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Abstract
This rapport summarize the work that was done this last 6 month at ICSI in speaker
recognition and speaker adaptation.



1 Introduction

The automatic recognition process of the human voice is often divided in speech recognition
and speaker recognition. The 2 area use the same input signal (the voice), but not for
the same purpose: the speech recognition aims to recognize the message uttered by any
speaker, and the speaker recognition want to identify the person who is talking. However,
more and more applications need to use simultaneously the 2 kind of information. Some
actual examples given below illustrate this tendency.

State-of-the-art speech recognition systems tend to be speaker independent by using models
(phonemes, diphones, triphones) estimated on huge databases containing numerous speak-
ers, and also by using parameterization which try to suppress the speaker dependent char-
acteristics (PLP,RASTA-PLP). However, for some types of applications it could be impor-
tant to readapt the speaker independent speech recognizer to a defined speaker, in order
to improve the noise robustness for example, or simply to improve the speech recogni-
tion performances by adding some knowledge of the speaker. Some recent results shows
that speaker adaptation of a speech recognizer improve the performances of the systems

[DARPA, 1998].

Nowadays, numerous applications performing speech information retrieval require the au-
tomatic extraction of the content of shows and the retrieval of the speech of a particular
speaker on a particular subject. In this case a speech recognition and a speaker recognition
should be carried on in parallel. Furthermore the detection of speaker change in a conver-
sation (speaker A/ speaker B or speaker/music) may also be very useful for the indexing
and the labeling of the huge databases available.

Finaly, a speaker recognition is needed for applications like secured voice access to
information (as a bank account or a voice-mail box) . In this case, the speaker recognition
can be text independent if the content of the utterance is not checked. However, better
results are obtained by using text dependent speaker recognition, both because a control
of what is said can be done and also because more accurate models (phonemes, words) can
be built. Anyhow, the text dependent speaker recognition has to be preceded by a speech
recognition step to control and split the message properly.

All these applications show the need of a simultaneous speaker and speech recogni-
tion. This rapport shows that it exists some possibilities exist to carry out this 2 tasks
simultaneously.

2 Background

This section will recall some useful notions about speech and speaker recognition domains.

2.1 Some definitions
2.1.1 Type of speakers

The speakers which have to be identified (verified) by our system will be named registered
speakers, RS , the speakers which will attempt to impersonate the registered speakers will



be called impostors. We also use the voice of many other speakers which will constitute
the world speakers.

2.1.2 Type of speaker recognition applications

Speaker recognition applications are classified by their text dependency, they can be text
dependent, text independent, or text prompted, the two latter cases imply a con-
trol of the text. The speaker recognitions applications can also be classified by the way
that the identity of the speaker is checked: if the voice of an unknown speaker is used
directly to compare to references of enrolled speakers we perform an identification of the
speaker. If the identity is checked by another mean (password,identification number, etc...)
a verification that the input voice belongs to the identified speaker.

2.1.3 Type of speech recognition applications

The speech recognition applications can be speaker dependent or speaker independent,
however this notion becomes a little bit fuzzy when a speaker adaptation of the speaker
independent speech recognizer is performed. The speech recognizer can be classified by
the size of the vocabulary they can handle like small, medium or large vocabulary
applications.

2.1.4 Into the systems

The speech/speaker recognition systems are built into two parts:

1. A training phase where the parameters of the models of speech recognizer or of the
registered speakers are estimated, using known target sentences.

2. A test phase where unknown sentences uttered by registered speakers (often called
true speaker test) or by impostors are given to the system. The speech recognizer will
produce a sequence of words using the models estimated in the training phase. The
speaker recognizer will produce a score which will be compared to a threshold, if the
score is greater than the threshold, the utterance will be accepted as pronounced by
the RS which is tested.

3. A third phase is often used to set the a priori thresholds used to measure the perfor-
mances for the speaker recognition system ([Bimbot and Genoud, 1997; Pierrot et al.,
1998]). However in this rapport a theoretical speaker independent threshold will be
used.

2.2 The Log Likelihood Ratio (LLR) as speaker verification score

When using statistical algorithms, the LLR is the main score computed in speaker recog-
nition, because his strong relationship with the statistical models themselves ([Green and
Swets, 1988; Scharf, 1991]). The decision of accepting or rejecting the utterance of a reg-
istered speaker can be seen as an hypothesis test Hq (the speech segment belongs to the
RS ) against H; (the speech segment doesn’t belong to the RS ). Which is identical than



testing the conditional probability of an event X knowing the hypothesis Hy and Hy (see
equation 1).

Hg : Registered speaker, Hy = Hy

accept accept
> >

P(Ho) T P(H), P(HX) 7 P(Hi]X) (1)
reject reject

The quantities P(Ho|X ) and P(H1|X ) are called a posteriori probabilities of the hypothesis
Hy, respectively Hy knowing the event X.

Since it is not possible to model the "non registered speaker space” (virtually all the other
speaker [past, present and future| of this planet living or having lived at the same time than
the RS ), the hypothesis H; is translated in: "the segment belongs to a speaker among a
large amount of people which are neither registered speakers of the application, nor possible
impersonators”. Hy will be modeled by a world model estimated by the voice of many
speakers excluding the registered speakers and the speakers used as tuning impersonators
of the application.

Translated into the speaker verification problem, the test of a sequence of observations
O; (a sequence of parameters) knowing a statistical model M¢ for each RS and a model
My for the world, the equation 1 can be rewritten as (equation 2):

accept
>
P(Mc|Oy) . P(Mw|O:) (2)
reject
Using the first Bayes rule (equation 3) and if the a priori probability P(M¢) and P(Mw)

are known (there are often assumed equal) the a posteriori probabilities P(O¢|M¢) and
P(O¢|Mw ) can be estimated (equation 4):
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P(OMw) < P(Me)
reject



The estimation of the 2 a posteriori probabilities P(O;/M¢) and P(O;/Mw ) is carried out
by using a maximum likelihood estimation function [Scharf, 1991]. The quantity LR is
the Likelihood ratio of the observation sequence O; knowing the 2 models My and Myy.
The equation 5 becomes:

accept
L (0n,Me) > P(Mw) ()
L (O, Mw) < P(Mg)

reject

LR

In order to decrease the computing resources, and due to the normality properties of the
logarithm, the log of the equation 6 is taken (equation 7) which define the Log Likelihood
Ratio (LLR):

accept
> P(MW)>
M — M _ N
LLR(MC, J[W, Ot) 10g L (Ot, 1[0) 10g L (Ot, MW) < 10g (P(jl/lc) (7)
reject

With log I (O, M) and log L (O, My ) the log likelihood of the RS | respectively of the
world computed on the observation sequence O;.

2.2.1 Error function in speaker recognition

In a practical application, we try to minimize the total cost of error. For this purpose
a cost function can be defined as the sum of the errors done by accepting wrongly speech
utterances which do not belongs to the RS (False Acceptance, FA) and rejecting wrongly
speech utterances which belongs to the RS (False Rejection, FR):

ot = cfr - P(C) - E(FR|C)+ cg - P(C) - E(FA|C) (8)

With ¢y, and ¢y, the cost of a false rejection, respectively a false acceptance. These costs are
established according to the application needs. P(C)and P(C) are the a priori probabilities
that the test sequence belongs to the RS or not.

E(FR|C) and E(FA|C) are the false rejection (i.e. reject falsly an utterance belonging
to the registered speaker) and false acceptance (i.e. accept falsly an utterance of an impos-
tor) error rate done by the system. It can be shown that minimizing the cost function ¢y
comes down to add the error costs cy, et ¢y, to the equation 4. Moreover, if we accept that

P(O4|Mz) can be approximated by P(O;|My), the equation 4 can be re-written as:

accept
PONMc) - P(Mc) > P(OMw) - P(Mw) ®
P(0y) Ir < P(Oy) fe
rejec

Which, when using the equations 5, 6 and 7, eventually leads to the estimation of the
following equation:



P(M .
LLR(Mc, My, 0¢) = log L. (O, Mc) —log L (O, M) z log (M,c}f ) (10)

P(Mc) ¢y
The quantity R, which is the decision threshold, is often called the risk ratio. This ratio
is independent of the registered speakers, it only depend on a priori quantities, determined
by the application conditions. If the threshold is computed a posteriori when knowing the
distributions of the LLR, a point of Equal Error Rate, EER (FA=FR) can be computed.
If the threshold is set a priori , then, the Half Total Error Rate, HTER=(FA+FR)/2
is computed.

log (M : Cf“) = log(R) = © (11)

2.3 Speech recognition using Hidden Markov Models (HMM), Multi
Layer Perceptrons (MLP) and Maximum a posteriori Probabilities

(MAP)

Classical state-of-the-art speech recognition systems use stochastic models as Hidden Markov
Models, with a Maximum Likelihood Estimation (MLE) criterion to estimate the proper
sequence of words (phonemes) [Jelinek, 1976; Bahl and Mercer, 1983]. The modeling of the
distributions in each HMM state is actually done by estimating a Gaussian mixture [Scharf,
1991; Rabiner and Juang, 1993; Kleinrock, 1975]. However, the MLE criterion has several
drawbacks which can be corrected by using a Maximum a posteriori Probabilities criterion
(MAP) leading to a discriminant modeling [Bourlard and Wellekens, 1990]. The MAP cri-
terion can be elegantly solved by the use of Multi Layer Perceptron (MLP) as probability
estimator. Nevertheless, it should be noted that the posterior estimation performed by the
MLP directly estimate the probability that a particular input vector belongs to a particular
output class, but doesn’t give any information on how likely this particular vector can be
observed, which would have been the case when using a full joint density estimation.

Althrough according to [Renals and Morgan, 1992], the MLP doesn’t provide a full
probability model, but draw the limit of the output classes, which is what we are interested
in the speech recognition problem. The estimation mechanism of these probabilities is shown
in figure 1. The context dependency is added by using a window of 9 vectors as input. In
the experiments described here, these vectors are constituted of 12 mel cepstral parameters
(see section 3.6). 2000 hidden nodes set up the hidden layer, and of the 54 nodes of the
output layer, 53 are used for the phoneme probability estimation and one output for the
"non speech” information. The output layer activation function of the MLP are adapted
in order to guarantee that the sum of all the output equal one. This function is called
softmax [Bridle, 1989] and is given in equation 12.

)1 et 12
g(i, 1) = K aliom) (12)

Where z(i,1) is the output value of the unit / before the non linearity for an input value .
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Figure 1: The MLP a posteriori probabilities estimator

2.3.1 Speech decoding

The frame by frame emission probabilities are then used in the same way than in classical
HMM speech recognition approach using a Viteribi decoder, and a language model. The
decoder used here is exactly the same the one used in the SPRACH system [Cook et al.,
1999], a principle diagram is shown in figure 2.

3 Database and parameterization

3.1 The Broadcast news database

The database used for all the experiments is the 1997 Broadcast news evaluation database
from the Defense Advanced Research Project Agency (DARPA). This database was designed
for the Hub-4F speech recognition evaluations organized by DARPA . The first corpus of 100
hours of speech (denoted bntrain97) is annotated to support ”evaluation focus condition”.
The focus condition are based on the speaking mode (planned or spontaneous), the dialect
(native or non native), the fidelity of the acoustic channel (high medium or low), and the
background noise (music, speech or other). Further details about this database can be
found in [Cook et al., 1999] or [Fisher et al., 1998]. This database was designed to train the
speech recognition systems which were in competition. The signal is sampled at 16 [kHz],
giving a bandwidth of 8 [kHz].

The database is constituted of 10 different types of shows on 4 different broadcast
stations (ABC,CNN,CSP,NPR).
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Figure 2: The speech decoding part of a speech recognizer.

3.2 Use of the database

To fit our purposes the database is divided in 3 different speaker sets:

1. The registered speaker set which will contain the speakers who will be used for
the various speaker evaluations (speaker adaptation, recognition, detection), and also
for the speech recognition evaluations. The voice of the speakers of this set are also
used during the test to impersonate the other registered speakers.

2. The world speaker set consists of speakers other than the first set and will be used
to build the world model. The voice these speakers will also be used to create the
speaker independent models for the speech recognition.

3. The tuning impersonator set, these speaker are different than the 2 first sets and
are used to setup a decision threshold for some applications. This set is not used in
the experiments described in this rapport, and is reserved for future experiments.

3.3 Creating the registered speakers set

In order to perform speaker verification tests, the first step was to select speakers with
enough data for our purpose.
The following criterions are used to elect a speaker as a registered speaker:

o At least 2 recording sessions.
e More than 1200 seconds of recording.

e the recordings can be on different shows.

Twelve speakers match this criterion:



Noah-Adams, Peter-Jennings, Thalia-Assures, Mark-Mullen, CSP-WAJ-Susan, Linda-
Wertheimer, Brian-Lamb, Lou- Waters, Kathleen-Kennedy, Andrea-Arsenault, Chris-Wallace,
Katherine-Calloway

3.3.1 training set

For each speaker the training set is constituted of around 1000 seconds of speech (see
table 1).

3.3.2 test set

For each speaker the test set is constituted of at least 200 seconds (see table 1).

Speaker name Training duration | Test duration
(in seconds) (in seconds)
Noah-Adams 1000.46 3354.45
Peter-Jennings 1000.14 2304.69
Thalia-Assures 1006.25 2203.23
Mark-Mullen 1002.41 2104.18
CSP-WAJ-Susan 1002.96 1646.42
Linda-Wertheimer 1000.05 1972.75
Brian-Lamb 1002.97 1646.78
Lou-Waters 1005.27 1465.14
Kathleen-Kennedy 1013.06 1296.28
Andrea-Arsenault 1000.01 1092.85
Chris-Wallace 1004.91 549.20
Katherine-Calloway 1002.11 203.88
| TOTAL [ 12040.61 | 19839.85 |

Table 1: Training and Testing amount of data available for each speaker.

3.4 Creating the ”"World” set

This subset is created using the voice of 100 speakers, constituting 14h20’ of speech divided
on 495 segments.

3.5 Creating the tuning impersonators set

The tuning impersonators are 19 speakers chosen with enough data and sessions there are:
Tom-Wicker, Bill-Hemmer, John-Kyle, Marshall-Freidy, Daniel-Ellsherg, Austin-Bay,
Phil-Borgess, Bill-Maynes, Michael-Barone, Sheila-Jackson-Lee, Corva-Coleman, Robert-
Francis, Vincent-Thompson, Anne-Garrols, David-Fromm, Gary-Hart, Ron-Elving, Chris-
Beary, Cory-Flintoff
There are different than the speakers used as registered speaker or world speakers.



3.6 Parameterization

The input signal is sampled each 10[ms] using a window of 25[ms]. each window is then
passed through a filter bank, and using a mel conversion function given in equation (13),
12 cepstral coefficients are extracted. No derivatives or accelerations are used.

frqHz

M = 2595 -1 1
Oglo( + 700 )

(13)

With frgH z the input frequency.

4 Speaker adaptation experiments

This section will talk about adapting an speaker independent speech recognition system
to a particular speaker. Some previous experiments carried out by [J.Neto et al., 1996] on
MLP-hybrid architectures had already shown the possibility to adapt a MLP to a particular
speaker.

However, the approach chosen here is much simpler. Indeed, the MLP probability
estimator is first trained with the world training set (this model will be named My). Then
for each registered speaker i (i = 1...N, with N the number of speaker registered into the
application), a new model z\/[}és is created, using My as bootstrap and re-trained with the
training data of each RS 1.

4.1 Test protocol

10 sentences of each registered speaker are selected as a test set, constituting 110 test
sentences!. Three experiments are then carried out:

1. The 110 sentences are given to the speech recognition system using the speaker inde-
pendent MLP My trained on the world speaker data. This experiment gives the ref-
erence performances for a recognizer non particularly adapted to a particular speaker.

2. The sentences of a RS ¢ are given to the recognition system using his own model
Mpg. In this case, the model is adapted to the test sentences.

3. The sentences of all the registered speakers 7 with j # ¢ are given to the recognition
system using the model Mpg. This experiment use models which are adapted to other
speaker than the one who said the test sentences.

4.2 Results

The results obtained for these three different experiments are given in the table 2

These results show that some adaptation to a speaker by re-training the speaker inde-
pendent MLP improves the speech recognition performances (i.e. decrease the word error
rate). This imply that some specific information belonging to a particular speaker can be
added to the MLP, helping to a better decoding (principally less substitutions). The line 3

!Unfortunately the training step for one of the RS failed, so for this experiment only 11 registered
speakers are available.



‘ Experiment H #5nt H #Wrd ‘ Corr ‘ Sub ‘ Del ‘ Ins ‘ Err ‘ S.Err ‘
1.World Model My, 110 4698 | 77.29 | 17.43 | 5.28 | 3.34 | 26.05 | 88.18
2.Adapted Model Mpgq 110 4698 | 80.99 | 14.41 | 4.60 | 2.94 | 21.95 | 90.00
3.Impersonator Models M#s || 1100 || 46980 | 65.57 | 28.43 | 6.01 | 5.65 | 40.09 | 95.64

Table 2: performance of the speech recognition with adaptation to a speaker.

of the table 2 show also that adapting the recognizer to a particular speaker decrease the
recognition performances of the system when it is not the proper speaker who speaks
indicating that the generalization of the MLP is partly lost in the adaptation process.

5 Text dependent speaker recognition using hybrid architec-
ture

The state-of-the-art statistical algorithms used in speaker recognition, and especially in
text dependent speaker verification, use 2 kind of models, one which tries to capture
the intra-speaker variabilities, and one which tries to model the world (see section 2.2).
Then a LLR of an utterance is computed using the output probabilities of the 2 models (see
section 2.2).

A first attempt was made by using the same procedure with MLPs as probability es-
timators: First a world model was build (exactly the same than under section 4). Then,
for each RS , a speaker dependent model was created by re-estimation of the world model
using the training data of the speaker. During the test, an unknown sentence is passed
trough the speaker dependent model and the world model. To split the problem of speech
and speaker errors, we assume that the phoneme alignment of the sentence is known (the
al5 alignment is used, see [Cook et al., 1999]). Then, we subtract the log probability of
the selected phoneme of the world model from the log probability of the same phoneme out
of the speaker dependent model, giving a total score which should be higher for the true
speaker tests.

The figure 3 shows the LLR scores for the true speaker test and the impostors attempts
on the 10 most frequent words in the training set of the speaker Noah-Adams. This results
show that no real differences between the distributions of the true access scores and the
impostors scores can be made. Which make sense because the ML P, according to section 2.3
use a MAP criterion and not a Maximum Likelihood criterion. Thus, these Maximum A
posteriori Probabilities depend on the speech content, but shouldn’t depend on the speakers,
if we admit that the a priori probabilities of the phonemes are the same for all the speakers.
Moreover, as the outputs of the MLP give no information on the likelihood of a vector to
belong to particular class (in this case to belongs to a particular speaker and a particular
phoneme), using the subtraction of the scores coming out from the registered model minus
the world model should be zero. However due to the imperfections of the modeling and the
segmentation, what we obtain is distribution of scores centered in zero, with no differences
between true speaker and impostor tests.

However, some experiments done for the NIST-97 text independent speaker verification

10



XXX X
+
X X
+
XK X
XOKXKX
MR KK
+
KK
I

MO XX X

R

+++

o
T
S
b +
bR
S b b
+ S
SR b AR
B L
I TR I

b

+

-20

SN DR B
§!QXX§X§§
0

1 2 3 4 5 6 7 8 9 1 Words

Figure 3: Distributions of true access (4) and impostor access (X ) scores using a model for
each registered speaker and one model for the world.

evaluation [Martin, 1997] have shown that MLP can be used successfully for speaker ver-
ification [Genoud and Caloz, 1997]. The way the MLP was used in that case is shown on
the figure 4. One MLP is built for each registered speaker, and each MLP has only 2 nodes
on the output layer, one is targeted on the RS data and the other on the world data. The
frame by frames log scores of each output is summed on one sentence, and then subtracted
(O1 — O3) to perform in a same way than a LLR. The results were close to the state-of-the
art GMM systems, even if no special channel normalization was performed [Martin, 1997].

Here the 2 output classes give the posterior probability to belongs to the speaker or
to the word class, and the log ratio of these probabilities gives a good estimator of the
log likelihood ratio used with a statistical classifier, because we have only 2 output classes
(which correspond to the 2 hypothesis Hy and H 1, see section 2.2).

6 Next step

From another point of view than the statistical one, a MLP can be seen as a black box
which cluster the input vectors space into the output classes. The fact that the output
become probabilities is due to the re-normalization carried out by the softmax function
(see section 2.3). So, to perform simultaneously a phoneme clustering and a registered
speaker/world partition, the output task must be changed. This can be performed by
merging the 2 approaches. Thus, for each RS , a MLP with 2 times the number of phonetic
classes is generated. One set of output will now be targeted on the phonetic clustering of
the RS , and the other set will be targeted on the phonetic clustering of the world. As
it makes no sense to have 2 times the non-speech output, this one is not duplicated. The
MLP has now the structure shown in figure 5, and it will be called Twin-Outputs MLP,

11
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TO-MLP.

6.1 Training of the TO-MLP

As the TO-MLP has know to carry out two tasks simultaneously, it will be trained in 2
passes:

1. (a) The first phase estimates the proper phonetic classes for each input vector. So
a normal MLP with one output for each of the 53 phonetic classes and one
non-speech output is trained on the world set of the broadcast news database
(See [Ellis and Morgan, 1999] for further details on the MLP training scheme).

(b) The outputs of the MLP previously trained are then duplicated, leading to a
MLP with the structure shown in figure 5. The connection between the hidden
layer and the output layer are simply copied.

2. The second phase will train the clustering registered speaker/world. Thus, one T O-
MLP is created for each RS . The speaker phonemes output are targeted on sentences
belonging to the training set of the RS , the world output are targeted on the speech
of the speaker used for building the speaker independent (world) MLP of the previous
phase. In order to obtain a good learning effect during the training phase, the input
sentences belonging to the RS and to the world speakers are presented alternatively
to the TO-MLP. An heuristic is used to select sentences from the world set which have
the same duration than the sentences of each RS set. Anyhow, the sentences of the
world set used to train each of the RS T O-MLP are roughly the same, as the training

12
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duration of for each RS is nearly the same. The softmax function is still used on the
output layer.

6.2 Using a TO-MLP

As two tasks are performed simultaneously, the outputs of the TO-MLP can give different
estimates depending on the task. The outputs cannot anymore be used directly, and a
post-processing has to be added. The following section will describe some examples of post-
processing to estimate the frame by frame M AP used for the speech recognition, and how
to compute the speaker recognition scores.

6.2.1 Speech decoding with TO-MLP

With the TO-MLP each phonetic class is represented 2 times in the output layer, so it
is possible to use one of the 2 output sets or a combination of the two to compute the
a posteriori probabilities. The table 3 gives the results obtained when using the speaker
outputs, the world outputs and the mean of the 2 outputs. In all of these cases, a re-
normalization of the output scores of each set is performed to have the output summed
to one (see the Abbot system [Cook and Robinson, 1998] description for the details on
re-normalization).

13



‘ Model type ‘ output type H #5nt H #Wrd ‘ Corr ‘ Sub ‘ Del ‘ Ins ‘ Err ‘ S.Err ‘

| World MLP \ | 120 ] 4950 | 76.85 | 18.08 | 5.07 [ 3.35 | 26.51 | 90.83 |
Adapted TO-MLP Reg speaker 120 4950 | 80.97 | 14.44 | 4.59 | 3.03 | 22.06 | 91.67
Impersonator TO-MLP | Reg speaker || 1320 || 54450 | 51.02 | 26.67 | 22.31 | 3.18 | 52.16 | 97.42
Adapted TO-MLP World 120 4950 | 74.40 | 19.27 | 6.32 | 3.39 | 28.99 | 95.00
Impersonator TO-MLP | World 1320 || 54450 | 72.49 | 21.77 | 5.74 | 4.30 | 31.82 | 95.61
Adapted TO-MLP Mean 120 4950 | 79.94 | 15.23 | 4.83 | 2.97 | 23.03 | 92.50
Impersonator TO-MLP | Mean 1320 || 54450 | 72.42 | 21.68 | 5.90 | 4.01 | 31.59 | 95.23

Table 3: Speech recognition performances using different TO-MLP output combinations.

6.2.2 Speaker recognition with the TO-MLP

As the TO-MLP give the a posteriori probabilities of the RS against the world, a LLR-like
score can be computed. First, the best phoneme is choosen by the speech decoder, and
then LLR-like score is computed by subtracting the log probabilities output of the world
from the output of the speaker for this elected phoneme. Of course, all the speech decoding
possibilities explained in section 6.2.1 are available to choose the proper phoneme used to
compute the LLR-like scores.

The speaker recognition can be performed at different level. The simpliest way would be
to sum the LLR-like score over a sentence,take the mean and compare it to a threshold in
order to decide if the utterance is belonging to the RS or not. The table 4 gives the results
of this approach for all the RS , when using the al5 (see section 5) phonemes decoding,
and table 5 when using the mean decoding. These results are only exploratory, and should
be balanced with a reference system. Howerver, they indicate that the principle of MLP
retraining and simlutaneous speech-speaker decoding works raisonably.

It is possible, using the same decoding approach to perform a real text dependent speaker
verification, using the world level decoding, the figure 6 shows the LLR-like scores of the
registered speakers versus the impostors ordered by word length (the longer first). Of course
there is a dependency of the length (more phonemes) but there is still a nice discrimination
even for shorter words.

6.2.3 Speaker detection with TO-MLP

In some speaker detection problems, it is important to know when the speaker changes in a
conversation, or how long a speaker has to speaker to be detected by the recognition system.
The figure 7 gives an example for the speaker Noah-Adams: the mean LLR are sorted by
utterance length and it shows that after around 8 seconds of speech, the speaker is detected
without any errors.

The TO-MLP approach allow to compute simultaneously and extemely fast the speaker/world

decoding. Some limited attempt to perform the same thing with conventional multigaus-
sian HMM (see for example [Mariéthoz et al., 1999]) are, for the moment, very limited, the
synchronous decoding cannot be performed in one pass because a slience dectection as to
be made.
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Figure 7: Values of true speaker (+) and impostors (x) mean-LLR-like scores sorted by

length of sentences of the test set.



Speaker Name EER% | ©-EER FR% FA% HTER%
(hard®=0) | (hard®=0) | (FA+FR/2)
Noah-Adams 2.07 -0.50 4.91 0.00 2.45
Peter-Jennings 4.47 0.02 4.47 4.55 4.51
Thalia- Assures 4.55 -0.36 7.58 1.82 4.70
Mark-Mullen 5.84 -0.15 9.42 2.73 6.10
CSP-WA J-Susan 13.85 -0.91 48.21 1.82 25.01
Linda-Wertheimer 4.61 -0.59 6.91 0.00 3.45
Brian-Lamb 5.00 -0.61 8.33 1.82 5.07
Lou-Waters 9.56 -0.52 13.97 1.82 7.89
Kathleen-Kennedy 8.92 -0.05 10.83 8.18 9.50
Andrea-Arsenault 5.74 0.30 2.46 13.64 8.05
Chris-Wallace 1.92 0.37 0.00 3.64 1.82
Katherine-Calloway 5.56 0.68 0.00 11.82 5.91
| TOTAL(12) [ 601t [ - | 97 | 432 | 704 |

Table 4: Speaker recognition performances with a threshold a posteriori or an a priori (hard)
threshold set to the theoretical value ® = 0, when the al5 decoding is used.

7

Further work

Numerous applications can be derivated from the TO-MLP some example are given here:

Speaker detection and speech recognition using in parallel the TO-MLP of all the
speakers and selecting the more likely. This could make a continuous speech/speaker

decoding for broadcast news for example.

Text prompted speaker verification with control of the speaker answer.

Speaker monitoring, where the speaker is controlled during the interaction of the

system.

etc. ..
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Speaker Name EER% | ©-EER FR% FA% HTER%
(hard®=0) | (hard®=0) | (FA+FR/2)
Noah-Adams 3.10 -0.36 8.27 0.91 4.59
Peter-Jennings 3.88 -0.01 3.88 3.64 3.76
Thalia- Assures 4.92 -0.31 12.88 1.82 7.35
Mark-Mullen 7.79 -0.16 12.66 3.64 8.15
CSP-WA J-Susan 12.82 -0.87 55.38 1.82 28.6
Linda-Wertheimer 3.23 -0.45 7.83 0.91 4.37
Brian-Lamb 6.25 -0.48 16.25 0.00 8.12
Lou-Waters 11.03 -0.51 24.26 2.73 13.49
Kathleen-Kennedy 8.92 -0.07 10.19 8.18 9.18
Andrea-Arsenault 9.84 0.12 7.38 10.91 9.14
Chris-Wallace 1.92 0.24 0.00 3.64 1.82
Katherine-Calloway 5.56 0.34 0.00 11.82 5.91
| TOTAL(12) [ 660 | - | 1325 | 417 | 871 |

Table 5: Speaker recognition performances with a threshold a posteriori or an a priori (hard)
threshold set to the theoretical value ® = 0, when the mean of the 2 TO-MLP phoneme
outputs are used as decoding.
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