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Abstract

In classical Information Retrieval systems a relevant document will not be re-
trieved in response to a query if the document and query representations do not
share at least one term. This problem is known as “term mismatch”. A similar
problem can be found in spoken document retrieval and spoken query processing,
where terms misrecognized by the speech recognition process can hinder the retrieval
of potentially relevant documents. We will call this problem “term misrecognition”,
by analogy to the term mismatch problem.

Here we present two classes of retrieval models that attempt to tackle both the
term mismatch and the term misrecognition problems at retrieval time using term
similarity information. The models assume the availability of complete or partial
knowledge of semantic and phonetic term-term similarity in the index term space.
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1 Introduction

Information Retrieval (IR) is concerned with finding from a collection of documents
those that are relevant to a user information need. The user describes his information
need using a query which consists of a set of terms. In Boolean IR systems, terms
are chosen by the user and are connected using Boolean operators (e.g. “and”,
“or”, “not”) to construct the query. In this paper we are not concerned with Boolean
systems, but with systems that extract terms (index terms) from the text of a natural
language query to build a query representation consisting of a set of the weighted
terms. Document representations, constructed in a similar way, are then matched
against the query representation. Documents are ranked according to how well their
representation matches the query representation [23].

A fundamental problem of IR is term mismatch. A query is usually a short and
incomplete description of the user information need. Users and authors of documents
often use different terms to refer to the same concepts. This fact produces an incorrect
relevance ranking of documents with regards to the information need expressed in the
query.

A similar problem can be found in spoken document retrieval and spoken query
processing, where terms misrecognized by the speech recognition process are found
not matching in query and document representations. Naturally, this hinder the
effectiveness of the IR system in a way similar to the term mismatch problem. I will
call this problem term misrecognition, by analogy to the term mismatch problem.

This report addresses the term mismatch and the term misrecognition problems
proposing a family of retrieval models that exploits the knowledge of semantic and
phonetic term similarity in the term space. The term similarity is used at retrieval
time to estimate the relevance of a document in response to a query by looking
not only at matching terms, but also at non-matching terms whose semantic and/or
phonetic similarity are above a predefined threshold.

The report is structured as follows. In section 2, we show the importance of the
term mismatch problem in IR, while in section 3 we introduce the “term misrecogni-
tion problem”. In section 4, we present a number of solutions to the term mismatch
problem that have been proposed in the past. A common graphical interpretation of
these solutions is used to help understand their effect on the term space. In section 5,
we address the significance of term similarity information on the term space and the
cost of this knowledge. In section 6, we present two classes of retrieval models that
exploit term similarity knowledge to tackle both the term mismatch and the term
misrecognition problem. Section 7 presents some different forms of similarity that
could be used with the retrieval models presented, while section 8 explain how these
forms of similarity could be combined to tackle both problems at the same time. Sec-
tion 9 discusses some issues related to the evaluation of the actual effectiveness of the
proposed models. Section 10 concludes the report and outlines directions of future
work.



2 The Term Mismatch Problem

The problem of representing the user information need and the document informa-
tive content is a very difficult one. Attempts to using advanced Natural Language
Processing techniques or complex logical models have failed to solve the problem and
IR is still using the classical technique of the “bag of terms”. So, terms are auto-
matically extracted from or manually assigned to documents or queries. This way of
representing documents and queries is common to both the Vector Space model [21]
and the Probabilistic model [23], the two most important models of IR. However,
representing documents and queries using a set of terms has a very serious side effect:
the term mismatch problem.

Users of IR systems often use different terms to describe the concepts in their
queries than the authors use to describe the same concepts in their documents. It has
been observed that two people use the same term to describe the same concept in less
than 20% of the cases [7]. It has also been observed that this problem is more severe
for short casual queries than for long elaborate ones because, as queries get longer,
there is a higher chance of some important terms co-occurring in the query and the
relevant documents [27]. The term mismatch problem does not have only the effect
of hindering the retrieval of relevant documents, it has also the effect of producing
bad rankings of relevant documents, as the following example shows.

Let use assume, for example, that a user would like to find information about
“wine of the Tuscany region of Italy”. The user submits to the IR system the following

query:
q = (wine, Tuscany)

Let us consider the following three documents:

di = (wine, France)
dy = (wine, Italy)
d3s = (Florence, vineyard)

Leaving aside considerations related to the indexing weights assigned to the terms
used to represent the documents and the query, let us consider the Retrieval Status
Value (RSV) of these documents in response to the query g. The RSV is an estimate
of the relevance of a document with respect to a query, and is performed according to
the model the IR system uses. The RSV is used to rank document and present them
to the user. A IR system using a classical model of IR would assign to documents d;
and dy a very similar RSV (how similar depends on the indexing weights assigned to
terms), since both these documents have a term in common with the query. These
documents would then be ranked higher that document ds, which does not have any
term in common with the query. However, looking at the documents, we can clearly
see that document d; is surely not relevant, since it deals with French wine. Moreover,



if we compare the informative content of documents dy and ds, we can argue that dj
is more relevant that dy, since ds deals with wine from Florence, a particular area of
Tuscany, while d, deals with wine from the all of Italy. Document d3 is fully relevant
to the query, while document d is only partially relevant. We are therefore inclined
to assigned a higher RSV to dj, closely followed by ds and then d;. Such assignment
of RSV is almost the opposite of that given by the IR system.

The above example shows the effect of the term mismatch problem. The use of
advanced indexing models only partially limits these effects.

3 The Term Misrecognition Problem

The term misrecognition problem is analogous to the term mismatch problem. The
problem is caused by the incorrect recognition of a term in a document or in a query.
If a term t; was actually present in both query and document, but was incorrectly
recognized for ¢, then a number of potentially relevant documents containing ¢; are
not going to be retrieved, while a number of documents likely to be non-relevant
and containing t; are going to be retrieved. The incorrect ranking of these retrieved
document is in direct relation to how many of these incorrect term recognitions are
made, as we can easily imagine even without an example.

This problem can be found when documents (or queries) are not in a textual form
directly comparable to queries (or document), like for example in spoken document
retrieval and spoken query processing, or with OCRed documents of queries. It is
plausible to assume that mistakes in speech recognition are related to how close words
sound like [12], while in OCR it is related to how similar their shapes are [11]. In this
report we will be mainly concerned with the term misrecognition problem found in
spoken document retrieval and spoken query processing, since this work is important
in the context of the SIRE Project. The main objective of the project is to enable a
user to interact via voice (i.e. submit queries, commands, relevance assessments, and
receive summaries of retrieved documents) with a probabilistic IR system over a low
bandwidth communication line, like for example a telephone line [1].

4 Approaches to the Term Mismatch Problem

There are a number of approaches to solving the term mismatch problem. In the
following of this section we will review some of these approaches showing how they
attempt to tackle the problem. In this analysis we will look at their effects on the
term space. We will argue that none of these approaches can completely solve the
problem and each approach has its drawbacks.



Figure 1: The effects of a dimensionality reduction of the term space.

4.1 Dimensionality Reduction

The most commonly used approach to the term mismatch problem consists of reducing
the chances that a query and a document refer to the same concept using different
terms. This can be achieved by reducing the number of possible ways a concept can be
expressed, or in other words, reducing the “vocabulary” used to represent concepts.

A number of techniques have been proposed for the dimensionality reduction of
the term space. The most important ones are:

e stemming and conflation;
e manual thesauri;
e clustering or automatic thesauri;

e Latent Semantic Indexing.

The effects of these techniques on the term space are graphically depicted in
figure 1. These techniques cause the removal of a number of terms from the term
space. These terms are substituted by other terms, like for example, stems, thesauri
classes, or cluster representative. Concepts can then be expressed using a limited
number of terms, therefore reducing the effects of the term mismatch problem.

Some dimensionality reduction techniques, like for example stemming [9], term
clustering [18], and Latent Semantic Indexing [7] have proved to be generally effec-
tive and are in use in many IR systems. Nonetheless, dimensionality reduction has
a an important drawback: it causes a simplification of the “indexing vocabulary”
that limits the expressiveness of the indexing language and can results in incorrect
relevance rankings due to the incorrect classification of unrelated terms.
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Figure 2: The query expansion process.

4.2 Query Expansion

Another approach to the term mismatch problem is query expansion. This approach
consists of considering the query as a tentative definition of the concept the user
in interested to find documents about. A number of different techniques can then
be used to expand the original query submitted by the user to include other terms
related to that concept. The difficulty lies in finding the best terms to add and in
weighting in a correct way their importance. A detailed treatment of this approach
can be found in [8].
The two most important techniques for query expansion are:

e automatic query expansion;

e relevance feedback.

The first technique consists in automatically adding terms to the query by selecting
those that are most similar to the ones used originally by the user. Some control can
be left to the user on the choice of terms. The second technique enables the selection
of terms to be added to the original query terms by automatically extracting them
from documents marked as relevant by the user.

The effect of query expansion on the the term space is graphically depicted in
figure 2. The figure shows how the original query is expanded by adding terms
that are similar to those originally present (similarity is represented in the figure
as closeness in the space). Documents are then matched against the new expanded

query.

This approach too has a few drawbacks. The most important one is related to
the difficult choice of terms to be added to the original query terms. Moreover,
terms added to the query should be weighted in such a way that their importance



Figure 3: The imaging process on document d;.

in the context of the query will not modify the original concept expressed by the
user. Many different algorithms for automatic and interactive query expansion and
relevance feedback have been proposed, but it is not clear yet which one is the most
effective.

4.3 Imaging

In 1986 Van Rijsbergen proposed the use in IR of a technique called logical imaging
based on non-classical Conditional Logic [24]. Imaging enables the estimation of the
RSV as P(d — gq), where the semantics of the implication operator — does not
need to be not explicitly defined. In 1995 Crestani and Van Rijsbergen proposed
and experimented with a retrieval model based on imaging [4]. This model was later
generalized and experimented more thoroughly using a technique called general logical
imaging [5]. This new technique is generalization of the imaging technique proposed
by Gérdenfors [10] that enables a more general transfer of the indexing weights than
logical imaging.

Without entering into the details of these techniques (details that can be found in
the cited papers), the retrieval by general logical imaging model (RbGLI) use term
semantic similarity to direct the transfer of indexing weights at retrieval time from
terms not present in the document to terms that are present. RbGLI transfers index-
ing weights to all terms present in the document with portions that are in decreasing
order in relation to the similarity between the “donor term” and the “recipient term”.
Terms that represent the same or similar concepts can then be accounted for even if
they are not present in the document. Figure 3 depicts an example of the indexing
weights kinematics produced by RbGLI.

RbGLI attempts to solve the term mismatch problem without explicitly modifying
the terms space or the query, but by changing the indexing weights of terms present



in the document under consideration to account for terms that are similar and that
have not been used to index the document.

The major problem with RbGLI is that it is computationally very expensive [3].
It is in fact necessary to have a similarity value for every pair of terms in the term
space. These values need to be used at retrieval time to find for every term not
present in the document those terms to which its probability needs to be transfered
and the relative amount involved in the transfer. We should also remember that this
computation needs to be done for every document in the collection.

5 Term Similarity

All the approaches to the term mismatch problem presented in the previous section
assume the availability of a measure of the similarity between terms. A similarity
measure between pairs of terms in necessary in order to build an automatic thesaurus,
expand the query, or perform indexing weights transfer.

Measures of similarity have been studied in IR for long time. They have been stud-
ied in the context of clustering [18], ranked retrieval [23], thesauri construction [22],
and other areas of IR research. Although no single similarity measure has proved to
be the best for any kind of application, most IR research agrees on the fact that the
estimate of a complete measure of similarity on the term space (i.e. for each pair of
terms in the term space) is a very computationally expensive business. However, the
availability of very fast computers and more efficient algorithms for the evaluation
of similarity in large term space is making this problem less and less serious. In the
context of this report we will assume that a measure of similarity on the terms space
can be evaluated. This is not an unreasonable assumption. First of all term similar-
ity can be evaluated off-line and then efficiently stored to be used at retrieval time.
Second, the retrieval models presented in this report can also work with partial term
similarity information, making it possible to tailor the evaluation of similarity to the
available means (see section 6.4).

Let suppose we have a measure of similarity that enables us to evaluate for each
pair of terms a real value which estimates how semantically close the terms are. We
can normalize this values so that:

V(ti,tj), 0 S Szm(tl,tj) S 1
Such function Svm, should have the following properties:

2. Sim(t;,t;) ~ 1 if t; and ¢; are semantically close, in this case ¢; and ¢; can be
(and often have been) used to express the same concept;

3. Sim(t;,t;) ~ 0if t; and ¢; are not semantically close, that is ¢; and ¢; cannot
be (and have not been) used to express the same concept.
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Models: f. sim maximum sim. total sim.
g>d flgr>d) maz(q > d) tot(q > d)
drq f(d>q) maz(d > q) tot(d > q)

Table 1: Examples of ¢ > d and d > ¢ models.

Of the above properties, property 1 is obvious, while properties 2 and 3 although
intuitive, are difficult to verify for a given measure Sim. In fact most measures of
similarity developed in the field of IR attempts to follow these properties, but the
information available for the estimate of the semantic similarity between terms is
quite poor. Most similarity measures used in IR attempt to estimate the semantic
similarity between terms by looking at their pattern of occurrence in documents. Two
terms are considered semantically similar if they tend to co-occur in the same context
(i.e. a document, a paragraph, or a phrase). There are many recognized drawbacks to
this assumption, but no one has been able to propose a better and still implementable
approach. We will not enter into a discussion about the plausibility of this approach.
In the future we may have better ways of estimating the semantic similarity between
terms, but for the time being we will make use of the state of the art in this area.
Although the effectiveness of the models presented in the report depends very much
on the quality of the similarity measures, the proposed models could make use of any
available similarity information of the term space.

6 Exploiting Term Similarity

Classical IR models evaluate the RSV of a document with regard to a query using
some variant of the following formula:

RSV(dg)e= 3 walt) - w,(t (1)
te(dng)
where wy(t) is the indexing weight assigned to term ¢ in the context of document d,
and w,(t) is the indexing weight assigned to term ¢ in the context of query ¢. The
sum of the product of the indexing weights is performed over all terms occurring in
both the document and the query. Classical IR models fall into the term mismatch
problem since they do not take into account that the same concept could be expressed
using different terms in document and query.

Supposing we had similarity information on the term space, we could use this
information to account for the term mismatch problem, exploiting such information
at retrieval time for the evaluation of the RSV.

Table 1 presents an overview of the two classes of models one could envisage,
depending on the perspective taken in the evaluation of the RSV. In fact, if we take
for example a query term for which we cannot find a matching document term, we
could use similarity information to identify the semantically closest document terms



and use the similarity information in the evaluation of the RSV. Alternatively, if we
take a document term for which we cannot find a matching query term, we could use
similarity information to identify the semantically closest query terms and use the
similarity information in the evaluation of the RSV. The function f specifies the way
the similarity information is use. Table 1 reports two examples of functions that have
been successfully tested [2]. Other more complex uses of the similarity information
or more complex combination of indexing weights can be devised.

In the following two sections we will present in more detail two classes of retrieval
models that exploit term similarity information at retrieval time in this fashion.

6.1 The q> d Models

If we consider the point of view of a query, then we could take a query term for which
we cannot find a matching document term and look for semantically close document
terms. We could then evaluate the RSV using the following general formula:

RSVigoa)(d, @) = bu,eq(walty), we(te), f(Sim(ts, te), t)) (2)
where t; and ¢, are respectively a document and a query term, and f indicates the

use we can make of the known similarity between the two terms.
Let us take, for example, the following f, indicated by maz:

f(Szm(tJ,tk),tk) = ma:vthim(tj,tk) : wd(tj)

The rationale behind this formula is that in the presence of complete similarity
information on the term space, we can easily determine the closest document term,
that is the document term for which we have the maximum value of similarity with the
query term. Supposing the similarity measure has been normalized in the range [0, 1],
we could introduce the similarity value in the computation of the RSV as follows:

RSVmam(qu) (d7 Q) = Z Szm(t, t*) : wd(t*) : wq(t) (3)
teq
where t* is a document term for which the value of Sim(t,t*) is maximum given
the query term ¢, wy(t*) is the indexing weight assigned to term t* in the context of
document d, wy(t) is the indexing weight assigned to term ¢ in the context of query
q, and Sim(t,t*) is the similarity value between ¢ and ¢*.

Formula 3 enables to consider non-matching terms in the evaluation of the RSV.
Two non-matching terms for which the similarity measure is maximum, will con-
tribute to the RSV in a way that is proportional to their similarity value. Formula 3
is a generalization of formula 1, as it can be easily proved if we assume Sim(t;,t;) =1
if ¢, = t; and Sim(t,t;) = 0 otherwise.

Another possibility is, for example, to consider the total value of the contribution
of all non-matching terms in the evaluation of the RSV. We can the use the following
f, indicated hereby with tot:



Figure 4: Graphical interpretation of ¢ I> d.

f(Sim(tj,tk),tk) = ZSim(tj,tk) . wd(tj)

tj

In this case we could evaluate the RSV using the following formula:

RSV;fot(qu) (d, q) = Z (Z Sim(tk, tj) : wd(tj)) . wq(tk) (4)

tr€q tjcd

where symbols are defined as in formula 3. Again, formula 4 is a generalization of
formula 1.

The process of evaluation of the RSV in the ¢>d models is schematically depicted
in figure 4.

Notice that the process depicted in figure 4 is just one of the possible ways of
considering the contribution of non-matching terms in the evaluation of the RSV
using term similarity. Other, more complex strategies can be considered, like for
example the use of a term representative of the document content (e.g. the centroid)
as depicted in figure 5, or using terms representative of topical concepts or structural
sections of a document, as depicted in figure 6. We will not address these more
complex models in this report.

Some of the approaches that this model makes available have been tried already
(see for example [16], which resembles the models depicted in figure 5), but non-
matching terms have never been considered in the evaluation of the RSV.

6.2 The d > q Models

If we consider the point of view of a document, then we have the d > ¢ models defined
in general terms as follows:
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Figure 5: The ¢ I> d using a term representative of the document content.

Figure 6: The ¢ I> d using terms representative of topical concepts or structural
sections of a document.
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Figure 7: Graphical interpretation of d > q.

RSVi(anq)(d, q) = ryea(wa(ty), wq(te), f(Sim(t;, k), 15)) (5)

The evaluation of the RSV could then be obtained, for example and mutatis
mutandis, using the following formula for the evaluation of RS Vmaz(dbq)(da q):

RSViaz(asq) (dy q) =D Sim(t, t*) wa(t) - wy(t¥) (6)

ted

where t* is a query term for which the value of Sim(t,t*) is maximum given the
document term ¢, wy(t) is the indexing weight assigned to term ¢ in the context of
document d, wy(t*) is the indexing weight assigned to term ¢* in the context of query
q, and Sim(t,t*) is the similarity value between ¢ and ¢*.

Alternatively, we could evaluate RSVioasq)(d, ¢) in a way similar to the one re-
ported in formula 4. As can be noticed, the only difference between the ¢ > d and the
d > ¢ models is the point of view taken:

RS‘/;fot(qu) d q Z Z S’Lm tka wq(tk)) ) wd(tj) (7)

tjed tp€q

The process evaluation of the RSV in the d > ¢ class of models is schematically
depicted in figure 7. As can be noticed the only difference between the g > d and the
d > ¢ models is the point of view taken.

For this class of models more complex ways of considering the contribution of
non-matching terms in the evaluation of the RSV can also be devised, in ways similar
to those already discussed for the ¢ > d class of models. These will not be addressed
here.
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6.3 Relation Between q>d and d > q Models

In a related area of research, aimed at modeling the IR retrieval process as logical
model, Wong and Yao demonstrated that most current IR models can be explained
in terms of the formula P(E — H) that is evaluated as P(H | E) [25, 26]. The latter
formula evaluates the degree of confirmation (or belief, according to the view taken)
of the sentence H given evidence E. Conventional IR models can be obtained by
associating either d or ¢ to H or E, and by defining different ways of evaluating the
probabilities via probabilistic inference on a concept space. Earlier, Nie showed that
the two conditionals d — ¢ and ¢ — d have a very interesting interpretation in the
context of IR [14]. The conditional d — ¢ expresses the ezhaustivity of the document
to a query, i.e. how much of a document content is specified by the query content.
In fact d — ¢ is intuitively equivalent to d C ¢. The conditional ¢ — d, instead,
expresses the specificity of a document to a query, i.e. how much of a query content
is specified in the document content. In fact, ¢ — d is intuitively equivalent to ¢ C d.
The models proposed in this report can be interpreted in this way too.

In fact, the ¢ > d models, by taking the query point of view, measure how much
of the query content is specified in the document. This is done in a complete way by
tot(qg > d), or in a partial way by maz(q > d), considering only the most important
contributions. So, ¢ > d enables to measure the specificity of the document to the
query. On the other hand, the d > ¢ models, by taking the document point of view,
measure how much of the document content is required by the query. Again, this is
done in a complete way by tot(d > q), or in a partial way by maz(d > ¢). So, d > ¢
enables to measure the exhaustivity of the document to the query.

To summarize:

e (¢ d) PES (g — d) s (¢ C d) = specificity of d to ¢ = how much of the
query content is specified in the document content;
e (d>q) PES. (d — q) - (d C q) = ezxhaustivity of d to ¢ = how much of the

document content is specified by the query content.

Different applications require different levels of specificity and exhaustivity. Speci-
ficity is precision oriented, while exhaustivity is recall oriented.

Nie proposed to combine the two measures to produce a “correspondence” measure
between query and document. This measure should estimate in a more complete way
the relevance of a document to a query. In this report we did not follow this approach
(yet). A study of the possible combination of the ¢i>d and d>¢ models will be carried
out in the future.

6.4 Partial Similarity Information

In the above discussion we have supposed the availability of full similarity information.
This case is often unrealistic, especially for large term spaces, given the computational
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burden of the evaluation of Sim(t;,t;) for every pair of terms in the term space.
The evaluation and the storing of complete similarity information is in fact a very
expensive process. In most practical cases it makes more sense to evaluate and store
similarity information only for pairs of terms that are most similar. These often are
a very small subset of all terms in the term space. The formulas presented in the
two previous sections do not need to be modified in case of availability of only partial
similarity information. They can be used as their are.

Moreover, it can be easily proved that, for most f:

RSVigsay = RSV, for SS — n.a.
and
RSVi(apq — RSV, for SS — n.a.

where SS is the similarity matrix, and n.a. is the matrix on all n.a. values, where
with n.a. we indicate the non-availability of similarity information for a pair of terms.

7 Different Forms of Similarity

So far we have always talked about similarity from a generic point to view, meaning
any possible way of establishing a metric in the term space that has the properties
discussed in section 5. However, there are two forms of similarity that it would be
very important to combine for spoken document and spoken queries retrieval:

e semantic similarity;

e phonetic similarity.

These two type of similarity are related to the two main types of uncertainty
present in spoken document retrieval and spoken query processing and that may
cause the term mismatch problem: “information need uncertainty” and “recognition
uncertainty”.

Information need uncertainty relates to the word sense ambiguity present in the
natural language and to the difficulties that the user has in expressing his information
need. This is the typical form of textual IR uncertainty, which the term mismatch
problem usually refers to. Recognition uncertainty can be related to a term mis-
recognition problem, due to the misrecognition of a term in the speech recognition
process. Both types of uncertainty are present in spoken document and spoken queries
retrieval.

The next sections will examine how we can evaluate semantic and phonetic term
similarity. Later I will explain how they can be combined together in a retrieval
model.
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7.1 Semantic Similarity

There are many different techniques for estimating semantic similarity between terms
(henceforth indicated with SSim). Semantic similarity may be estimated from ex-
ternal knowledge, like for example a thesaurus [20] or a dictionary [19]. It can also
be estimated from the document collection itself, given a large enough corpus. Most
of these techniques are based on statistical analysis of the patterns of occurrence of
terms in the documents [22, 17, 15, 6].

One of the most often used measure of semantic similarity is the Expected Mutual
Information Measure (EMIM), a well accepted measure in Lexicography. EMIM is
defined as follows:

: P(t; € d,t; € d)
SSim(t;, t;) = EMIM(t;,t;) =Y P(t; €d,t; €d)-1 it
Zm( %) ]) ( .7) tlztj (Z J ) Og P(tz Gd)P(tJ Ed)

where ?; and t; are any two terms of the term space 7. The EMIM between two
index terms is often interpreted as a measure of the statistical information contained
in one term about the other (and vice versa, it being a symmetric measure). For our
purposes we can estimate EMIM using the technique proposed by Van Rijsbergen
in [23, p.130], which rely on the availability of co-occurrence data that can be derived
from a statistical analysis of the term occurrences in the collection.

SSim(t;,t;) can easily be normalized in [0, 1] once its maximum and minimum
values for the available data have been found. The important point is that any
measure of semantic similarity, can be used with the models proposed in this report.
The better the measure, the better the performance of the models. We will indicate
semantic similarity with SS%m in the rest of this report.

7.2 Phonetic Similarity

Phonetic similarity (henceforth indicated with PSim) can be estimated using a error
recognition confusion matrix (ERCM). A ERCM is a matrix that reports for each ele-
ment in row and column the number of times one has been mistaken for the other [13].
In other words, if we call reference (r) the real value of the element being observed
and hypothesis (h) the value actually observed for that element, ERC M (r, h) gives
the number of times r is confused with h.

When elements of the ERCM are terms, the matrix can be more easily done using
at a phonetic level, instead of with terms [13]. The number of terms in the term space
is too large to produce a ERCM matrix. Moreover, the matrix would be very sparse.
On the other hand, there exist a limited number of phones (the exact number depends
on the phonetic system used), making it easier to build such a matrix. Figure 8 reports
an example of phones confusion matrix (courtesy of Kenny Ng, MIT).

With and ERCM built at phones level, and assuming that phones comprising each
term are independent, we can evaluate PSim(t;,t;) using a dynamic programming
procedure:
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Figure 8: Example of confusion matrix (courtesy of Kenny Ng, MIT), with » = 0 and
h = 0 corresponding respectively to insertion and deletion errors
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PSZm(tz,t]) = A(lz, lj)

where [; and [; are respectively the length of ¢; and ¢;, and A is the /; x [; dynamic
programming matrix evaluated recursively as in the following formula:

(1 m=0,n=0
A(0,n—1)-C,(0,5[n —1]) m=0,n>0
_} A(m—1,0)- Cy(i[m —1],0) m>0,n=0
A(m, n) = 9 A(m —1,n) - Co(i[m — 1], 0) 8)
mazx ¢ A(m—1,n—-1)-C,(ilm—1],j[n—1]) m>0,n>0
{ A(m,n —1)-C,(0,j[n —1])

where C,(r, h) is the probability (actually the normalized frequency) of observing h
given that it really was r. This is obtained as:
ERCM(r,h
Cn (,r, h) — (T’ )
> keqny ERCM (1, k)

where ERCM(r,h) is a value of the ERCM matrix with row 0 for insertion and
column O for deletion errors. Notice that with this estimation procedure we can
interpret PSim(t;, t;) ~ P(t; | t;).

Other techniques based for example of Hidden Markov Models can also be used
to estimate PSim [12].

8 Combination of Semantic and Phonetic Similarity for Spo-
ken Document and Spoken Query Retrieval

We can easily adapt the models presented in section 6 to dealing with the misrecog-
nition problem. This can be done by using phonetic similarity, instead of, or in con-
junction with, semantic similarity. So for example if we are only considering phonetic
similarity, formula 3 can be rewritten as:

RSVinasy(qoa)(ds @) =D PSim(t, %) - wa(t**) - wy(t) 9)
teq

where t7* is a document term for which the value of PSim(t,t**) is maximum given
the query term t, wy(#*) is the indexing weight assigned to term ¢P* in the context of
document d, w,(t) is the indexing weight assigned to term ¢ in the context of query

g, and PSim(t,t"*) is the phonetic similarity value between ¢ and *.
While if we consider only the semantic similarity, the formula for RSV}, a4, (o)
can be written using SSim instead of PSim. On the other hand, if both measures of
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similarity were normalized, we could consider the combination of both the semantic
and phonetic similarity. So, for example, we could write:

RSVmawps(qu) (da Q) =
= % (RSVma;cp(qu) (da Q) + RSVmaws(qu) (d, Q))
= 2 Yieq (PSim(t, t7*) - wa(t*) + SSim(t, %) - wa(t*)) we(t)

(10)
where the properties described in section 6.4 are preserved.
Analogously, RSVie,,(g>4)(d, q) can be easily evaluated as:
PSim(ty, t;) + SSim(tk,t;
RS Vit oad.q) = S50 TSIt 1)) ) (1)

ty  t

Formulas 10 and 11 are very simplistic combinations of semantic and phonetic
similarities, and other more complex combinations can be devised. We also leave to
the reader the task of deriving RSV ez, (d>q) and RSVie,, (q>a) Where semantic and
phonetic similarity are combined.

9 Evaluation Issues

The use of semantic similarity to approach the term mismatch problem has already
been experimented with “relative” success. Some results of this experimentation can
be found in [2]. It has to be recognized that the experimental results obtained so far
do not provide definite evidence of the real effectiveness of the proposed models. In
fact, there are a number of limitations in the experiments carried out, in particular:

e the size of the test collections employed in the experimentation is considerably

smaller than the size of the collections used in most current IR experimentation
(e.g. TREC);

e the benchmark used in the experimentation is the classical vector space model,
without the most advanced weighting and normalization techniques;

e a number of approximations where employed in the evaluation of the semantic
similarity which limit its full potentials.

Further experimentation is currently under way to overcome the above limitations.
The major problem encountered in the experimentation is the computational burden
of the models which needs to be further addressed before starting experimenting
with the combination of semantic and phonetic similarity. It is easy to envisage
that the use of complex combinations of semantic and phonetic similarity will make

the computational burden heavier and the evaluation of the proposed models more
difficult.

18



10 Conclusions and Future Work

In this report we present a model for dealing with the term mismatch and the term
misrecognition problems in spoken document retrieval and and spoken query process-
ing. An initial experimental investigation with a small test collection is currently
being carried out. The experimental results will provide useful feedback on the ef-
fectiveness of the proposed models and on how to effectively combine semantic and

phonetic similarity.
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