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Abstract. Network heterogeneity is a major issue and multimedia gpplications have to deal with
interconreded networks consisting d many sub-networks of non-uniformly distributed resources.
Real-time traffic caused by video sources is bursty by nature, resulting in buffer overflow at the
switch and unavoidable padet losses. Therefore the information is desirable be compressed and
prioritized in a way that the application gracefully degrades during adverse network conditions.
Priority Encoding Transmission (PET) is an approach to the transmisson o prioritized
information over lossy packetswitched networks. The basic idea is that the source assgns
different priorities to different segments of data, and then PET encodes the data using multil evel
redundancy and dsperses the encoding into the packets to be transmitted. The property of PET is
that the destination is able to recover the data in priority order based on the number of packets
received per message. This report summarizes the results to date obtained from the PET project
and gves direction o on-going and further work. The paper describes the fundamentals of the
theory on which PET is based, the integration d PET with MPEG-1, some eperimental results,
and an application tod RTP-based, VIC-MPET, which alows encoding and playing robust

MPEG video streams over the Internet MBone.
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1. Introduction

Multimedia computing enables new applications such as video andemand, multimedia email,
documents and spreadsheets, desktop video conferencing, distributed virtual redlity, and
distributed interactive simulation. Being a powerful tool it will have a dramatic impact on social,
educational and businesscommunications:

“The trandtion to distributed multimedia applications will be more significant than the
transition to graphical user interfaces because it will have a greater impact on business
productivity and our personal lives.” (Prof. Larry Rowe, University of California & Berkeley,
1995

By introducing aptical fiber to transmit data a tremendous increase in network bandwidth has
been achieved, allowing widespread use of multimedia gplications. Wide area networks of
global dimensions off er ubiquitous accessto users not only in the research community but also
increasingly to businesses. Therefore network heterogeneity has become a major issue and
applications have to cope with interconnreded networks consisting o many sub-networks.
Computational power, bandwidth, storage and congestion control palicies may unevenly vary in

different network environment resulting in unavoidable congestion, delays and losses.
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Figure 1.1: Packet lossesin a multicast video session.

Figure 1.1 shows the packet loss per 100 measured at one receiving host during a network

video multicast session (generated by the multimedia tool nv') over the Multicast Backbone

! ftp://ftp. parc.xerox.com/net-research



testbed (MBone?) from Palo Alto to Berkeley. Note that the peak lossis 10 times greater than the
average lossof 4.5%.

The transmission d images, moving o still, requires an enormous amount of bandwidth
[Crowcroft et al., 99. Efficient compression algorithms have been developed but still network
traffic will be esily dominated by the video. Contrary to computer data traffic, a set of
mechanisms is required in arder to provide goad quality of service (QOS) guarantees. Strong
delay constraints challenge the design and engineering of communication systems. Circuit
switching techndogy imposes constant bitrate (CBR) utili zation of the assgned channels. Thus
video encoders are forced to generate a CBR stream, paying the price of varying picture quality
and unsatisfying bandwidth exploitation.

Packetswitched networks such as the Internet and wide area ATM networks provide a basis
for variable bitrate (VBR) video transmisson and constant picture quality. In ATM networks
VBR coding schemes may be implemented without sacrificing bandwidth utilization efficiency,
since bandwidth can be allocated on demand. However, VBR coding and transport introduces
other potential obstacles.

Video traffic is bursty by nature. Thus when many sources are transmitting at their peak rate
the available network bandwidth may be exceeded, causing buffer overflow at the switch and
packet loss Thus, packet lossis more likely to occur in bursts, rather than be evenly distributed.
Although some loss of lessimportant visual information may be acceptable, the introduction d
compression algorithms using source coding techniques and motion compensation may lead to
severe degradation in terms of picture quality when losses occur. Encoded bitstreams using
variable length codes (VLC) are very sensitive to losses, since the lossof a single bit forces the
decoder to discard information until the following synchronization sequence. In ader to
guarantee a minimum quality of service, priority mechanisms are desirable. The Moving Pictures
Expert Group (MPEG) has developed a widely used standard for video compression. Although
MPEGA does not provide scalability, it may also be viewed as hierarchically structured.
Reference frames (intra frames) carry the complete set of parameters needed for frame
reconstruction at the decoder, whereas other frames (inter frames) contain only information about
changes from these reference frames. However, some dforts have been made adding scalability
in terms of resolution to the MPEG4 hitstream. A two layered scheme over ATM has been
proposed, prioritizing packets in two levels: base layer and enhancement layer. The base layer

contains only low frequency DCT (Discrete Cosine Transform) coefficients and can be deaded

2 http://www.mbone.com



independently, whereas the enhancement layer carries high resolution deta that is only usable
when added back to the base layer. By separating the bitstream the bit rate per frame is increased
by approximately 20%. The network has to make sure that the base layer is transmitted over a
more reliable channel.

Several other approaches introduce network support in arder to cope with packet loss One
idea is based on retransmisson o discarded packets. Techniques sich as Automatic Repesat
Request (ARQ) have significant drawbacks, since they introduce additional roundtrip latency and
in a multicast scenario cause enormous complexity (e.g., scalability issues).

Alternatively, codes based on Forward Error Correction (FEC) traditionally focus both on
detedior/correction d errors and recovery of lost information. In a packetbased network, error
detedion/correction can be dealt with on a packet by packet basis. Thus, the primary use of FEC
by the application would be to recover lost packets. Traditional FEC permits encoding only on a
single priority level.

Priority Encoding Transmission (PET) [Albanese & al, 96] is an approach regarding the
prioritized transmisson of scalable messages over loss/ padetswitched networks. It allows a
user to specify priorities for different segments of data. Based on this hierarchical structure the
sender uses the system to encode the data into packets for transmission. The idea is that the
information is distributed over all the packets sent per message. However, each packet contains
relatively more information about the higher priority segments of the data. Hence the receiver is
able to recover the information in priority order, based on the number of packets received per
message.

This report adadresses the robust transmisson of MPEG video streams over MBone by using
PET techniques. Its main goal is to summarize and describe the research and the results obtained
from the PET project. Section 2 is amed at providing basic information about the MPEG41
standard. In section 3 a PET system using erasure coding techniques based both on properties of
(1) polynomials over afinite field and (2) Cauchy matrices is described. Sedion 4 merges PET
and MPEG. A way of packetizing MPEGA hitstreams is proposed. The basic idea is that
interframes (B) are lessredundantly encoded than reference frames (I and P). A PETMPEG-
simulation based on the first PET scheme is detailed by commenting diserved results with
different MPEG movie clips. Section 5 introduces the VIC-MPET multimedia tod and the PET-

API. Conclusions and directions of on-going work arefinally presented.



2. MPEG

MPEG?® is a compresson standard for audio, video, and data established by the International
Tdecommunications Union and International Standards Organization. The MPEG-1 standard
[1S011173, established in 1992 is designed to produce reasonable quality images and sound at
low bit rates (eg., 352x24 (288) images at 24-30 fps with VHS quality at 1.5 Mbps). The
MPEG-2 standard, established in 1994 is designed to produce higher quality images at higher bit
rates (e.g., 720x4& studio quality CCIR-601images at up to 15 Mbps).

Its devel opment therefore addressed the following features:
Random Access Fast Forward/Reverse Searches, Reverse Playback, AudioVisua
Synchronization, Editability, and Format Flexibility

The basic idea behind MPEG video compresdgon is to remove spatial redundancy within a
video frame, as in JPEG (the standard for still image compresson spatial redundancy), and
temporal redundancy between video frames. Motion compensation is used to exploit temporal
redundancy. The images in a video stream usually do ot change much within small time
intervals. The idea of motion-compensation is to encode a video frame based on aher video
frames temporally closeto it.

DCT

Ficture

block of 3x8 L
image samples Quant

Entropy @ IF; l;gth @ ZigZag <

Bitstream

Figure 2.1: Block Transfer Encoding, the basis of JPEG and M PEG encoding.

Image compression usually is achieved by applying several techniques such as sub-sampling

of chrominance comporents, quantization, frequency transformation by the cosine transform

3 http://www.mpeg.org/M PEG/



(DCT - Discrete Cosine Transform) and variable length coding (VLC) (see Figure 2.1). MPEG
additionally introduces motion compensation (MC) to exploit temporal redundancy, predictive

coding and picture interpolation.

2.1 MPEG4 Video Compression

A video stream is a sequence of video frames. Each frame is a till image. A video player
displays one frame after another, usually at a rate close to 30 frames per second (23.976, 24, 25,
29.97, 30). Frames are digitized in a standard RGB format, 24 bits per pixd (8 bits each for Red,
Green, and Blue). MPEG-1 is designed to produce bit rates of 1.5Mbps or less, and is intended to
be used with images of size 352x288 at 24-30 frames per second.

The MPEG-1 agorithm operates on images represented in YUV color space (Y Cr Cb). If an
imageis stored in RGB format, it must first be converted to YUV format. In YUV format, images
are also represented in 24 bits per pixel (8 bits for the luminance information (YY) and 8 bits each
for the two-chrominance information (U and V)). The YUV format is sub-sampled. All
luminanceinformation is retained. However, chrominance information is sub-sampled 2:1 in both
the horizontal and vertical directions. Thus, there are 2 bits each per pixel of U and V
information. This sub-sampling does not drastically affect quality because the eye is more
sensitive to luminance than chrominance information.

Sub-sampling is a lossy step. The 24 bit RGB information is reduced to 12 bit YUV
information, which automatically gives 2:1 compression. Technically speaking, MPEG-1 is 4:2:.0
YCrCb.

2.1.1 Coding L ayers

Asillustrated in Figure 2.2 an MPEG bitstream is built up of four major components. Pictures are
the equivalent of a single movie frame and represent the basic unit of display. There are three
different kinds of pictures, which are discussed later in more detail. A frameis divided into slices.

The dlices are the basic processing unit and provide fault tolerant access within a single
picture. Since they are independent, they may be coded in groups. A slice may be a single line of
the image or consists of any number of macroblocks. Each of them contains a header and six

component blocks: 4 luminance blocks and just 2 chrominance blocks (Figure 2.3).



| Pictwe | Picure | Picure |

| Slice | Sliee |  Slice |

| Macroblock ‘ Macroblock ‘ Macroblock ‘

| Block |  Block | Block |

Figure 2.2: MPEG coding layers.

Due to the characteristics of sensitiveness of the human eye, color information is ub-
sampled. That is, amacroblock of 16x16 pxds represents 4 blocks of luminance Y, but only one
block of chrominance blue Cb and one of chrominance red Cr. Squares of 8x8 [xels each are
called blocks, the smallest coding entity in the MPEG algorithm. Macroblocks are the units for

motion-compensated compression. Blocks are used for DCT compression.

Lurminance Y Chrominance Chrominance
Fed Cr Blue Ch

Figure 2.3: A macroblock in MPEG-1.

2.1.2 Coding Techniques

MPEG uses three different types of pictures:

» Intraframes (1), coded as a ill image;

* Predicted frames (P), predicted from the most recently decoded I-or Pframe;
» Bidirectionalframes (B) interpolated from the closest two I-or Pframes.

An Iframe is encoded independently from any other image (past or future frames), applying
techniques smilar to JPEG compresson each 8x8 Hock is first transformed from spatial domain
into the frequency domain using Discrete Cosine Transform (DCT), which separates the signal
into independent frequency band. Mast frequency information is in the upper left corner of the
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resulting 8x8 Hock. After this, the data is quantized. The corresponding coefficients then are
quantized in frequency order that is low frequency components are encoded more accuratdy than
high frequency ones. Quantization is the only lossy part of the whole compression process other
than sub-sampling. Additional compresson is achieved by variable length coding (RLE - Run
Length Encoding) of the resulting data in a zigzag adering. Each block is encoded
independently with the following exception: the coefficient in the upper left corner of the block,
called the DC coefficient, is encoded relative to the DC coefficient of the previous block (DCPM
coding).

Pframes generally refer to the most recent reference frame (past frame), which is either an |-
or a Pframe. Each macroblock in a P-frame can be encoded either as an I-macroblock or as a P-
macroblock. An [-macroblock is encoded just like a macroblock in an I-frame. A P-macroblock is
encoded as a 16x16 area of the past reference frame, plus an error term. They use motion
compensation on a macroblock basis. Encoded are motion vectors and error terms. The vedor
specifies the relative location o the macroblock within the reference frame, which matches the
oneto be coded best. A mation vector (0, 0) means that the 16x16area is in the same position as
the macroblock being encoded. The difference is expressed by an error term or in case of total
compliance is Kipped. In the latter case the reference macroblock is smply duplicated. Motion
vedors may include half-pixel values, in which case pixels are averaged. The earor term is
encoded using the DCT, quantization, and run-length encoding. The range for motion vedors
may be limited, since searching for the closest pattern is very time consuming. The search for
goad motion vedors (the one that gives small error term and goad compresgon) is the heart of
any MPEG-1 video encoder and it is the primary reason why encoders are slow.

A Bframe may be interpolated from past and future reference frames. So Bimacroblocks
may either use backward motion compensation (MC), forward MC or both, in which case the
16x16area is averaged (Figure 2.4). Bi-diredional frames therefore provide the highest amount
of compresson, but may not be suitable for all applications, since they require out of sequence

transmission, which leads to latency.
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Figure 2.4. Motion Compensation (MC) in P- and B-frames.
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Figure 2.5. Main MPEG coding loop.

2.1.3 Bitstream Hierarchy

An MPEG video is represented by a layered and ardered hitstream. The top layer is called

12

Figure 2.5 shows the complete coding loop for the MPEG algorithm. Note that the feedbadk loop
isonly needed for P-and Bframes.

sequence. Sequence delimiters encapsulate a movie. It aways darts with a sequence header
which contains essential information such as picture size, picture rate and bit rate. Eventually it
ends with a 32 bit sequence end code.




The header is followed by any number of Group of Pictures (GOP). A GOP (fig. 2.6)
provides random access since it is the smallest coding unit that under certain circumstances can
beindependently decoded.

GOP GOP GOP GOP GOP

Figure 2.6. MPEG-1 video stream.

Due to the variety of picture types, the design of a GOP is constrained by the foll owing
properties [ SO11173:

* Property 1. A group of pictures, in bitstream order must start with an [frame and may be
foll owed by any number of |5 P-or Bframesin any order.

* Property 2. It must begin, in display order, with an I-or Bframe and must end with an I-or
P-frame. The smallest GOP might consist of only a single |- picture, whereas the upper
bound is unlimited.

*  Property 3. It always begins with a GOPheader and either ends at the next GOPheader or at
the end o sequence.

Note that in case a GOP starts with a Bframe in display order, it cannot be decoded

independently, since it requires a reference frame of the previous GOP. In general, a GOP

visualizes the dependencies between the several types of frames within a GOP or even across

their borders. As mentioned before, there are two dfferent picture orderings: display order and
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bitstream order. The latter has to be different, since for interpaation the decoder first has to know
about the two reference frames, before he might evaluate the macroblocks within a Bframe slice.

Note that in bitstream order frames can only refer to past reference frames. In case the first
block of Bframes is interpolated, it depends on the Pframe of the previous GOP. The MPEG
standard provides a closed GOP flag. It denotes whether the GOP is open o closed. In the latter
case a GOP can be decoded without any references to previous groups. With respect to the
transmission of MPEG sequences over packetswitched networks, the closed GOP flag could
dlightly increase the fault tolerance of the bitstream.

Figure 2.7 shows the difference between bitstream order and display order. Frames usually
carry temporal references that denote the display order. In general bi-diredional frames change
places with reference frames. The very first GOP varies from the subsequent, since two
references are neaded in arder to decode the first block of Bframes. However, the |+rame and
the P-Frame at the beginning is a kind o initialization and therefore usually is not displayed at
all.

Another point worth mentioning concerns the size of the frames. There is no such thing as a
fixed size for all three frame types. The Iframe size can vary in the different GOPs of a video
sequence depending on the scene content. The sizes of P-and Bframes can vary even within a
GOP. In addtion the MPEG1 standard allows the pattern of 15 P- and Bframes to vary
dynamically between different GOPs although thisis usually nat done.

' ' Birsrream Order

IPBEBPBBIBBPBBIBBPBEB
O L r L,

Displav Order

1
1
1
1 1
IBBPBBP:BBIBBP:BBIBBP

Figure 2.7. Bitstream order vs. Display order.
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3. PET (Priority Encoding Transmission)

Priority Encoding Transmission (PET*) [Albanese ¢ al., 96; Albanese d al., 96; Lamparter et
al., 95 is an approach introducing a method for sending messages over a lossy packetswitched
network according to a user specified prioritization scheme. It focuses on fault tolerant
transmission, especially suitable in case of unpredictable padket losses. Its design is independent
from any spedfic scalable application. The basic idea is that the source assgns different priorities
to different segments of data resulting in a multilevel redundancy distribution. The information is
distributed over al the padkets snt per message. However, each packet contains relatively more
information about high priority data. Hence the destination is able to recover the information in
priority order based on the amount of packets received per message.

In this chapter, two PET systems are described. The first uses erasure coding techniques
based on paynomials over a finite field. The latter exploits erasure coding techniques based on
Cauchy matrices. In the first paragraph the notion o erasure codes is briefly introduced. The
second paragraph describes basic properties of polynomials over finite fields, whereas the third
one introduces the Cauchy matrices. Finally, a possble implementation of a PET system is
highli ghted.

3.1 Erasure Codes

Let us assume a message M consists of b words of length w each. Consequently the message
length m adds up to m = wh. Message M is redundantly encoded into code E(m) with length e =
nw, where nzb. E is called an erasure code if the original b words can be reconstructed from any
b words of the encoded message E(m) (together with the indices of the b words of encoding)
[Luby et a., 97].

Figure 3.1 displays a message M and the correspondng code E. The b words can be
recovered from any subset of b words of the total encoding. Two examples depicted by the
continuous/dashed line are shown in Figure 3.1.

A possible implementation of erasure codes consists in viewing the b words as the coefficients of

a polynomial of degree b over afinitefield. This method is described in the following sections.

* http://www.icsi.berkel ey.edu/~fortino/PET/index.html
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Figure 3.1. Erasure codes.

3.2 Polynomials over a Finite Field

3.2.1 Fundamentals on the Galois Field

There are two different types of finite fields or Galois fields (GF) [Albanese & al., 96]: Prime
fields GF[p] and extension fields GF[p™] where "p" denotes a prime number and "m=2" a positive

integer. Respectively they consist of g = p or q = p™ dements, which in the latter case can be

considered as polynomials of degree m- with coefficients a; LIGF[p]:

a, +ax+a,x’+..+a,  x""

In Galois field GF[p] operations are calculated modulo p, whereas in Galais field GF[p™ an
irreducible polynomial p(x) is needed, so calculation is done modulo p(x). The arithmetic in
extension fields is more complicated than in prime fields. Therefore an erasure code implemented
in a prime field was considered to be more suitable for the proposed purposes. One way to realize
erasure codes consists in viewing the b words of message M as the coefficients of a polynomial of
degree b1 over a suitable chosen field. Code E then is built up by n polynomial values evaluated
at different field dements. Hence, from any subset of b pdynomial values (and the corresponding
field elements at which they are evaluated) the original message can be determined by
interpolation.
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As an example it is assumed that 4 integer values (1,8,5,3) should be transmitted. Since al 4
values are less than 9, they can be considered as dements of Galois field GF[9]. Now the 4-tuple
(1,8,5,3) denotes the coefficients of the polynomial p(x) mod 9. It is obvious that from any 4
values p(i) evaluated at different field dements i the original polynomial p(x) can be
reconstructed by interpolation. The redundancy is set by transmitting more than 4 pairs (i,p(i)).
Consequently in Galois fiddd GF[9] a maximum of 9 different pairs might be created. All

calculations are done modulo 9.

(1, 8 5 3]

p(X) =1+8x+5x* +3x°

p(0) =1+8(0) +5(0)° +3(0)° =

p(D) =1+8(1) +5(1)* +3(1)° =8

P(2) =1+8(2) +5(2)° +3(2)° =7
p(3) =1+8(3) +5(3)° +3(3)° =7
P(4) =1+8(4) +5(4)* +3(4)°> =7
p(5) =1+8(5) +5(5)* +3(5)° =5
p(6) =1+8(6) +5(6)° +3(6)° =4
p(7) =1+8(7) +5(7)* +3(7)° =8
p(8) =1+8(8) +5(8)° +3(8)° =4

GF[9] Mod 9

Figure 3.2. Polynomials over Galois field GF[9]

3.2.2 A possible Galois Field for a PET System

Assuming the system uses words of length w = 16 bit or 2 bytes each, they might be considered
as coefficients of a polynomial over the extension field GF[2'°]. However, from a computational
point of view it is preferable to use a prime field. The Galois field GF[2'°+1] is a prime field
covering the range that can be represented by 16 bit words. Multiplications within this field can

be reduced to a constant number of integer arithmetic operations, shifts and comparisons.
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However, the value is not representable by 16 Lts, but obviously may be one of the paynomial
values evaluated at different field elements. Therefore in order to avoid overflow a PET system
has to provide an additional feature.

In case the list of transmitted polynomials contains the element, an dfset € has to be defined
which makes surethat the range representable by two bytes is not exceeded. The offset per packet
is determined by browsing the transmisson data for a value that is not a member of the data
within the same packet. Then all values small er than the off set X < € are mapped orto themselves
x =xandall values x > € are mapped orto x = x41. Consequently within each packet, 16 Lts have
to bereserved for the off set.

16

12

. ]
7
offset € 6

T \»5

4 > 4

3 > 3

2 > 2

1 - ]

0 = ()

Figure 3.3: Representation of Galois field GF[2'°+1]

3.3 Cauchy Matrices

Cauchy matrices [Bloemer et al., 95] can be used to implement linear, systematic codes, i.e.,
the encoding is a linear function o the message and the unencoded message is part of the
encoding. MDS codes based on Cauchy matrices are a variant of Reed-Solomon codes [IETF
draft FEC].

Packets contain b words consisting d w = 32 hit. For a code over GF[2], a message of m
packets is then considered to be an (mbx32)-matrix M over GF[2].
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Since typically the encoding size is only a constant multiple (0..5) of the message size the last
property helps implementing an efficient encoding procedure for these codes. On the encoding
side running time is achieved that decreases with the amount of unencoded message received.
Since often the encoding is moderately larger than the message itself, this is one of the reasons
the decoding procedure runsin real-time for bit rates up to a few Mbps.

However, the main gain compared to the method based on the evaluation and interpolation of
polynomials is achieved by using a well-known representation of dements in finite fields of the
form GF[2"] by (LxL)-matrices over GF[2]. This allows to replace arithmetic operations on field
elements by XOR’s of computer words and in practice XOR’s of computer words are much more

efficient than multiplications in finite fields.

3.4 Basic Design Consider ations

3.4.1 Data Partitioning

The first step in constructing a PET system is partitioning the transmisson data [Leicher, 94].
These portions are the basic units, called messages which are encoded one at atime. A message
then is lit into user specified priority segments. A segment is divided into blocks. Each block
represents a polynomial of degree (block length) -1. Within each segment all blocks gould have
the same length in arder to meet the given priority. Then each block is encoded separately by
using erasure codes. The n polynomial values of the easure code E(m) are dispersed into n
packets. Each packet therefore contains only one polynomial value represented by a single word.
The field element varies from padet to packet, but within a single packet all poynomials are
evaluated at the samefield element.
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Message

Segment S1 52 53

Block BLL, Bl2 B2l B22 B3l B32

—_— e e

Packets \

offset L GH(IJ 612(1) Gzl(l) 622(1) 631(1) 632(1)
offset 216 {(2) G, {(2) G, {2) G, {2) Gy, {2) Gy {2)
offset 3 GH(E) 612(3) 621(3) 622(3) 631(3) 632(3)

Field element ¢

AN

offset i |Gy (n) |Ga(n) |Gy () |Gypyin) |Gy (n) |Gyyin)

Figure 3.4. Message striping process.

Figure 3.4 shows an example message partitioned into three priority segments and striped into
packets of equal length. Note that the maximum number of packets which can be sent is 2'°+1,
the size of the Galois field GF[2'°+1].

The smallest entity is aword w of two bytes. The priority of a segment is expressed by the length
of its blocks. Hence the smaller the blocks, the higher the priority. Obvioudly in cur sample
message segment S1 has the highest priority, followed by S2 and S3. Consequently blocks
B11B12 consist of two, B21B22 of three and B31B32 of four words. G (i) denotes the value
of the corresponding polynomial of degree equal to (block size) -1, evaluated at the field € ement
i (indices s and b identify the segment and block respedively). Within each packet all
polynomials are evaluated at the same field element. Hence B11B12 can be reconstructed from
any two packets, B21-B22 from any three and B31B32 from any four packets. By sending =6
packets B21 nav would be encoded with 50% redundancy, i.e., it can be recovered from any 50%
of the transmitted packets. Each packet additionally carries at the beginning the offset discussed
above and thefield dement i.
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3.4.2ThePriority Table

One of PET's basic design principles is that the priority function is edfied by the user or the

application. Based on this distribution the message is divided into segments. A simple and

flexible realization consists in specifying priorities in fraction of packets needed to recover the

segment. Regarding the previously discussed example (fig. 3.5), apossble user defined table may

ook as foll ows:

Segment size (word)

Fraction of packets needed to recover

S1=4 0.333
S2=6 0.500
S3=8 0.667

Table 3.1. Priority tableinfor mation.

The number of transmitted packets (n) is %t to 6. Consequently even though segment S1

encompasss only 22.22% of the total message it covers a third o the encoding. Since any pair of
packets is aready sufficient to recover S1, an overal overhead o 200% for S1 is ent. The

corresponding values for the other segments are listed below in priority order:

Segment size Fraction of message size Transmitted redundancy
S1=4 22.22% 200%
S2=6 33.33% 100%
S3-8 44.44% S0%

Table 3.2. Information distribution.

The total encoding length adds up to two times the length d the original message, not included

the overhead for the offset, field element and the priority table.
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4 Prioritized Encoding of MPEG Sequences

4.1 Motivation

Priority Encoding Transmission (PET) [Albanese et al., 96] is designed to be an independent
interface between a packet-switched network and any scalable application. The latter has to
provide a priority scheme according to which PET is able to assign redundancy. In this chapter a
scenario which should demonstrate the feasibility of the design considerations is introduced and
simulation results with MPEG sequences are described. The focus of this work is on the recovery
of information sent over alossy medium. It has to be pointed out once again that PET is not only
limited to this proposed application but is also aimed at coping with any scalable data.

From an information theoretic point of view MPEG video compression represents a source
coding scheme. Even though PET does not provide error correction, it can be considered as a kind
of channel encoding. Compared to systems based on Forward Error Correction (FEC) codes, PET
uses less redundancy overal, since the redundancy is unevenly distributed. Concerning the
network, a single channel reservation is proposed. In case the data is already layered, it should be
multiplexed onto a single channel (fig. 4.1).

CESLS — Mux (TN (T, S

base layer —

Figure 4.1. Multiplexing of layered data onto a single channel.

Due to the rapid development of multimedia applications, there is an increasing need for
video compression techniques. So far, most applications use Motion JPEG, which is considered to
be more fault tolerant. Only by introducing P and B frames, MPEG provides higher compression

rates than JPEG, but at the same time makes the bitstream even more vulnerable to losses:

Figure 4.2 displays a MPEG-1 bitstream affected by lost packets. Note how the image is mixed
up from several frames. Macroblocks are not correctly replaced or use the error term in
combination with an affected reference frame. Usually affected macroblocks might only vary
dightly from the original, but their blocky character distorts theimage.
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Figure 4.2. L osses affecting MPEG.

The MPEG video compression standard is considered not to be suited for transmission over
packet networks, sinceit was designed for storage of video. However, protected by a PET system,
requirements for transmission over a packet-switched network could be met by increasing the
bitstreams fault tolerance. Video traffic is bursty by nature and therefore affects the stability of
packet networks. In order to cope with losses there is an increasing demand for scalable video.
Scalable extensions have been added to the succeeding MPEG-2 standard, but do not promise to
be very effective. MPEG-1 has become very popular and many software as well as hardware
coders are emerging. It does not provide scalability on a picture quality basis, but the
dependencies between different types of frames provide a priority scheme for PET. Since the goal
was a feasibility proof of PET as an independent interface, coding techniques, such as
customizing MPEG encoders do not need to be changed. Even though the granularity in this case
might be limited to a frame basis, MPEG-1 provides a good basis for a prdiminary PET

simulation.
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4.2 Segmentation of MPEG Sequences

A MPEG (see §2) video sequence is composed of sequence headers and groups of pictures
(GOP). Header information usually has to be especially protected. It might be transmitted only
once at the very beginning and end of a sequence. It not only identifies a bitstream as a MPEG
movie, but also contains the following essential parameters set by the encoder:

. Horizontal/Vertical Picture Size

. Pel Aspect Ratio

. Picture Rate

. Bit Rate

. Constrained Parameter Flag.

As shown in Figure 2.6 losses within an |-frame at least affect a whole GOP and in most
cases as well the first block of B-frames of the succeeding GOP. Therefore it is obvious that
within a GOP an I-frame has to have highest priority. This segment should also encompass GOP
header information, since without the corresponding I-frame it is of no use either. B-frames
require an additional reference frame in order to be correctly decoded. This reference usually is a
P-frame which itself is dependent on the previous I-frame. Consequently P-frames should have
higher priority than B-frames.

A possible way to encode MPEG s to prioritize over a whole GOP and map it onto a PET
message. At the very beginning the message might also contain sequence header data. This
solution has a certain drawback, since several frames have to be buffered first and therefore
latency is added to the system. Hence in this version it might not be suited for interactive video
conferencing applications, but several other scenarios such as broadcasting of conferences and
Video on-Demand (VoD) systems should be taken into consideration. Nevertheless in case of a

small number of framesin a GOP, it might also be applicable for interactive usage.
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GOP | B | B

PET-packetd | - |- - -} - - -} - - - - - .
PETpacket2 | - ] - @ _} - —} - - - .. ______.
PET-packet3 | - | . > _} - @ }----- - - ...
PET-packet4 | - |- & |- &}------ - ..
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5= |ES
+Z |8 '-"_‘D_ B-frames N kilobytes
L 2 (Np Kilobytes)
PET-packet n_L I VI B /# __________
Header Redundant Redundant Redundant
Information part for Hrame  part for P-frames patt for B-frames

Figure 4.3. lllustration of the coding process that is effectivein PET.

4.2.1 Redundancy distribution

A typical MPEG-GOP frame pattern is considered:

IBBPBB

Regarding a picture size of 320x240 pixels, Table 4.1 shows representative frame sizes:

FrameType | SizeinBytes | Occurrences | Total Size Fraction Encoding
in GOP Needed

|-Frame 12000 1 12000 60% 20000

P-Frame 4800 1 4800 80% 6000

B-Frame 2850 4 11400 95% 12000

Total 6 28200 38000

Table4.1. Typical frame sizes.
Priorities are expressed by fraction of packets needed to recover the original information.

According to the above considerations, the I-frame might be encoded in a way that it can be

recovered from any 60% of the total humber of packets sent, the P-frame from any 80% and the
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two blocks of B-frames from any 95% of the packets. The very first message includes a fourth
priority segment, which contains important header data. It might be encoded highly redundantly,
S0 it can be reconstructed from any 10% of the packets.

Figure 4.4 displays this multilevel encoding example. Note how the total overhead is
unevenly distributed over the data. Although the original message is 74.21% the length of the
total encoding, 60%, 80% and 95% of the encoding is sufficient to recover thel-, P- and B-frames

respectively.

GOP pattern: IBBPBB

40000 | ! | x 1135

36000 |- e e— -

30000 f-or s e s

£5000

20000

Bytes

15000

10000

EQ00

|-frame P-frame AxB frame Total

Figure 4.4. Multilevel redundancy distribution.

4.2.2 Priority Table Setup

The priority tableis to be set up by the application. It should be structured as simple as possible in
order to simplify the communication process with the PET interface. There are three mgjor
features, the interface has to know about:

. Number of priority segments
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. Length of each segment
. Priority of each segment
A fixed number of 10 segments per message was considered to be enough for most MPEG groups
of pictures. Each segment consists of either only header information, a single frame or a block of
frames.
Priorities are inserted by fraction of packets needed to recover, multiplied by 1000.
Consequently, 750 correspond to 75%. Returning to the example pattern, the priority table looks

as follows:

Segment 12000 5700 | 4800 | 5700 | Not | Not | Not | Not | Not | Not
Size used | used | used | used | used | used

Priority 600 950 800 950 / / / / / /

Table4.2. Priority table for mat.

Note that the groups of two consecutive B-frames form one priority segment. In total 20 values
are passed in a zig-zag ordering (arrow) to the interface, even though in this case only eight are
needed.
With respect to mapping the group of pictures onto packets according to the priority table, the
following artificial scenario is considered:
. Packet size 190 words (380 bytes).
. Total number of packets sent: 100;
Packets might be considered to be UDP packets on top of an IP protocol. The total amount of
packets sent is determined by the quotient of the total encoding of 38,000 bytes (Table 4.1) and
the packet size. In order to meet the priorities specified in Table 4.2, the |-frame segment has to
be encoded such that it can be reconstructed by any 60 packets (60% of the total amount of
packets sent). Therefore the segments have to be divided into blocks of size 60 (polynomials of
degree 59) for the I-frame, 80, and 95 for the other segments respectively. Figure 4.5 shows the
striping procedure for the given example and the partitioning of. Note that this works exactly only

for the given valuesin this example.
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4.3 Softwar e Ar chitecture

Since Priority Encoding Transmission is designed to be compatible with any scalable application
or type of network, it should beimplemented as an easily exchangeable interface. An architecture
in which the interface consists of two modules was introduced [Leicher, 94]: an application
module handles the video data and passes a whole message at a time together with the priority
tableto a PET coding module. The latter creates the corresponding amount of packets needed and
maps the message. On the decoding side, the PET coding module collects the transmitted packets,

Figure 4.5. Striping process.

recovers the information and passes the video data to the application module (Figure 4.6).

28




PET Coding
Module

Pria_ralet ) | TPFES L biscream

M_=ncodat ) Alioat

M createt) pplication

M_pactat ] MWcdule

i) ki o MPEG_drivert)
- v,

M_datetat ] priority table Parse mpegt]

I Pai_calo]
pachets
Underdying Metwork Protocols

hetelogenecus
netwaork

PET Coding

Module
Pria_cals) g
M_encodsf — H
sznmmfjj Application |§
M_packerf) blodule '%
ﬁ'ﬁgﬁ;f / message | wpeG driver) | G

- ) Farse_;rpegf f

T Pat_ralef) —
paclets
T Underlying Metwork Protocols

Figure 4.6. System Ar chitecture.

The application module consists of the following routines:
MPEG driver() identifies the bitstream as an MPEG sequence and provides the user
interface. The user might initialize the priority settings for the different frame types and

header information. The size of the priority table could also be customized. According to the
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picture size and GOP length it allocates memory space for the message buffer. All other
routines are invoked by MPEG_driver().

Parse_mpeg() parses the hierarchical bitstream, whil e reading a GOP into the message buffer.
It decodes the different priority types and all ocates a linked list that stores relevant data such
as sze, positionin the buffer and rumber of frames about each segment.

Pet_calc(). After a message is buffered MPEG_driver() calls Pet_calc(). According to the
user specified prioritiesit fills in the priority table as gown earlier in Table 4.2. It also hasto
make sure that the message is word aligned, since this is the basic processing unit of the
coding routines. Therefore in case a segment boundary is not word aligned it performs a zero
byte stuffing.

The message and table are then passed to the PET coding modul e that encompasses the following

routines:

Prio_calc(). With respect to Figure 4.5 akind o “internal priority table” has to be determined
by Prio_calc(). Itsinput is the user-specified priority table, packet size and message size. The
“internal table’ has to have the size of a packet. Returning to the previous example its first
value then would be 60, the size of the first message block and degree of the correspondng
polynomial. How to fit in these values exactly into a packet and how many packets to send
for amessage wil | be discussed later on.

M_encode() then performs the actual encoding according to the internal table over the Galois
field GF[2'°+1]. It evaluates the polynomials and determines the offset. Up to now packet
sizes are asaumed d a couple of a hundred bytes, so the priority table is transmitted uncoded
with eadch packet. Additionally the Galois field element and dfset contribute to the total
overhead (Figure 3.4).

These are all the routines needed on the encoding side. From the destination point of view the

focus is on the recovery aspect:

M_create() allocates memory for the message to be reconstructed and initializes the
interpolation routines. This gace later will be gased by invoking M_del ete().

M_packet(). Each arriving packet is passd to M_packet(). Depending on the fraction o
packets received it tries to regain the original information by interpolating the paynomials. In
the current version the granularity of recmvering is limited to priority segments, i.e., at least
60% of all packets are nealed to recover some useful data.

M_retrieve() compares the amount of received packets with the priority table and accordingly

erases undecodable data. For simulation reasons it also calls ancther routing,
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e create_dummy_b(), which replaces lost frames with dummy B-frames in order to keep the

same number of images in the bitstream.

4.4 Simulation experiments

Primarily, PET has been applied to perform simulation and analysis of the resilience of an MPEG
stream PET encoded. In a particular sample stream, a side-by-side comparison of MPEG stream
encoding with and without PET demonstrates the dramatic improvement of picture quality due to
PET, using only 24% redundancy on top of the standard MPEG data. For this particular group of
pictures and frame sizes, this represents a more than 5 fold reduction in transmission rate over the
JPEG mode to achieve comparable quality.

For the particular example stream, priorities were assigned in a way that header information
can be recovered from any 10% of the encoded packets, | frames from any 60%, P frames from

any 75% and B frames from any 90%. Computing the redundancy distribution:

120

x1.23 O Overhead
B \Jessage

100

B0

60

40

20

|-frame  P-frame B-frame Total

Figure 4.7. Redundancy distribution.

A total overhead of 23% enables the I-frame to sustain losses of 40%. Respectively P-frames
sustain losses up to 25%, B-frames up to 10% and important header information up to 90%.
In the following two demonstration MPEG streams, encoded packets were randomly thrown

away in order to simulate a lossy medium. The following viewgraph shows the number of packets
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sent and received per message. The MPEG sequence "Red's Nightmare' was encoded into 41
messages, encoding one whole GOP at atime. A GOP consists of 1 | frame, 2 P frames and 27 B

frames. The whal e sequence encompasses 1210frames and the padet size was st to 2000 lytes.

# of packets FedsMightmare
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Figure 4.8. Packet loss statistics.
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Figure 4.9. Packet loss statistics.
On the destination side the received packets were decoded and missing frames were substituted

by "dummy" B frames that repeat the last correctly decoded frame. MPEG clips demonstrating
theresults can be found in hitp://www.icsi.berkeley.edu/PET.
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5 PET implementation

5.1 Striping process

Given a message consisting of message parts with the corresponding priorities, the PET algorithm
must map this onto packets in such a way that the PET guarantees are satisfied. For instance, if
the user requests that a given message part of size 10KB is sent with priority 80%, then the
message must be encoded in such a way that from any 80% of the packets sent, that part of the
message will be recoverable [Lamparter and Kalfane, 95].

PET first appends the priority table to the beginning of the message, since it must be sent
with the message, and creates a hew priority table that contains an extra entry corresponding to
the priority table and its priority. Then the different message parts are sorted according to their
priority, and message parts with identical priorities are concatenated, so that round-off errors in
satisfying the priorities will be minimized. This yields yet a new priority table, with shorter
length, since some message parts will be concatenated, and with entries sorted from lowest
priority (i.e. highest redundancy) to highest priority. The decoder will be able to reconstitute the
original message, as the original priority tableis sent with the message, and from this table, all the
modifications to the priority table can be reconstructed.

The final priority table is the input to the striping algorithm, which also takes as input the
length of the packets, and the length of each packet segment. A packet segment is the basic
element used by the erasure code to encode the message. For instance, in the case of the
polynomial scheme, it is just 2 bytes, which is the space required to store an element of the finite
field GF [2'°+1]. In the case of the Cauchy scheme, the segment size is 4 bytes times the
dimension of thefinitefield as an algebra over GF.

The larger the segment size, the larger the round-off errors will be in trying to satisfy the
priorities for the message, as the packet can be broken up into fewer segments. Since a whole
number of segments must be assigned to each priority level, a fraction of the last segment for
each level might be wasted because of round-off error. Additional information could be sent for
this priority level without using any more segments, by adding enough information to fill the
wasted fraction of the last segment. In the striping algorithm, the number of segments needed for
the lowest priority level first is computed. Then it is determined how much extra information
could be sent without using any more segments, and that amount of information is sent from the
next priority level together with the current message part. This means that some of the

information from the second priority level will be sent at a lower priority level than what was

33



required by the user. In fact, this choice does not hurt the PET guarantee, as it means that the
information will be recovered from fewer packets than the user had asked for. Then the size of the
second message part is decreased by the amount that has been sent at the lower priority level, and
it is kept on doing so for each priority level. Hence, for al but the last priority level, full use of
each segment of the packets is made, by sending less important information at a lower priority
level than required. This helps us to lower the round-off errors that occur in trying to satisfy the
priority table.

Given k message parts, each of size L; bytes and of priority P, , where P, is expressed as a
floating point number between 0 and 1, and P, < P4, and a packet consisting of S segments of
length | bytes each, the striping algorithm is asfollows:

1. Compute the theoretical encoding size, which is the size needed to encode the message if

there were no round-off errors. The encoding sizeis given by:

k L
E = Z _ ;
=1 P|
This gives the minimum number of packets needed to encode the message as:
_OEC

NS

2. Starting at:

vz EC
=E
and incrementing N by 1 until the priority table can be satisfied, do the following steps:
(@) For i ranging from 1 to k, do the following steps:
i. Compute the number of message packets for this priority level:

m =[BN[;
so that the associated message parts will indeed be recoverable from any P,
fraction of the packets.
ii. Compute the number of segments needed for thisleve:

O C
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iii. The total amount of information that can be sent with this number of segment is s x
n;, so send (s x n)-L; info from the next level, and decrease L;.; by this amount. If i=k,
i.e if it isthe last level, then no information can be sent from the next level, so some of
the segment will be wasted.

(b) Compute the total number of segments used:

If T>S, then all the priority levels cannot be satisfied with this number of packets.

5
MPEG sequence header \:O% 60% 0% 0% W% 0%
H I—frame B, | B P B, | B
¥ y %‘ Y ¥
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priority table clear text
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Packetheaders redundant information

Figure5.1. Sorting and striping of MPEG messages.

5.2 Packet for mat

The format of each packet follows the striping processes described in the previous paragraph
[Lamparter and Kalfane, 95]. Each PET packet (see fig. 5.2) consists of a header and the priority
levels. Thefirst priority level is special, because it has the priority table at its beginning. To find
out the values of the other priority levels when decoding a message the priority table has to be
extracted first.
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(including Priority Table)

Figure5.2. PET packet for mat.

Each header contains the necessary information to decode the first priority level: n_packets (total
number of packets), pp_tab (priority of the priority table) and priol (priority table length). As
soon as enough packets have arrived, the first priority table can be decoded. The first part of this
decoded message block is the priority table.

Even if there are nat enough packets to decode the first priority level completely, sometimes
it is gill possble to deaode the priority table: the encoding scheme guarantees that the message
itsdf isin the first packets as clear text, whereas the redundant information is in the last packets.
Usually the priority table contains too few bytes to fill the first priority level completely. If the
first few packets have arrived, the priority table is found as clear text in those packets. This gives
the application at least the type of each o its priority levels.

The header of each PET packet contains the following information (see Figure 5.2):

» version. The PET version used,

e ID. Anidentifier for the message. The sender of the PET packets is responsible to provide a
unique identifier for each message sent. Because there are only 256 dfferent Ids available,
the protocol between sender and receiver must ensure that the receiver has never an old
message with the same ID in his memory. In rare case of very high losses it may occur that
thereceiver gets confused by two messages with the same ID. Therefore, PET performs a few
consistency checks on the received packets. If one of the fields n_packets, pp_tab, or priol or
the packet length doesn’'t match, PET refuses to acoept the packet. The receiver should then
abort the current message and hand the packet again to PET;

* seg _no. A sequence number within the current message;

* n_packets. The total number of packets in this message. This and the next two values are
needed to extract the priority table;

e pp_tab. The priority of the priority table;

* priol. Thelength o the priority table;
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5.3 Data Structure

There are two basic data structures in PET: the priority table (PETpriorityTable) and the result
table (PETresultTable).

The priority tableis used during the encoding stage to store information such as the lengths of
the different message parts and their corresponding priorities. The information in the priority
table is used during the decoding stage by the receiver to compute how the message parts are to
be recovered from the received packets. The priority table is itsef encoded into the packets, and
is decoded on the receiving host before the message parts can be recovered. The result table is
used only during decoding to get exact information about which message parts are recoverable
and which message parts the application is asking PET to recover.

5.3.1ThePriority Table

An entry of the table consists of the following fields:

* int prio. Definesthe priority. The message part can be completely recovered, if at least prio%
of the packets arrive at thereceiver.

* int length. The length of this part in bytes. The maximum length is defined as
PET_MAX_PRIO_LENGTH. In the current version this value is 2*2-1=4.294.967.295.

e char type. The application may send one byte of descriptive information for each message
part in the priority table. In MPEG thisis used to transmit the frame type.

* u_char *data. A pointer to the data field of this message part (for encoding purposes only).

The following fields are used only at the receiving side. PET updates this field each time it

receives a new packet:

* int minpackets. Number of packets needed to recover this part completely;

* int recoverable. Trueif this part can berecovered;

* int cheapRecover. True if the recover process is cheap, i.e, the flag is true when PET can
decode this message part without evaluating redundant packets.

e int recoverTime. PET calculates a prediction of the CPU-time needed to recover this part.

Thetimeis given in psec (not yet available feature).

5.3.2 The Result Table

This table is used when the application decides to ask PET to retrieve the message (or parts there
of). The application allocates memory for this table and fills in much of the information, although
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PET fill s in some of the information. The structure of this table must match the structure of the

corresponding priority table. Each entry consists of the following fields:

» int recover. Set to true by the application if it wants PET to recover this message part.

e intvalid. Set to true by PET if this part was recovered completely.

 int length. Thelength o this message part in bytes’.

« char type. The application provided descriptive byte of information’.

e char * data. The data of the message part (Set by PET, pointing into a goplication provided
piece of memory).

Some applications may want to evaluate portions of a message even if the message part wasn't
recovered completely. The following fields deal with this issue. They are only valid if the part
wasn't recmvered completely, i.e. the valid field is false. They contain exact information d valid
andinvalid portions of the message part. All invalid portions are set to zero. Unlike the rest of the
result table, PET allocates memory for this additional portion o the result table and fills in the
information.

* int Lsegs. Size of a segment in bytes. Segments are the internal units with which PET deals.

* int Nsegs. Number of segmentsin this part (partial and complete segments).

» int Ngoodsegs. Number of recovered segments.

* int offset. The message part usually starts partway into the first segment that contains
information about the part. This is the offset into the first segment where the message part
starts (see Figure 5.3).

* int *Reclndex. An array with a boolean value for each segment. The value is true, if the
segment was recovered, false otherwise. Attention: These values are undefined after
destroying the correspondng message. A given bytej in a message part is valid if and only if
Reclndex [(j+offset)/Lsegs] istrue.

® Thelength and type field is a copy of the ones in PET priorityTable. They were added for the convenience
of the application programmer.
® The length and type field isa copy of the ones in PETpriorityTable. They were added for the convenience

of the application programmer.
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Figure5.3. Partial losses of message parts.

5.3.3 PETmessagel D

The PETmessagelD is a simple integer variable in the range 0..255. It is used to dstinguish
between several messages arriving from one sender. This snder is responsible for choosing
appropriate ID's. If there are more than one sender, it isimportant that the receiver opens a unique
PETdecoder for each sender. If two senders are using the same PETmessagel D at the same time,
PET will get confused.

5.4 PET encoding

Thereare only 2 functions for the encoding o a message:
*  PETnumberOfPackets
* PETencode.

5.4.1 Calculation of the packet number

The application has to allocate memory for the packets to be later filled in by PET. In ader to

know how many packets are needed for the given message:

int PETnumber OfPackets(  PETpriorityTable*, int prioLength,
int priopriotab, int *packetL ength)

The meaning d the parametersis asfoll ows:

* int PETnumberOfPackets(...) returns the number of packets needed to encode the given
message;

» PETpriorityTable* pt. A Priority Table (TP) as described in Sedion 5.1;
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* int prioLength. Length of the priority table;

* int priopriotab. The priority of the priority table. The priority table is encoded in the packets
in the same way as the message parts. PET insures that the actual priority of the priority table
is set at least as high as the priority of any message part. For example, the application may set
the value to 100 (i. e., no protection) and then PET would automatically re-adjust this priority
to the highest leve specified for the message parts;

* int *packetLength. The application gives PET the maximum length of a packet. Because of
the internal organization of the data (segmentation) sometimes PET cannot use the full length
and will return the used length of the packet here.

PETnumberOf Packets() uses only the fields length and prio of the priority table.

5.4.2 Calculation of the packet number

After allocating the memory for the packets and setting the data pointers in the priority table, the
application may use PETencode() to encode the packets:

int PETencode( PETpriorityTable* pt, int prioLength, int priopriotab,
int Messagel D, Number **packets, int Npackets,
int packetL ength )

* int PETencode() returns true if no error was found and the encoding was done correctly,
otherwiseit returns false. Possible errors are: Message part too long, an invalid priority, or an
incorrect number of packets;

» PETpriorityTable* pt. The priority table should be the same as in the call to
PETnumberOf Packets(), but additionally the data pointers must be filled in by the application
and the application may also fill in the typefield;

* int prioLength. Same as above;

* int priopriotab. Same as above;

* int Messagel D. The sender is responsible for assigning a unique id to each message. If there
are only a few messages active at any point in time, the application may cycle through a
limited number of ids. If many messages are active at once, the application may require a
larger range of message ids. A typical solution is for the sender to cycle through the message
ids O through 255;
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e Number **packets is an array of pointers to memory for the packets. The memory must be
aligned to multiples of four bytes;
* int Npackets is the number of packets in the array of packets. PET checks if this number

corresponds to the number of packets needed to encode the given message.

5.5 Typical sender behavior

Usually the sender loop looks like as follows:

MessagelD := 0
forever
collect data for the message
set priorities and lengths in the priority table
call PETnumberOfPackets()
alocate memory for the packets
set data pointers and typefields
call PETencode()
send the packets
free the packets
Messagel D := (Messagel D+1) % 256

5.6 PET decoding

The process of decoding is somewhat more complicated. The receiver has to collect the packets,
hand them over to PET, and at some point decide to decode the message. The application also has

to distinguish between several senders.

5.6.1 Opening a PET decoder

To take care of several senders, the application opens a PET decoder for each sender:

PETdecoder * PET openDecoder ( unsigned int flags, PET option *po)
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PETopenDecoder() uses the same structure to initialize as PETinit(). Unset values are fill ed with
the value given in PETinit(). It is permitted to use the NULL pointer. The function returns a
pointer that is used in call s to decode routines of PET.

5.6.2 Processing Received Packets

For each packet received the application calls a processng routine:

PET messagel D PET processPacket( PETdecoder *pd, Byte * packet,
int length, PETpriorityTable** pt,
int *prioLength, int *MessageSize )

* PETmessagelD PETprocessPacket(...). The return value is the message id of the processed
packet. From this information the application can tell whether the packet belongs to an dd
message or to anew one.

»  PETdecoder *pd. The sender id created by PETopenDecoder() for each sender.

» Byte *packet. The packet PET should process PET copies the packet into its own memory
area so the memory may be reused.

* int length. Length of the packet. PET checksif all packets have the same length.

» PETpriorityTable** pt. PET puts a pointer to the priority table at this address After
destroying the message this pointer is not longer valid (see remarks for MessageSize).

« int *prioLength. PET writes the length o the priority table at this address

e int *MessageSize. PET writes the total length of the message at this address The length
includes theinternal overhead used by PET for the decmding o the priority table.

Thethree values are only set if three conditions hold:

1. ptisna the NULL painter,

2. prioLengthisnot the NULL pointer,

3. PET has enough packets to decode the priority table.

5.6.3 Retrieving the message

Theapplication has to decide when it has enough packets to decode the packets that have arrived.
It may use timing for this purpose or simply start decoding o the current message when the first

packet of the next message arrives. The application may call PETretrieveM essage() several times
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for the same message, so it can retrieve the important parts earlier than less important ones. In a
multithreaded environment the routine may be invoked several times, each time on a different set
of message parts, for parald retrieval of the entire message. PET has been designed with
coordination mechanisms that ensure inconsistencies do not arise in a multithreaded environment.
Before calling PETretrieveM essage() the application has to allocate a buffer for the message to be
retrieved. PET assigns a pointer to each decoded message part. Those memory areas are in the
buffer allocated by the application. Hence the application may free this buffer whenever it no
longer needs the message parts. In addition, the application has to allocate memory for the result
table and fill in values to indicate which message parts are to be retrieved.

int PETretrieveM essage( PET decoder *pd, PET messagel D message,
Byte *buffer, PETresultTable *outputTable,
int prioL ength)

* int PETretrieveMessage() returns trueif no error occurred.

» PETdecoder *pd. The sender id for the PETdecoder.

» PETmessagel D message. The message id as returned by PET processPacket ().

» Byte*buffer. This is a buffer space used by PET to decode the message. The message parts
are located in this area. The application has to provide this buffer with at least the size
assigned to MessageSize in PET processPacket().

» PETresultTable *outputTable. This table is used in two ways:. First the application specifies
which parts of the message should be decoded, and second PET describes the result of the
decoding process. In contrast to the priority table, the application is responsible for allocating
the memory of the result table. It should have entries corresponding to the entries in the
priority table.

* int prioLength. The application has to tell PET the length of the result table so PET can
compare it with the priority table PET created.

5.6.4 Destroying a message and closing the decoder

After retrieving a message and evaluating the result the application should have PET destroy all
information PET created associated with the message, i. e, the packets, the priority table and
portions of the result table originally allocated by PET. This call deletes all the memory created

43



and used by PET during processing of the message. Note: The receive index (Recindex) in the
result table is also deleted.

PET messageDestroy( PETdecoder *ph, PET messagel D message )

» void PETmessageDestroy(). Destroys all memory associated with the given message created
and used by PET.

»  PETdecoder *ph. The decoder.

» PETmessagelD message. Theid of the message.

void PETclose(PETdecoder *ph). Closes the decoder for the given handler. This function
should be called when the according incoming data streamis closed.

5.6.5 Miscellaneous functions

The following two functions allow the application to ask the PET decoder for some internal
values:

int PETrecPackets() returns the number of received packets while int PETnumPackets() returns
the number of the total amount of expected packets. Both functions have the same parameters

(xxx stands for rec and num):

int PETxxxPackets( PETdecoder *ph, PET messagel D id)

*  PETdecoder *ph. The decoder.
» PETmessagelD id. Theid of the message.
If the message id isinvalid then the functions return a PET error code.

5.6.6 Typical Behavior for Receiving M essages

A simple version of the loop for the receiver is the following (it is assumed there is only one
sender active):
forever

receive packet

newid := PET processPacket()

if newid !=id



allocate the buffer for the message
call PETretrieveM essage

evaluate message

delete memory for the message
call PETdestroyM essage

id ;= newid
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6. MPET inVIC

VIC is a popular application for interactive video developed at UCB/LBL. VIC stands for video
interactive conferencing [McCanne, 95]. It consists of several encoding schemes (NV, h.261,
JPEG, CuSeeM e, etc.) and runs on workstations and PC of all major vendors. The PC version has
been ported and improved at UCL".

6.1 MPEG decoding

As first step MPEG was built into VIC. The decoding process is done in software with a
modified version of the MPEG player developed by Stefan Eckhart and the MPEG Software
Simulation Group at the University of Munich, Germany.

The complete player was trandated from C to C++ and all global variables became class
members of the MPEG decoder class. The old program was only able to play one MPEG stream
at atime, whereas in VIC several incoming MPEG stream are possible. The second change was
the buffering mechanism. The old version reads a chunk from file and stores it in a buffer. When
this chunk has been consumed, a new chunk was read. That assumes an independent consumer
process, which can read more data whenever necessary. In VIC the decoding process is driven by
incoming data not by the consumer. VIC stores incoming packets in a buffer and as soon as a

frameis complete, it starts the MPEG decoder to decompress this frame.

6.2 MPEG encoding

For the encoding the SUNVIDEO board has been used. Through the GUI of VIC (Figure 6.1)
the user can specify the desired frame and bit rate. An additional window (Figure 6.2) allows the
user to set the pattern of the MPEG frames and various PET parameters.

There is the possibility to choose the source between either an MPEG file or a live camera
through XIL.

" http://www-mi ce.cs.ucl.ac.uk/multimedia/
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Figure6.2. The MPET window.
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6.3 RTP encapsulation of plain MPEG streams

6.3.1 Header fields

The MPEG packets are RTP encapsulated [Schulzrinne @ al., 96], but currently uses nore of the
MPEG specific header fields. It is planned to support RTPencapsulation as defined in [Hoffman
et al., 98]. Currently the MPEG specific header is four bytes long, non is «t, and all ignored (see
§2).

6.3.2 Payload

According to [Hoffman et al., 98] the frame should be fragmented in packets at the beginning of
dices, so that the MPEG decoder can immediately resume decoding after a packet loss This
results in packets of different size. The framer in VIC fills all packets despite the last one, but the

re-aseembler does not exped the packets to have equal length.

6.3.3 Lossrecovery and handling of late packets

Losses are handled differently according to the type of the affeded frame. Hit Bframes are
discarded whereas I-and Pframes are handed to the decoder as they are. As 00n as the decoder
finds out, that something is wrong (i.e., it did not find the end marking of a macro block), it will
skip to the next dice start. This means, that B-and Pframes may reference to wrong cata. But
skipping al wrong data means to skip the whole GOP if only one packet of the I[frameis lost. In
alosy transmisson this could result in a complete stop. If packets are arriving too late, it might
be a sign that the decder is too slow to keep upwith the incoming data stream. Eventually that
behavior will result in packet losses due to an overflow of the buffer for incoming padets. It is
hence important to reduce the computational burden on the CPU. Frames with at least one
“nonlate” packet are considered to be in time and decoded. “Late’ Bframes are discarded, 1-and
Pframes are decoded anyway. This sheme gives I-and Pframe a higher chance to survive but

may result in more hit Bframes.

6.4 RTP encapsulation of PET protected MPEG: MPET

The optional RTP header for PET is defined to have four bytes:
<type> <subtype>
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The type field in the RTP header is st to PET (33). The type of the encoding in the optional

header is used as defined in [Schulzirinne at al., 96]. The subtype is additional information on the

exact encoding used. In MPEG encoding three diff erent schemes are currently used:

* PET I: Encodes the Iframe only.

* PET IP: Encodes the I-and the Pframes, but each as a separate message.

 PET IPB: Encodes the whole GOP in one PET message. That is the usually used version
despiteitslarge delay.

6.4.1 Timing: when to play a frame

Figure 6.3 shows the timing for aMPEG stream with the frame pattern IBBPBB.

1BBPBB1

grab ORI AN RN RN R R

PETencode — —_— _—

send A

receive R

PETdecode — — —

mpeg decode + play R R

Figure 6.3. Timing of MPEG frames.

The frames are grabbed and compressed to the appropriate time (or read from fil€) and send to the
framer. The framer stores the frames until the next GOP header is received. Then it starts the PET
encoding process If the encoding is short enough o done in a separate thread, the next frame wil|
not missto be grabbed. After encoding of the PET packets, they are send aut spaced, i. e, they
are nat send all at once, because that would lead to a highly bursty traffic. Instead the sending
times are spread over the time for the next GOP. The framer sets the timestamp in all packets to
the time when the last frame was captured (unfortunately the XIL{ibrary refuses to give us the
real capturetime. So it is picked-up by the operating system). The receiver may start the decoding
when he receives the first packet of the next GOP. He can then calculate the difference of the
timestamps for the actual and the next GOP and hence find the times between the frames. It then
PET decodes the GOP and start a Tcltimer to initiate the MPEG decoding and dsplaying o the

49



frames. The MPEG decoding of the single frames is initiated by the Tcltimer routine. First it is
checked the correct time schedule. In case a delay occurred and if there is a Bframe to decode,

the frame is discarded and the Tcltimer restarted. If a Pframe has to be managed and there is

only one frame behind, the frame is decoded and displayed. If there is an Iframe, it is decoded

and dsplayed in any case.

With this scheme the overloading of the CPU, which would result in a loss of packets in the
incoming buffer, is avoided. After decoding and dsplaying o a frame the time for the next frame
is calculated and the Tcltimer restarted. No new timer is darted after the last frame of a GOP.

In PET mode all packets are equally important, the “late’ flag isignored. It should be made sure
that the buffer is emptied frequently. The simplest way would be, to give the corresponding
Tclyoutine a high priority. Unfortunately, the Tcl event mechanism has no priority scheme.

Hence it should be made sure, that the timing mechanism leaves at least a few milliseconds till

the next frameis due. The Tcl scheduler calls the packet reader in this gap and empties the buffer.

6.4.2 When are packetstoo late

RTP has a field for a timestamp set by the sender. Hence it is possible to compute an average
delay and mark packets which arrived at a certain value later as “late’. On the other hand, the
main concern is not the delay in the network, late packets occur whenever the CPU is not able to
process packets fast enough. Packets will then be buffered and read too late. A “real” late
calculation would only be possble, if the operating system would tag packets as soon as they
come in from the network interface.

A possibility to know whether or not the frames are behind the scheduleis given by taking a look
at the buffer length. After reading a packet from the queue it is checked if there are more packets
available. In this case the packet is forwarded with lateflag set and the next packet is read
immediately thereafter.

The decoder can now decide whether to drop the current frame or to deaode it and risk the lossof

a packet and hence hurt a frame.

6.4.3 Parallelizing PET operations by using multiple threads

Many modern UNIX variants have support for multiple threads. These threads run in paralld
within one UNIX process This gives advantages for many applications even if there is only one
processor in the workstations. Thase applications may delegate a job (for example PET encoding)

to a separate thread and in the meanwhile process other events (e i. updating o the user
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interface). Those applications may even call functions of the PET library while another call isin
progress PET hasto protect himself against the potential danger to the integrity of its data.
In addition PET itself may take advantage of multiple processors in a machine. It may compute

priority levels or packets in paralld.

Protection against reentry

If several threads manipulate the same set of data, inconsistencies may occur. Therefore it is

needed to proted each set of data in a way, that only one thread is working on each. There are

two basic mechanism for synchronization in multithreaded environments: mutual exclusion

(mutex) and semaphores. Mutexoperations are simpler to use and faster, but they protea only

certain pieces of code against concurrent execution. PET uses sveral mutex for protection o the

foll owing code parts:

* No protection is used on the encoding side, since there are only two functions (PET-
numberOfPackets and PETencode) and they are called one after the other. There is no
concurrency possble. Applications may create a thread to exeaute PETencode, but thereis no
second call possible on the same data.

* Thereis one mutex for each decoder. It protects the creation and lookup of messages.

» Each message is protected by an own mutex. This mutex is the most important one, because
applications may start threads for decoding as 0n as one priority level is available. Then the
application may add more packets to the message as they arrive. Therefore the procedure
PETprocessPacket and the critical parts of PETretrieveM essage are protected by one mutex.
In this way it is posdble to add more packets to a message without interfering with the
decoding process

Whereas a mutex is used to proted a certain data set, semaphores are more general. It is a general

mechanism for synchronization between several threads. In PET semaphores are used to signal

theend o athread to several other threads.

Parallelizing of the encoding and decoding

PET computes a matrix consisting o packets and the segments of the packets, where the later
packets consist of the redundant parts. Hence there are basically three possbilities to parallelize
encoding and decoding of PET messages.

*  Compute different prioritiesin parallel.

» Computeabunch o packetsin parallel.
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» Pardl€dize the computation of the segments of each priority. That's an extension o the first
approach.

The best spealup is reached by the second approach, because the different tasks are equal in

computational effort and the linear part of the algorithm is small. The drawback is that some

values will be calculated in each thread newly. A seand problem occurs when the according

priority level contains only afew segments. The overhead in creating threads may betoo large.

It isimplemented the first and second approach for encoding, and the first onefor decoding only.

Compute the priority levelsin parallel

The different priorities are already computed in a separate function call, so these calls had to run
in paralld. A new thread is garted for each call and then wait for the end of them. The problem
with this approach is, that the CPU time for each o these threads is rather different. So some
threads can end earlier and hence only a part of the CPUs (eventually only one) can be kept busy.
Let's consider an example for this behavior:

* 4 processors

* priority levelswith 1, 2, 3, 4, 5 and 6s CPUusage

On a processor madhine this computation would take 21s. But what is happening on ocur 4
procesor machine? The first 1.5s all 6 tasks are running on 4 CPUs, then it runs anather 1.2 s
with 5 threads, and after anather second one CPU gets out of usage. The last second only one
CPU is busy. That gives a speadup of only 21/6.7 = 3. A better scheduling d the tasks would
help, as long as the number of task is as large as the number of CPUs. In the example a speedup
of 21/6 = 3.5 has been dotained. The implementation o the paral€eization o the different
priorities is draightforward. But on the decoding side, things are more complicated. The
application may start several deading threads where it wants to have different message parts. It
means that PET has to take care of already running threads, which are decoding one or more
priority levels.

PET uses the following algorithm:

mutex lock
for each priority level
if the application wishes a message part of thislevel
and no thread isworking on it, then
start a new thread to decode thislevel

mutex unlock
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for each priority level
if the application wishes a message part of this level
if thethread is started
wait for it
for each other thread waiting for this priority level
free the semaphore
else
wait for the semaphore of the thread
mutex lock
combine the message partsinto the memory provided by the application

mutex unlock

Whenever an incarnation of PETretrieveM essage() finds a priority level with an attached thread,
it increments a specific counter. Later it waits for a specific semaphore. The incarnation of
PETretrieveM essage(), which started the according thread, frees the semaphore according to the
counter and with that all the waiting incarnations of PETretrieveM essage() are restarted.

Compute the packets of one priority level in parallel

To encode a priority level two types of packets need to be produced: in afirst step the message is
copied into the clear text packets and in the second the redundant packets are computed. Both
steps can take advantage of multiple processors, if there are enough packets to produce and the
priority level has enough packets. This approach is also possible for decoding, but it is much

more complicated to implement.

Further considerations

More experiments need to be done to find out, how many paralld threads should be started to
compute a single priority level. There are several parameters to determine this number: available
processors, size of the clear text and redundancy data area (e. i. the number of packets in each
category times the number of segments), computing power of the CPUs and the overhead of
creating a thread.

Thecreation of athread is rather cheap (=50ps according to the handbook), but thereis a cheaper
possibility: it is a client/server model with multiple servers for the encoding. A dispatcher is then
responsible to hand the encoding task to the next free server thread and a mechanism is needed to
inform the clients when the task is done. All that can be done with semaphores which are cheaper

to create and to deal with compared to the creation of a new thread.
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7. Conclusions and future wor k

PET can be used with any packet-switching network hardware or protocol. It works as a layer
above the transmission of packets (ATM cells, etc.). By using coding techniques, PET improves
the quality of transmission over packet networks that have unpredictable losses. PET uses a
unique multilevel forward error correction (FEC) scheme [Albanese et al., 97] which introduces a
minimum increase in the transmission rate. PET makes it possible MPEG transmission over
Internet, which has not been practical due to bursty losses. PET has been also embedded into a
version of the video-conferencing tool VIC to protect the real-time transmission of MPEG

streams, and this worked successfully.

7.1 Future Work on FEC codes

The very first implementation of FEC codes that was used in PET were not fast enough even for
encoding and decoding moderate sized files. As reported previously, this led to the invention of
some fairly fast FEC codes for PET implementations. Although these codes are reasonably fast
for moderate sized files, they are not adequate for real-time encoding and decoding of large files,
as the time scale quadratically with the size of thefile. As reported earlier, some faster FEC codes
were invented and pointed out in [Alon and Luby, 96].

7.1.1 Tornado codes

The potential for FEC codes in networking applications has not yet been fully realized, primarily
because previous software implementations of FEC codes have been too slow. Their running
times are only reasonable when the number of redundant packets is small, eg., at most 100
packets. The reason for this slowness is that the encoding and decoding time of standard FEC
codes are proportional to the length of the encoding times the number of redundant packets. Other
known codes based on the Fast Fourier transform have asymptotically much better decoding
times, but in practice their complexity also makes them too slow to decode large messages (there
areimplementations of such codes in custom designed hardware that run quite fast).

Over the past two years, a completely new class of codes has been implemented, called Tornado
codes, which promise to make the FEC solution practical [Luby et al., 97]. Tornado codes have
the property that slightly more than the ideal number of encoding packets must be received to
decode the message: it is called the per cent needed over the ideal humber the length over head
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(recall that theideal number is the original number of message packets). By allowing some length
overhead, much faster coding schemes can be developed. Tornado codes can be encoded and
decoded in time proportional to the length of the encoding times a small constant that is
independent of the number of redundant packets. This small constant, which is called the time
overhead, istypically around 6.
These codes were implemented in software, and the results are very encouraging. As an example,
a 32M bytes file was took and partitioned it into 64K message packets of 512 bytes each. Using
Tornado codes, 128K encoding packets from these 64K message packets were produced. 10,000
trials were run, where each trial consisted of randomly choosing and receiving encoding packets
until there are enough to decode all of the original 32M byte file. In these 10,000 trials, the
average length overhead was only 3.2%; in other words, about 66K encoding packets were
enough to decode. Furthermore, in less than 1% of the trials the length overhead was more than
4.0%.
Although there is a modest length overhead using Tornado codes, the advantage is that the
encoding and decoding times are very small. On a DEC Alpha machine, the time to produce the
128K encoding packets from the 64K message packetsis just under 2s, and the time to decode the
32M byte file from 66K encoding packets is also just under two seconds. The encoding and
decoding times for a message and encoding of this size using standard FEC codes would be at
least 10,000 times slower, i.e., tens of hours. Thus, the advent of Tornado codes makes software
solutions possible for problems that are orders of magnitude larger than were previously
conceivable.

It worth emphasizing that Tornado codes have a number of important features:

e Simplicity: Tornado codes use only simple XOR operations, and no complicated data
structures are required for their implementation.

* Generality: techniques were developed to design Tornado codes for whatever rate, or
redundancy levd, is specified. (In a rate 4/5 code, for example, 4/5 of the encoding is the
original message, and 1/5 of the encoding is redundancy.) Moreover, codes were designed to
decrease the length overhead at the cost of a small increase in the time overhead.

* Provability: a mathematical formulation of Tornado codes was developed that allows us to
prove how well they will perform. Furthermore, an infinite family of codes was found for
which it can be proved that the length overhead decreases very quickly as a function of a
growing time overhead. In [Luby et a., 98], a new analysis of Tornado codes that can be used

to analyze a number of other problems as well has been found.
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» Applicability: Tornado codes can be used to encode and decode large files in real-time. This
makes Tornado codes attractive to use for a number of networking applications.

Over the next year, it has been planned to aggressively pursue the incorporation o Tornado codes

into networking protocols. A multicast distribution protocol written in JAV A that uses Tornado

codes has been implemented. Prdiminary tests of this nascent protocol have been very

encouraging.

7.2 Future Work on Applications for PET

Currently the prioritizing is used only for MPEG GOP coding. Another possble scheme can
prioritize the DCT matrix coefficients according to their level of importance [Storn, 95]. This
approach is also useful for JPEG images or movies. With the current scheme, the video becomes
jerky in the presence of losses. With this approach, the video rate is snooth, but, on the other
hand, the quality of single frames varies according to the losses. An advantage of the DCT
prioritizing is the reduced delayed compared to the GOP prioritizing. However, to split the DCT
matrix means to decode the huff man encoding, split the matrix, and ruffman encode the two o
more parts. This is nat only a computational effort but will aso result in a coding overhead
because of multiple “End d Block” tags of the DCT-matrix. A third, natural scheme could be
applied if the encoding is layered in subbands, eg., the 3D subband coding [Taubman and
Zakhor, 93]. The layer can easily be mapped to the PET priority levels.

7.3 Integration of PET with MASH

MASH Todkit [McCanne ¢ al., 97] is an autgrowth o the Internet MBone tools. It is based on
IETF standards including IP-multicast, RTP, RTSP, SIP, and SAP. In addition, it supports
application-level protocols, such as SRM and SNAP, being developed to support flexible
collaboration and media processng. MASH is gaing to be the platform [Rowe, 99] on which
researchers will be able to experiment with computer-based conferencing and collaboration. A
contribution to this initiative is to integrate PET with MASH®. PET is already implemented as a
module. According to the MASH sourceffilter/sink abstraction it can be viewed as afilter objed.
For instance, a source is a video capture device with an MPEG encoder, the filter is the PET

module, and the sink is a network transmission protocol (e.g., RTP). Thus, MASH has to be

8 http://www-mash.cs.berkel ey.edu/mash/
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enhanced by introducing several new objects such as MPEG grabber through XIL, MPEG
decoder, €tc.
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