may not be frequent enough for the
automatic recognition of many stressed syllables. In the literature [4] two main pitch-related acoustic
features are reported: average pitch and pitch variation (as pitch range or pitch variance) inside a
vocalic nucleus. Thus, among the proposed evidence variables average pitch calculated with a time
step of 20 ms and 10 ms, pitch range and normalized pitch range are included. Since one of these
two groups of features alone might not be sufficiently informative, the product of average pitch and
pitch range is also evaluated. In figures 10 and 11, the ROC curves for all the proposed pitch-related
acoustic features are depicted for the first and second transcriber’s training set, respectively. The
corresponding performance on the test sets are reported in table 11.

transcriber # 1|transcriber # 2 average

% correct % correct % correct

S+ N [S+S- N |S+ S N

Average Pitch(20ms) 67 57 52 73 61 51  |70.0 54.0 51.5
Average Pitch(10ms) (PA) 60 51 60 |63 48 60 |61.549.5 60.0
Pitch Range(PR) 63 53 63 62 50 63 62.5 51.5 63.0

Normalized Pitch Range (NPR) 57 53 57 59 50 60 [58.0 51.5 58.5
Pitch Range x Average Pitch (PRxPA)|63 53 67 64 52 64 [63.552.565.5

Table 11. Stressed vs. unstressed discrimination: test set performance of the heuristic algorithm. S+ primary,
S- minor stressed, N unstressed vowel nuclei and stress related acoustic features as evidence variables.

Let us compare first the two ways of calculating the average pitch: one with a time grid of 20
ms and the other with a time grid of 10 ms. Not too much can be concluded from the results,
since performance associated with the two evidence variables falls into two different ranges for the
stressed and the unstressed vocalic nuclei. Some conclusions though can be reached by looking at the
corresponding ROC curves (Fig. 10 and 11). For both transcribers’ data the improvement of using
a 10 ms step instead of a 20 ms step is limited but consistent. Because of that, a 10 ms time step is
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Fig. 10. ROC curves for average pitch, pitch range, normalized pitch range and average pitch x pitch range
for a S+ vs. N recognition task (transcriber # 1).
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used to estimate the fundamental frequency. Such an improvement, however, disappears when the
pitch average is combined with amplitude and/or duration.

The pitch range also offers a constant improvement of some percent in the system’s performance
with respect to the average pitch for both transcribers’ data sets, as it appears from the performance
on the test set (Tab. 11) and from the ROC curves (Fig. 10 and 11). This phenomenon appears to be
more relevant for the first transcriber’s data set than for the second. An objection that can be made
is that the higher performance of pitch range is due to the pitch range being related to duration.
In fact, a high variation of pitch inside a vocalic nucleus requires a long duration of the vowel. To
cope with this objection, the pitch range has been normalized by the duration of the vocalic nucleus.
The performance of the normalized pitch range (NMR) decreases dramatically, both on the test set
(Tab. 11) and on the training set (Fig. 10 and 11), being the lowest in absolute for all the pitch
related features for both transcribers’ data sets. Pitch range, without the contribution of duration,
does not seem to be a reliable predictor of prosodic stress.

Finally, we have to examine whether pitch range and average pitch carry complementary infor-
mation. The product of the two offers slightly better performance than average pitch and pitch range
alone for the second transcriber’s data set, and only intermediate performance between the one of
pitch range and the one of average pitch for the first transcriber’s data set (Tab. 11 and Fig. 10 and
11). This shows the limited amount of complementary information carried by the two pitch features
and the different use of pitch made by the two transcribers to characterize prosodic stress. The first
transcriber relies less on pitch information than the second transcriber, granting high information
to the pitch range only for the hidden contribution made by duration.

Duration, Amplitude and Pitch. Keeping the two pitch-related acoustic features with the best
performance in the previous subsection (that is, pitch range and average pitch with 10-ms time grid)
we want to see now how they compare with amplitude and duration (Fig. 12 and 13 and Tab. 12).

transcriber # 1|transcriber # 2 average

% correct % correct % correct

S+ S- N S+ S- N S+ S- N

Average Pitch(10ms)| 60 51 60 63 48 60 61.5 49.5 60.0
Pitch Range 63 53 63 62 50 63 62.5 51.5 63.0
Duration 71 60 69 67 56 67 69.0 58.0 68.0
Amplitude 61 51 66 66 47 64 63.5 49.0 65.0

Table 12. Stressed vs. unstressed discrimination: test set performance of the heuristic algorithm. S+ primary,
S- minor stressed, N unstressed vowel nuclei and basic acoustic features as evidence variables.

Duration seems to be the best predictor for prosodic stress among the proposed acoustic features
for both transcribers and the average pitch is the worst. Amplitude and pitch range are in the middle,
amplitude being more important for the second transcriber than for the first one.

In particular, the first transcriber mainly relies on the duration of vocalic nuclei, to recognize
primary stress S+. In fact, duration presents in Figure 12 the highest ROC curve on the training set
and achieves the best results on the test set (Tab. 12, transcriber # 1) with respect to amplitude,
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Fig. 12. ROC curves for duration, amplitude, average pitch and pitch range for a S+ vs. N recognition task
(transcriber # 1).
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average pitch and pitch range. Similar ROC curves to the ones shown in Figure 12, but with lower
values of the two proportions, are obtained for the first transcriber using S- and N proportions. For
the second transcriber duration is almost as important as the amplitude of the nucleus for primary
stress (S+4) recognition. This is confirmed by the ROC curves on the training set in figure 13 and by
the system’s performance on the test set (Tab. 13, transcriber # 2), where duration and amplitude
yield the same percentage of correctly recognized S+ vs. N vocalic nuclei. Average pitch also offers
better percentages of correctly classified events than for the first transcriber’s data set. Duration
gains importance in the recognition of intermediate stress (S-).

If the ROC curves and the performance on the test set are evaluated on a subset including only
male speakers, duration loses and amplitude and pitch gain some of their discriminative capability
in detecting both primary and intermediate stress for both transcribers’ data sets.

Products of Pairs. In this subsection the improvement deriving from the combination of two of
the basic acoustic features is investigated. Two acoustic features are combined together by means
of their product. The ROC curve and the performance on the test set of duration are reported
from the previous section, to serve as a reference for the obtained improvement. The ROC curves
and the test set performances are reported for Duration x Average Pitch (DxPA), Pitch Range x
Duration (PRxD), Duration x Amplitude (DxA), Average Pitch x Amplitude (PAxA), Pitch Range
x Amplitude (PRxA) and Pitch Range x Average Pitch (PRxPA) in figures 14 and 15 and in table
13, respectively.
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Fig. 14. ROC curves for products of pairs of duration, amplitude, average pitch and pitch range for a S+
vs. N recognition task (transcriber # 1).
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Fig.15. ROC curves for products of pairs of duration, amplitude, average pitch and pitch range for a S+
vs. N recognition task (transcriber # 2).

Again the product of the two pitch-related features (PRxPA) yields the poorest performance, while
the product of duration and amplitude yields the best, both in terms of the ROC curve and in terms
of test set performance. In the middle we find the products including amplitude or duration and one
of the two pitch-related features.

In addition, the ROC curves of duration x average pitch and amplitude x average pitch have values
similar to the ROC curves of duration and amplitude in Figures 12 and 13. This could indicate that
average pitch is the least robust or the most redundant acoustic parameter of the vocalic nucleus.
Duration x average pitch and pitch range x duration have very close ROC curves as do average pitch
x amplitude and pitch range x amplitude, which means that pitch range and average pitch add very
similar information to amplitude and duration.

The product of amplitude and duration as an evidence variable dramatically improves the sys-
tem’s performance, yielding 77-81% of correctly identified primary stressed syllables, 59-61% of
identified minor stressed and 77-79% of unstressed syllables for the two transcribers’ data, respec-
tively (Tab. 13). For the subset of male speakers, all the evidence variables gain a few percent in
discrimination capability.

Products of three or more acoustic features. So far, the best performance is obtained by using
the product of duration and amplitude. Could this performance be improved, by introducing one or
more acoustic features in this product? In order to test this hypothesis, the performance of average
pitch x amplitude x duration (PAxAxD), pitch range x amplitude x duration (PRxAxD) and pitch
range x average pitch x amplitude x duration (PRxPAxAxD) are compared with the performance
of duration x amplitude as well as of duration alone (Fig. 16 and 17, Tab. 14).
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Fig. 16. ROC curves for products of three or more features among duration, amplitude, average pitch and
pitch range for a S+ vs. N recognition task (transcriber # 1).
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Fig.17. ROC curves for products of three or more features among duration, amplitude, average pitch and
pitch range for a S+ vs. N recognition task (transcriber # 2).
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transcriber # 1|transcriber # 2 average

% correct % correct % correct

S+ S- N S+ S- N S+ S- N
Duration x Amplitude (DxA) 81 61 79 77 59 77 |79.0 60.0 78.0
Duration x Average Pitch (DxPA) |71 58 70 67 57 68 169.0 57.5 69.0
Pitch Range x Duration (PRxD) 70 59 67 69 59 65 [69.559.0 66.0
Amplitude x Average Pitch (AxPA) (63 50 63 66 49 65 [64.549.5 64.0
Pitch Range x Amplitude (PRxA) [69 58 62 68 53 63 [68.555.562.5
Pitch Range x Average Pitch (PRxPA)|63 53 67 64 52 64 [63.552.565.5
Duration 71 60 69 67 56 67 69.0 58.0 68.0

Table 13. Stressed vs. unstressed discrimination: test set performance of the heuristic algorithm. S+ primary,
S- intermediate stressed, N unstressed nuclei and products of a pair of basic acoustic features as evidence
variables.

transcriber # 1|transcriber # 2 average

% correct % correct % correct
S+ S- N S+ S- N S+ S- N
Duration |71 60 69 67 56 67 69.0 58.0 68.0
DxA 81 61 79 77 59 77 79.0 60.0 78.0
PAxAxD |76 56 75 75 56 75 75.5 56.0 75.0
PRxAxD |72 58 75 70 56 70 71.0 57.0 72.5
PRxPAxAxD|71 55 73 70 55 71 70.5 55.0 70.5

Table 14. Stressed vs. unstressed discrimination: test set performance. S+ primary, S- intermediate stressed,

N unstressed nuclei and products of three or more basic acoustic features as evidence variables.

Duration x amplitude still produces the best performance. The introduction of average pitch
and even more the introduction of average pitch x pitch range, reduces the percentage of correctly
classified events slightly but consistently (Fig. 16 and 17) for both transcribers’ data sets.

From the results in Table 13, the vocalic nuclei seem to contain sufficient information, in terms
of duration, amplitude and pitch, for a good discrimination of S+ and N syllables, both around 80%
for both transcribers’ data. Intermediate stresses S- are less reliably detected (59-61%) on the basis
of vocalic information alone.

The system’s performance on the training set are always very close to the system performance
on the test set. Indeed, the small number of the algorithm’s free parameters does not allow over-
fitting of the training data, granting generality to the conclusions derived from the ROC curves
about the role of pitch features, amplitude and duration in prosodic stress recognition. The intro-
duction of additional free parameters in the simple structure of the algorithm in figure 6 could allow
the implementation of better discrimination surfaces, resulting in an improvement of the system’s
performances.
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6 Summary

An automatic algorithm for marking prosodic stress in spontaneous American English discourse
was designed, using different data-driven and knowledge-based analysis techniques. The analysis of
some of these techniques allow the investigation of prosodic-stress properties of syllabic sequences,
in terms of duration, amplitude and pitch. The evaluation is performed on two separate subsets of
the OGI Corpus, partially overlapping, and separately labeled by two transcribers.

All the interpreted data-driven and knowledge-based techniques lead to the same conclusion.
The duration of the vocalic nuclei seems to play a major role in prosodic stress characterization,
followed in order of importance by amplitude, average pitch and normalized pitch range. Pitch range
alone apparently performs better than average pitch, because of its correlation with duration and
amplitude. The best performance is obtained by using the product of duration and amplitude as
an evidence variable and is only slightly worse than the agreement percentages between the two
transcribers.
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