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Abstract

Clustering analysis often employs unsupervised learning techniques originally de-
veloped for vector quantization. In this framework, a frequent goal of clustering
systems is to minimize the quantization error, which is affected by many local min-
ima. To avoid confinement of reference vectors to local minima of the quantization
error and to avoid formation of dead units, hard c-means clustering algorithms are
traditionally adapted by replacing their hard competitive strategy with a soft adap-
tation rule, where the degree of overlap between receptive fields is proportional to
a monotonically decreasing scale (temperature) parameter. By starting at a high
temperature, which is carefully lowered to zero, a soft-to-hard competitive clustering
model transition is pursued, such that local minima of the quantization error are
expected to emerge slowly, thereby preventing the set of reference vectors from be-
ing trapped in suboptimal states. A review of the hard c-means, Maximum-Entropy,
Fuzzy Learning Vector Quantization (FLVQ), Neural Gas (NG), Self-Organizing Map
(SOM) and a mixture of Gaussians method is provided, relationships between these
methods are highlighted and a possible criterion for discriminating between different
soft-to-hard competitive clustering model transitions is suggested.
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1 Introduction

Given a presentation sequence of unlabeled multidimensional patterns X; € R™, i =1, ..., m,
unsupervised learning systems detect a set of parameters capable of modeling hidden data
structures (e.g., linear substructures), statistical data regularities, or probability density
functions [1]. Among unsupervised learning tasks, the problem of clustering is that of
separating the unlabeled data set into groups (i.e., hidden data structures), called clusters,
for which samples within a cluster are more similar than samples from different clusters.
Usually, a vector prototype, also called reference or template vector, C; € R", j = 1,...,c¢ <
m, is generated to characterize the members of a cluster as a group. Since the goal of
clustering is to group the data at hand rather than provide an accurate characterization of
unobserved (future) samples generated from the same probability distribution, the task of
clustering can fall outside the framework of predictive (inductive) learning. In spite of this,
clustering analysis often employs unsupervised learning techniques originally developed for
vector quantization, which is a predictive learning problem [2].

In this framework, a frequent goal of clustering systems is the minimization of the
distorsion error, also called reconstruction error [3], or quantization error [1], defined as

1 & .
E,ec = E Z ||X'L - Cwl(i)||2a wl(l) € {1,0}, (1)
i=1
where || - || identifies the Euclidean distance, ¢ is the number of processing units in the

system (network) and w1(i) is the index of the best-matching template C,;(;) detected as
1Xi = Cunp)ll < IIXi = Cjll,  wl(@) € {l,c},j=1,...,c

Eq. (1) can be considered the hard competitive (Winner-Takes-All, WTA) case of the more
general distance-weighted sum-of-squares clustering cost function (see Eq. (2) below) [4]. In
Eq. (1), reference vectors are the free parameters (degrees of freedom) of the unsupervised
learning task which has many local minima in the parameter space. Minimization of Eq.
(1) is called a hard (competitive) c-means clustering problem [4], [5]. In this case, Eq. (1)
provides each reference vector with a region of support which is a subset of the data space
known as a Voronoi polyhedron, the whole set of reference vectors providing a partition
of the input space known as Voronoi tesselation [1], [6]. Voronoi tessellation is one-to-
one related to Delaunay triangulation, which is a peculiar form of triangulation in various
geometrical and functional respects, e.g., Delaunay triangulation has been proved to be
optimal for piecewise linear function approximation over a triangulation of the input samples
[7], [8]. In terms of data structure detection, Eq. (1) performs well for certain kind of
data, but its failure at detection of non-convex data structures, e.g., linear substructures or
bananas, is well documented [9].

Unsupervised learning systems whose goal is to minimize Eq. (1) are called vector
quantizers and the set of reference vectors Cj, j = 1,...,c is called a codebook [1]. In
a vector quantization task, data is transmitted over a (limited bandwith) communication
channel by transmitting, for each input data vector, only the index of one reference vector.
The set of reference vectors (codebook) is assumed to be known both to sender and receiver.
Therefore, the receiver can use the sequence of received indexes to reconstruct the input



data set by retrieving the corresponding reference vectors. If the input data distribution
is clustered, i.e., it forms disjointed subregions where probability density values are large,
vector quantization provides compact data coding with relatively little distorsion error [1].
According to Eq. (1), the index being sent through the communication channel is that
corresponding to the reference vector nearest to the input data vector. This may no longer
be the case if the communication channel is assumed to be affected by noise (i.e., if the
received index is equal to the index being sent plus noise) [10].

A more general form of Eq. (1), termed distance-weighted sum-of-squares quantization
error, which can be minimized by an unsupervised learning algorithm is [4] (p. 188), [11],
12, [3],

m c
Egen = > ||Xi — Chl[*kn(d(X;, C)), (2)
i=1 h=1

where symbol d(-) identifies an interpattern distance metric, d(X;,C) = {d(X;, C1), ...,
d(X;,C.)} identifies a set of interpattern distances between data point X; and the whole set
of vector prototypes C = {C4, ..., C.}, while term k;(d(X;,C)) > 0 is a distance-weighting
function, also termed kernel function [2], [13], monotonically non-increasing with distance
d(X;, Ch) and monotonically non-decreasing with distances d(X;,Cj), j = 1,...,¢,h # j.
Weighting function k;(d(X;, C)) models the ¢ processing units, whose receptive field cen-
ters are the vector prototypes Cj, j = 1,...,¢, as coupled network nodes provided with
feed-sideways (lateral) connections which guarantee network-wide internode communication
[14]. This node-coupling model reflects the intuitive belief that more information about an
input pattern is simultaneously gathered by the whole set of prototypes than by any single
prototype in the set [11]. It is typically pursued by implementing the kernel function as a
relative (probabilistic) fuzzy membership function [15], [16]. These systems are affected by
the so-called relative membership problem, i.e., they are not robust to the presence of noise
and outliers (i.e., a noise point can drastically influence the estimate of the prototype). To
reduce this drawback, a special case of Eq. (2) is that in which the membership of a point
in a cluster is determined solely by how far that point is from the prototype of the class
with no regard to other classes, i.e., Eq. (2) becomes

kn(d(X;, C)) = k(d(Xi, Ch)),

i.e., the kernel function computes memberships that are possibilistic or absolute (i.e., not
relative) [15], [16]. This leads to systems, e.g., the Possibilistic c-means clustering algorithm
[15], where cluster centers are sought independently of one another. These systems are
affected by the tendency to produce coincident clusters [16], [17].

Notice that Eq. (2) can also be interpreted as a link between clustering problems and
distance-weighted regression [13] (see Appendix 1).

2 Optimization issues

The necessary condition that guarantees approximate minimization of Eq. (2) is

O0E en = .
(9Cg'j == z:zl(XZ - Cj)k;(d(X;,C))+R; =0, j=1,..¢ (3)



where

S Ok (d(X:,C) .
Rj = Z Z(Xl - Ch)Z(a(C'), i=1,..,c (4)
i=1 h=1 i
If we assume [3] that
R;=0, j=1,..,c (5)

then the iterative batch solution of Eq. (3) becomes

C(e—i—l) _ Zgl Xlkj (d(X,L, C(e)))
! g1 k;(d(Xg, C)))

j: ]‘7 "'7C7 (6)

where variable e identifies the number of processing epochs, i.e., the number of times the
finite training data set is repeatedly presented to the network. This batch learning process
is also called instance-based [18], or memory-based learning [13], because it requires the
storage of a complete data set since each data point cannot be discarded once it has been
used. Notice that Eq. (6) computes any template vector as a convex combination of the
input patterns: since the convex combination (e.g. , the average value) of a non-convex
data set may lie well outside the data manifold, it is obvious that Eq. (2) cannot perform
well for non-convex types of data.

If the assumption about vanishing term R; holds, the recursive batch gradient descent
solution of Eq. (2) is defined as

al;gen _ (e < . (e, 0] .
pol = O +e(0 (%~ Gk (X, €O, G =1, (1)

J

(e+1) - ~ile)
C] — CJ - 6(6)

In general, the learning rate e(e) of the exact gradient descent solution ought to satisfy
the three conditions applied to the coefficients of the Robbins-Monro algorithm to find the
roots of a function iteratively (in our case, the function whose roots are investigated is
O0FEgen/0C;). These conditions are [4] (pp. 47, 96), [19],

i) lims, o0 €(t) = 0;
i) 37724 e(t) = o0;
and iii) 335°; €2(¢) < oo.

For example, when e(e) = 1/e [4] (p. 96), [12], [1], then e(e) decreases monotonically
with e under Robbins-Monro conditions. Condition iii) states that learning rate €(¢) must
decrease fast enough, while condition ii) limits the rate of decrease of the learning rate: in-
deed, if this rate of decrease is too quick, then it could stop the progression of the algorithm
towards the minimum [20]. According to condition ii), the infinite sum of the learning rates
diverges. This is tantamount to saying that even after a large number of input signals and
correspondingly low values of the learning rate €(t), arbitrarily large modifications of ref-
erence vectors may occur in principal, although they are most unlikely to occur [1]. When
the data distribution is stationary, conditions i) to iii) are necessary but not sufficient to
guarantee that true (batch) and stochastic (on-line) gradient descent allgorithms converge
to a point in the parameter space [20].



A sequential (stochastic, on-line) update process, whose goal is to avoid the storage of
all data points by assuming that they are arriving one at a time, can be derived from Eq.
(7), when Eq. (5) holds, by dropping the sum over input patterns [4] (p. 96), [21], i.e.,

i = 0 4 ¢(t)(X® — CMk(d(XD,C)), j=1,..c, (8)
where X (%) is the current data vector at presentation time ¢, and learning rate €(t) is subject
to the Robbins-Monro conditions listed above. Implementations of Eq. (8) exploiting
different weight expressions k;(d(X®),C("))) can be found, for example, in the Learning
Vector Quantization (LVQ) algorithm [22], [23], in the Neural Gas model [3], and in the
Maximum-Entropy clustering method [3].

To derive an explicit formula of learning rate coefficient €(t) in the sequential update

mode, an approach alternative to Eq. (8) is to separate out from Eq. (6) the contribution
from the (m + 1)th data point [4] (p. 46), [24]. This gives

1) _ o) 4 5 (t) _
¢V =c+8" . (x0-c), j=1,..¢ (9)
where O c®
7 ET 1k (d(X™), cM))
i.e., Egs. (9) and (10) are a special case of Eq. (8) when
(t) L (11)
e(t) = .
Y71 kj(d(X (™), CM))
Egs. (9) and (10) can also be written as [1]
ot _ o 4 ki (d(X®), C®)y) L(x® C(t))
? 3T S ky(d(X ™), G
¢ )y (7)., c(T)
_ L= Xk (d(X T, CT)) i=1,..,c (12)

37— ki (d(X M, CM))

Notice the similarity between Egs. (6) and (12) [1]. Interpattern distance d(-) can be
computed according to the L, norm (Minkowsi metric) which, in a general multidimensional
case, is

1
n P
d(A, B) = (Z lag — bq|P> , VA,VBeR" (13)

g=1
If p =2, Eq. (13) computes the Euclidean distance. Kernel function k;(d(X, C)), VX € R",

VC; € R™, j =1,...,¢,, usually (but not always) satisfies the following properties (adapted
from [2])

k;(d(X,C)) >0 Positive. (14a)
k;(d (X C)) = ( (C,X)). Radially symmetric. (14b)
k;j(d(X,C)) = max iff X = C;.  Takes on its maximum when X = Cj. (14¢)
hmd_>oo kj(d) = 0. Localized function [4]. (14d)



If the kernel function satisfies conditions (14a) to (14d), then Eq. (2) becomes the soft
competitive version of the distance-weighted sum-of-squares clustering cost function. In-
deed, according to Egs. (6) and (12), any input pattern affects all vector protoypes to
different degrees depending on their proximity to the input pattern. In other words, there
is overlapping between regions of support of the processing elements, such that, given the
activation function f;(X) of the jth processing unit, j = 1,...,c, and given a threshold €
arbitrarily close to zero, the region of support of function f;(X) is the input subset {X};
where f;(X) > € holds true. Local regions that overlap are commonly called fuzzy [2].
If the kernel function is such that

1, if d(X,C,, <d(X,Ch), VX € R",wl(X) € {1,¢}, h=1,...,¢,
huaon 005, 0) = { g 0 Bwon) < 436, et
(15)
where node index w1(X) identifies the best-matching unit for pattern X, then Eq. (15)
does not satisy constraint (14a). When it employs weighting values that satisfy Eq. (15),
Eq. (2) becomes equivalent to Eq. (1). When weighting values are computed with Eq. (15)
where d(-) = || - || (Euclidean distance), then Egs. (6) and (12) become, respectively, the
batch (Lloyd’s or Forgy’s [5]) and on-line (McQueen’s [4], [5], [25]) iterative solution of the
well-know hard c-means clustering problem.

It can be proved that when Eq. (15) employs d(-) = || - || (Euclidean distance), then
terms R;, j = 1,...,¢, vanish in Eq. (4), i.e., Egs. (5) to (10) hold true (see Appendix 2).
Moreover, notice that when Eq. (15) is substituted into Eq. (1), then for any template
vector CJ(-t) which is not a dead unit the following relation holds

iﬂj(t) =1+1/2+1/3+...= i 1/m,
m=1

t=1

i.e., due to the properties of the harmonic series, which is not summable but square
summable, these learning rate values satisfy the Robbins-Monro criteria.
If, besides constraints (14a) to (14d) the kernel function satisfies conditions

0<kj(d(X,C)) <1, j=1,..,cVX € R", (16)
Y k;(d(X,C)) =1, VX eR", (17)
7j=1

then the kernel function is a relative or probabilistic fuzzy membership function [26], [27],
[15], [16]. Notice that Eq. (17) provides a tool for modeling network-wide internode com-
munication by assuming that the ¢ processing elements, whose receptive field centers are the
vector prototypes Cj, j = 1,...,¢, are coupled through feed-sideways (lateral) connections
[14]. From a functional standpoint, distributed systems like, for example, Fuzzy Learning
Vector Quantization (FLVQ) [11], [12], and the Estimation-Maximization (EM) algorithm
[28] applied to Gaussian mixtures [4] where, respectively, a “useful” relative fuzzy mem-
bership function or an objective posterior probability estimate is computed, are equivalent
to distributed systems where a contextual (competitive and cooperative) effect mechanism



employing feed-sideways (intra-layer) connections is modeled explicitly. Notice that only
few clustering networks employ intra-layer connections explicitly, i.e., by means of specific
data structures and parameter adaptation strategies [1], [26], [29], [30]. As already men-
tioned, the relative membership problem affects all these systems unless special mechanisms
for noise and outlier detection are adopted as in [27], [30].

About the choice of the kernel function constrained by Egs. (14a) to (14d) and Egs. (16)
and (17), considerations similar to those applied to distance-weighted regression methods
can be adopted [2], [13] (see Appendix 1).

When the kernel function is constrained by Egs. (14a) to (14d) and Eq. (17), but
condition 0 < k;(d(X,C)) < 1 holds in place of Eq. (16) when d(X,C;) = 0, i.e., when
X = Cj, then, according to Egs. (6) and (12), all templates are attracted by an input
pattern X despite the fact that this pattern has been perfectly matched by one reference
vector. This behavior is accomplished by choosing, for example,

7d(X,-,Cj)2
€ 4 . .
ki,j;l = ka-(O', d(X“ C)) = d(X;,Cp)2 J= 1,.5¢ 1=1,...,m, (18)
Yhoe 7
where o > 0 is a scale parameter. When d(-) = || - ||, Eq. (18) becomes the weighting

function adopted by the Maximum-Entropy clustering algorithm, which is traditionally
employed in data transmission and coding [3]. The cost function of the Maximum-Entropy
clustering algorithm is the negative log-likelihood for the data set modeled as a Gaussian
mixture where spread parameter sigma is fixed (see also Eq. (34)), i.e., [3]

m < [1%;—0511°
Emec(C,0) = —02/2) In lz e A ] : (19)
i=1 j=1

It is easy to prove that, to minimize Eq. (19), necessary condition 0Ene./0C; = 0,
j=1,...,c, provides a batch update equation equivalent to

e iy Xiki j; .
ofett = Zam Xikig (20)
Zg:l kig;1

where Eq. (20) is a special case of Eq. (6). The on-line version of Eq. (20) is a special
case of either Eq. (8) or Eq. (12) where membership values (18) are employed.

Notice that if ¢ — 0, then Eq. (18) becomes equivalent to the WTA kernel function
(15) and Eq. (19) reduces to Eq. (1). In this limit case, if d(-) = || - || (Euclidean distance),
then receptive fields of processing elements are Voronoi polyhedra that feature no degree of
overlap. See Appendix 2 to examine how Eq. (18) relates to Eq. (5). Since Eq. (18) does
not satisfy Eq. (5) whatever scale parameter o may be, then cost function (19) cannot be
considered as a special case of Eq. (2) for which Egs. (3) to (12) hold true.

Rose et al. [31] have shown that the form of Eq. (19) suggests that the parameter
update strategy given by Egs. (18) and (20) is, in fact, a deterministic annealing procedure
with o as the temperature and E,,.. as the free energy [3]. The temperature controls the
amplitude of noise artificially introduced in the optimization process [24], such that at a
high temperature regime Eq. (19) is convex (i.e., without local minima). By starting at a
high temperature which, during the adaptation process, is carefully lowered to zero, cost



function (1) is recovered while its local minima are avoided [3]. In theory, o o< 1/Int, where
t is the number of sequential pattern presentations, must hold.

Finally, notice that the Maximum-Entropy clustering algorithm is affected by the relative
membership problem.

Analogously to the Maximum-Entropy clustering algorithm, other unsupervised learning
systems found in the literature employ soft-to-hard learning strategy transitions aiming
at progressively reducing the degree of overlap between receptive fields until a Voronoi
tessellation of the input space is reached. By gradually decreasing a spread parameter the
cost function minimized by these systems must become equivalent to Eq. (1), i.e., the
local minima of Eq. (1) are expected to emerge gradually, therefore preventing the set of
reference vectors from being trapped in suboptimal states. Examples of these systems are
the on-line Self-Organizing Map (SOM) [22], [23], on-line Neural Gas algorithm [3], and
the batch Fuzzy Learning Vector Quantization (FLVQ) model [11], [12]. Notice that if the
ultimate goal of soft to hard learning strategy transitions is to minimize Eq. (1), this is
tantamount to saying that these clustering algorithms are designed to work basically as
vector quantizers.

Differently from the behavior of kernel function (19), notice that when Eqs. (16) and (17)
are adopted, if k;(d(X, C)) = 1 when d(X,C;) =0, i.e., when X = Cj, then k;(d(X;, C)) =
0, h=1,...,c, h # j, i.e, when a pattern is perfectly matched by one template vector, then
this pattern does not affect any other template in the network according to Egs. (6) and
(12). This behavior is accomplished by choosing, for example,

1
d(X;,Cj)2/r

ki,j;z = kj(p,d(Xi, C)) = , J=1..,¢ 1=1 ..,m, (21)

1
P s X AL
where p > 0 is a scale parameter. This relative membership function was presented in
the context of fuzzy clustering algorithms such as Fuzzy c—means (FCM), where d(-) = |||
and scale parameter p is fixed, and Fuzzy Learning Vector Quantization (FLVQ), where

scale parameter p decreases monotonically with the number of training epochs [11], [12].
The FCM/FLVQ cost function is defined as

ErLvq(K,C,p) = ZZIIX Cill? (ki j2)P T, (22)
=1 j=1

where K is a fuzzy c-partition of the input data set such that coefficient &; 5.2 is a relative
number equal to the degree of similarity between pattern X; and template C; subject to
constraint (17). Assuming p = cost, the Lagrangian function corresponding to Eq. (22) is
[32]

m c m c

Brom(K,C,2) =33 |1Xi = Gl P(kiga) ™ + 3N [ Dokijo— 1) (23)
i=1j=1 i=1 j=1

By differentiating Eq. (23) with respect to C; (for fixed membership values and param-

eter p), we get
i1 Xiki g0
clet) _ iz Xikijz . 1. .. 24
! Z;nzl kigz ' ’ o (24



where Eq. (24) is a special case of Eq. (6). By letting wZ ; = ki j;2 and differentiating Eq.
(23) with respect to w; ; (for fixed cluster templates and parameter p) we get

8Epcm(W,C, )
Owi,;j

=2(p+ D)w] P (X — )2+ 2wijAi =0, j=1,ue, i=1,.,m.

(25)

Multiplying both sides by w; !, Eq. (25) becomes

%,J

0=(p+ 1)wf,§?’“)*1wijj1(xi — Cj)? + wijw i hi = (p+ DwB(Xi — Cj)2 + Xi,  (26)
thus,
1/p
-\
2 %
. =kijo= . 27
R (e == 0
Summing over cluster index j and applying constraint (17) we get
c 0 y c 1 1/p
co=1=(=N\)"'? , 28
uly=1= (M ;<(p+1)(xi_cj)2) (28)
therefore )
(-3)V? = (29)

1/p°

51 (Grocia)
Substitution of Eq. (29) into Eq. (27) leads to Eq. (21) where d(-) = || - || (Eucl. dist.).
Note that if p — 0, then Eq. (21) becomes equivalent to the WTA kernel function (15) and
Eq. (22) reduces to Eq. (1). See Appendix 2 to examine how Eq. (21) relates to Eq. (5).

A soft-to-hard clustering algorithm whose kernel function always satisfies Eq. (5), what-
ever the value of the scale parameter may be, is Neural-Gas (see Appendix I in [3]). In other
words, the cost function minimized by Neural-Gas is a special case of Eq. (2) for which
Egs. (3) to (12) hold true. This cost function is

Enc =Y ) [|1X; — Chl%kins, (30)
i=1 h=1
such that
ki,h;g = k,\(’f‘h(X.i, C)) = 67Th(Xi’C)/'\, (31)

where A is a scale parameter monotonically decreasing with time and 7,(X;, C) is the
neighborhood-ranking of vector C}, such that r,(X;, C) = 0 if C}, is the best-matching unit,
i.e., Cp = Cy1(3), otherwise r(X;, C) = 1if C}, is the second best-matching unit, etc. When
A — 0, Eq. (30) becomes equivalent to Eq. (1).

Finally, let us briefly review SOM which differs from the previous learning frameworks
by employing weighting values that are functions of internode distances in the output lattice
rather than functions of interpattern distances in the input space. In deeper detail the SOM
updating strategy differs from Eq. (7) as shown below

i = 0+ e(t) (XY — Cky (o (10, w1 (1)), G=1,..6, (32)

8



where wl(t) is the position, within the regular external lattice (graph) G, of the node
featuring the largest activation value at presentation time ¢, [(j, w1(t)) is the lattice distance
(neighborhood ranking in the external lattice) between lattice crossings j and wl(t), and
ko(t)(1(§,w1(X(t))) is a unimodal function that decreases monotonically with increasing
distance I(j,w1(t)) with a decay constant o(t), which is monotone-decreasing with ¢. For
example,

. i—wl()]2 /o ()2

ko (1) (14, wi(t)) = e 1O/, (33)

When o(t) — 0, koy) — 1 iff j = wl(t), and otherwise tends to zero, i.e., Eq. (33)
becomes equivalent to Eq. (15) when d(-) = || - ||. Notice that SOM deals with topological

relationships (adjacency, neighboring) among nodes in an output lattice G without dealing
with internode connections (synaptic links) explicitly. It has been proved that, as long
as Eq. (33) features o(t) > 0 (i.e., as long as the adaptation strategy of SOM is soft
competitive), one cannot specify a cost function that is minimized by Eq. (32), i.e., there
exists no cost function yielding Eq. (32) as its stochastic gradient descent [3], [33], [34].
SOM instead features a set of potential functions, one for each node, to be independently
minimized following a stochastic (on-line) gradient descent [34]. In [10], a cost function that
leads to an update strategy similar to, but not precisely the same as, Egs. (32) and (33) is
discussed. This cost function was introduced in a nonneural context to design an optimal
vector quantizer codebook for encoding data for transmission along a noisy channel [35].

In unsupervised learning algorithms featuring a firm statistical foundation, an example
of soft-to-hard update strategy transition can be derived from EM parameter optimization of
Gaussian mixtures. The optimization problem is expressed as the maximization of the joint
probability of a dat set of m observed vectors X = (X7, ..., X;») (evidence), conditioned on a
set of adjustable parameters 6 = (64, ..., 0.). The probability density function p(X|8) = L(0)
represents the degree to which the data model fits the observed data, or it can be viewed as
a function of @ for fixed X, in which case it is referred to as the likelihood of parameter set
0 for the given data set X. Likelihood p(X) can be represented as a mixture distribution,
i.e., a linear combination of component densities p(X|j), 7 = 1,...,c. According to the
expansion rule [36], and under the hypothesis of i.i.d. sampling, we can write the negative
log-likelihood for the data set as [2] [4], [28],

Ep = —In[p(X)] = —In ﬁ p(X;) = - f: in i:p(XiIJ‘)p(j), (34)
i=1 i=1 =1

which can be regarded as an error function E,,;; to be minimized, where ml stands for
maximum likelihood. In Eq. (34), the mixing parameters p(j), j = 1,...,¢, are called the
prior probability of the data points generated from component j of the mixture [4]. These
priors satisfy conditions

0< p(]) <1, j=1..¢ (35)

Xc:p(j) =1 (36)
j=1

When component density functions p(X;|j) are (isotropic) Gaussians, i.e.,

1 _|Xi*0j|2
N ¥ VX;eRMj=1,..,c. (37)
J

p(Xilj) =



then p(X) is modeled as a Gaussian mixture. It is easy to prove that Maximum-Entropy
cost function (19) is a special case of the negative log-likelihood of a Gaussian mixture: in
particular, Eq. (19) is equivalent to the combination of Egs. (34) and (37) where o; = o,
j=1,.,¢,and p(j) = 1/¢, j = 1,..,¢c (i-e., we have little prior information, or priors are
the same and can be ignored [4], [18]). To maximize the combination of Eq. (34) with Eq.
(37), i.e., to find the maximum likelihood solution of a Gaussian mixture, zero crossing of
partial derivatives [4] (p. 62) and the EM optimization algorithm both provide a batch and
iterative update rule for Gaussian centers which is [4] (p. 67)

oleth) — ity Xip(§]Xa)
E;nzl p(Jng) ’

=1,..,c, (38)

m . e+1
o2yt _ LXK - O
J

p() Y = Zp 31 Xi), (40)

j=1,..,C (39)

where n is the dimensionality of the input space and p(j|X;) is the posterior probability of
mixture component j given the observable vector X;, defined according to Bayes’ rule as

p(Xilj)p(5)" (41)

P = e D Xam)p(m)@

Posterior probabilities satisfy conditions

0<p(jlX;) <1, VX;eR"ji=1,..,c (42)
Y p(ilXi) =1, VX;eR™ (43)

Notice that Eq. (38) becomes equivalent to Eq. (6) by choosing
p(jlX:) = k;(d(X;, C19)),

where, on the basis of Eqgs. (42) and (43), weighting values k;(d(X;, C())) , VX; € R™,
j =1,...c, must satisfy Eqs. (16) and (17), i.e., the weighting function must be chosen as a
relative fuzzy (i.e., useful [37]) membership function approximating a posterior probability.

By assuming that mixture components are spherical Gaussians having a common spread
parameter, i.e., 0; = 0, j = 1,...,¢, it can be proved that when o — 0, then the posterior
probabilities for all mixture components is zero except for the mixture component wl(i) €
{1, c} whose center vector Cyq(;) is closest to X; [4] (p. 190). This means that the EM
update formula (38) applied to a mixture of spherical Gaussians featuring the same spread
parameter 0 — 0 becomes equivalent to the batch update formula of the hard (purely
competitive) c-means clustering problem (see Eq. (1) when d(-) = || -||); this is tantamount
to saying that the hard c-means clustering problem is a special case of EM maximization
of the joint probability p(X) modeled as a mixture of spherical Gaussians featuring the
same spread parameter o — 0. In the literature, there are criticisms of this conclusion [2]
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(p. 181): it can be shown that when the mean of a Gaussian is set to the value of any
training data point, if ¢ — 0 then the log-likelihood function increases indefinitely, i.e., no
global maximum of the log-likelihood does exist, indicating that the maximum-likelihood
approach fails to provide a definite solution. In other words, if the mean of a Gaussian is
set to the value of any training data point, then there is no value of o that gives a global
maximum. Thus, the maximum likelihood inductive principle mail fail to provide a solution
for estimation of simple densities such as the mixture of Gaussians. This calls into question
the validity of considering Egs. (38) and (39) when o — 0 as an applicable case.

3 Conclusions

Our first conclusion is that FLVQ, by adopting Egs. (21) and (24), does not minimize cost
function (22). This is made evident by considering that Eq. (24) assumes that Eq. (5) is
always satisfied, while Eq. (5) holds true iff the FLVQ scale parameter p goes to zero (see
Appendix 4). In other words, the cost function minimized by FLVQ is still unknown [38].
Experimentally, it is easy to verify that FLVQ iterations do not always reduce the cost given
by the combination of Egs. (21) and (22) when scale parameter p is fixed. For example,
Figs. 1 and 2 show, respectively, the HCM and FLVQ clustering of a non-convex data set
consisting of a circular ring plus three Gaussian clusters. Fig. 3 shows that when p < 1.5 is
fixed, the FLVQ cost value, equivalent to the combination of Egs. (21) and (22), increases.
Figs. 2 and 4 show the typical behavior of a deterministic annealing procedure, such as
FLVQ and Maximum-Entropy, where at a high initial temperature all reference vectors are
attracted by the grand mean (center of gravity) of the data set [38].

Our second conclusion is that NG differs from FLVQ and the Maximum-Entropy clus-
tering algorithm in satisfying Eq. (5), which is related to the update equation (6) and cost
function (2), for every value of the scale parameter, while FLVQ and Maximum-Entropy
satisfy Eq. (5) only in a limit case (when the scale parameter goes to zero). The conse-
quence of this fact in terms of minimization of Eq. (1) is still unclear and requires further
investigation because, despite the fact that NG, FLVQ and Maximum-Entropy all employ
an update equation of type (6), each one of these algorithms starts from a different cost
function that does not necessarily belong to type (2) (like Eq. (19), which is the cost
function of Maximum-Entropy, while the cost function of FLVQ is unknown).

It is interesting to observe that an axiomatic learning framework, which is able to
unify the expressions of the Maximum-Entropy and FLVQ cost functions, has been recently
proposed [39]. In our further investigations we will try to find relationships between the
unifying learning framework proposed in [39] and Egs. (2), (4)-(6).

Appendix 1

For the sake of simplicity, let us consider a mapping between two 1-D spaces, where (zp, yp),
h=1,...M, z,, € R, y, € R is the supervised training data set. Instance-based learning
approaches actually construct a different approximation to the target function for each
distinct query instance [?]. Unobserved function values are estimated by fitting the nearby
training points well, with less concern for distant training points according to the cost

11
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Figure 1: HCM clustering of a circular ring plus three Gaussian clusters: 140 data points;
7 clusters, 4 iterations. Final MSE = 30.92.
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Figure 2: FLVQ clustering of a circular ring plus three Gaussian clusters: 140 data points;
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function
M

C(a) = Y_(9(a) — yn)?k(d(a, 1)), (41.1)

h=1
where ¢ is a query input point (unobserved example) and k(d(q,zp)) > 0 is a distance-
weighting function constrained by Eq. (XXX). The best estimate §(g) is the one that
minimizes C(q) such that

8C(a) &, -
9i(q) hz::l(y(Q) — yn)k(d(q, zn)) = 0,
therefore, B
j(q) = L1 tnk(dlg,21) o

E;L\l::l k(d(qa mh))
According to Eq. (A1.2), if k(d(g,xr)) — oo when d(g,zr) — 0, i.e., when ¢ — xp, then
9(9) — yn, i-e., exact interpolation of the supervised training data is pursued. If data
are noisy, exact interpolation is not desirable, and Eq. (A1.2) should employ a weighting
scheme based on finite values of the kernel function to guarantee smooth interpolation
between training points [13]. For example, let us consider the case in which Eq. (Al.2)
employs a Gaussian weighting function

_ (d(a,zp))?
k(d(g,zp)) =€ 2w . (A1.3)
In this case, if d(g,zp) — 0, i.e., if ¢ — zp, then k(d(g,zr)) — 1 and, as a consequence,
9(q) # yn. This means that when Eq. (A1.2) employs a Gaussian weighting function then
no exact interpolation is pursued because not every observed input value is mapped exactly
onto its corresponding target value.

Appendix 2

Let us prove that when Eq. (15) employs d(-) = || - || (Euclidean distance), then terms
R;, j = 1,...,c, vanish in Eq. (3). This demonstration derives from an analogous proof
originally proposed in [3]. For notational convenience we use symbol d; ; = || X; — C}|| and
d;c = d(X;,C) in Eq. (4), which becomes

c

R=3 3 M)y

i=1 h=1 i=1

Okildic) Okn(dic)
2 z ,C 2 h z ,C
di 8C’ Z din oC;

h=1,h#j
(A2.1)

where weighting function kj(d(X;, C)) is computed according to Eq. (14), which can be
written as

k;(d(X;,C)) = 6 ( Z 02(d; ; —di,)) , (A2.2)

1=1,1#j
where 65(-) is the Heaviside step function defined as
1, if z > 0,
0a() = { 0, otherwise, (42.3)
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such that

Z ez(d?,j - d?,l) € {Oa sy C— 1}a
I=1,1#j

where the output zero condition occurs iff d; ; < d;;, [ =1,...,c.
In Eq. (A2.2), function 6;(-) is the Heaviside step function defined as

1, ifz <0,
On(z) = { 0, otherwise. (42.4)

Notice that in Eq. (A2.4) the output one condition occurs iff d; ; < d;;, I = 1,...,c. It
is known that the derivative of the Heaviside step function is such that df(y)/dy = d(y),
where §(y) is the delta distribution defined as

6(y) =0,ifz #0,

and

[ sy = 1.
At this point we can compute the derivative in Eq. (4), which becomes

Rj=) d};-2-di;- 6 ( > 6a(d2; —d?,z)> Y. o(d;—dy)
i=1

I=1,1%] I=1,1#]

+Y. Y dipe(=2)-dig-d ( > 02(dip d?,z)) 8(dZp — dz;)- (42.5)

i=1 h=1,h#j I=1,I#]

For every X;, i =1, ..., ¢, each of the ¢ sums in the second term of Eq. (A2.5) is nonvanishing
iff d; , = d; ;. By removing all vanishing sums in this second term, Eq. (A2.5) becomes

Rj=) d};-2-di;-6 ( > 6a(d2 —df,z)) Y. 8(d;—dy)
i=1

I=1,1#j I=1,l#j
+) dZ - (-2)-dij- 6 ( > 6a(di; - d,?,,)) > 8(di, —dzy). (A2.6)
i=1 1=1,1#j h=1,h#j

Since §(y) = §(—y), then R; vanishes, j =1,...,c.

Appendix 3

If Eq. (18) is the kernel function adopted in Eq. (2), i.e.,




where dz?,j = ||X; — Cj||* = (X; — C;)T(X; — C;) and scale parameter ¢ > 0, then, according
to Eq. (4), the term R; becomes

< Okp(d;, ) S 0A; 1 oD; A;n
R, 2, " c dfl L (— )l A3.1
Zlhzl ;hgl *18C; D; " 8C; \ D} (43.1)
Where
ad”_ (X C)
de
Aij=e %,
d?
Di:Zg 16_ ‘:’2)

0A;,
gg’ = 6CJ = A;;2(X; — Cj)/o?,
such that, if ¢t = l/a, then

A A O(e_atz)a if j # wl(i),
lim 5’ = lim # = (A3.2)
— i —00 ;
7 ‘ : 1+ o(e™o), if j = wi(i),

where index w1(i) identifies the best-matching unit, a > 0 and o(e~*!") is an infinitesimal
quantity that goes to zero as eot?, Eq. (A3.1) becomes

A 1 0A; A;
2 a] 7] _ ’Lh
nefsn e Sk (54
Z ’J X C)d ZZ ’7 (X; — C)dlh( A;ip). (A3.3)
i=1h=1
Substituting ¢ = 1/0 in Eq. (A3.3) we get
262 A; A
R; = l o = (X — C)( -y 1;’Fd3,h>]. (A3.4)
i=1 t h=1 °

Based on Egs. (A3.2) and (A3.4) we obtain

262 A;

t—o0 t—o0 f

lim R; = lim l (X;—C; ) ( diwl(i) + o(e—atz))]
=1

it mijmunay, 221+ 0(e™%))(Xi = C)o(e™)]

= lim
t—o00
s ot (22 (X = ) (8, = g + o)),
Ziil,...,m;j:wl(i); |:2t2(1 + O(e_atz))(Xi — Cj)o(e_atz)} ,
< lim

[2t20(e*°‘t2)(Xi - Cj) (Ml))] )

i=1,...,m;jZwl(s);
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2
Yt mij=ui(i); Mato(e ") =0,

< lim
t—o0

i=1,...,m;jAwl(i); M3t20(e_at2) = 0’

where M7, Ms and M3 are finite quantities > 0. To summarize, when the kernel function
is chosen according to Eq. (18), where d(-) = |- |, and ¢ — 0, then Eq. (19) becomes
equivalent to Eq. (1), which is a special case of Eq. (2), and Eq. (5) holds true.

Appendix 4

If Eq. (21) is the kernel function adopted in Eq. (2), i.e.,

1
a*'r
i, .
ki(p,dic) = =<—25> =116
Zg 1 2/p
19

where scale parameter p > 0, then, according to Eq. (4), the term R; becomes

Okp(d; > 8A;n, 1 8D; [ A
R chﬁ h C) ZZ Zhlac;”ﬁﬁacj (—D’;ﬂ, (44.1)

=1 h=1 =1 h=1

%vglere
4 .
ac, = 2(X; - Cj),
A= -
3J 2/p?
4’y

d2
__%
Di = Z;:l e o )
oD; _ 0Ai; _ 2 Aij
oc; — 90C; T p(X;-Cj)?
such that, if ¢t = 1/p, then

Ay Ay [ 0@, if j £ wi(),
lim 5% = Jim ‘{ 14 0(6Y, if j = wi(i), (44.2)

where index w1(7) identifies the best-matching unit, 0 < # < 1 and O(6") is an infinitesimal
quantity that goes to zero as 6°.
By analogy with Eq. (A3.4), it is possible to prove that

R; = i l X C) <d2 -y “B’:dih)] . (44.3)

1= h=1

Based on Egs. (A4.2) and (A4.3) we obtain

2tA 2] 2 2 t
B = 2 lm( — i +0(6)
ity mijewi(i); | 261+ O(09) 25 0(6%)]
= jim

Ei:l,...,m;j;éwl(z), [2t0(0t) (X:—Cj) (d2 d?,wl(i) + O(et)):| ’
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Z’L:l,,m,]:wl(l), M1t0(9t) = 0,
< lim

~ t—oo

Sict,..mijrwi (i), M2tO(6%) = 0,

where M; are M; are finite quantities > 0. To summarize, when the kernel function is chosen
according to Eq. (21), where d(-) = |- |, and p — 0, then Eq. (22) becomes equivalent to
Eq. (1), which is a special case of Eq. (2), and Eq. (5) holds true.
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