INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. e Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

A Biological Grounding of
Recruitment Learning and Vicinal
Algorithms

Lokendra Shastri*
TR-99-009
April 1999

Abstract

Biological neural networks are capable of gradual learning based on observing a
large number of exemplars over time as well as rapidly memorizing specific events as
a result of a single exposure. The primary focus of research in connectionist modeling
has been on gradual learning, but some researchers have also attempted the computa-
tional modeling of rapid (one-shot) learning within a framework described variably as
recruitment learning and vicinal algorithms. While general arguments for the neural
plausibility of recruitment learning and vicinal algorithms based on notions of neural
plasticity have been presented in the past, a specific neural correlate of such learn-
ing has not been proposed. Here it is shown that recruitment learning and vicinal
algorithms can be firmly grounded in the biological phenomena of long-term poten-
tiation (LTP) and long-term depression (LTD). Toward this end, a computational
abstraction of LTP and LTD is presented, and an “algorithm” for the recruitment of
binding-detector cells is described and evaluated using biologically realistic data. It
is shown that binding-detector cells of distinct bindings exhibit low levels of cross-
talk even when the bindings overlap. In the proposed grounding, the specification of
a vicinal algorithm amounts to specifying an appropriate network architecture and
suitable parameter values for the induction of LTP and LTD.
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1 Introduction

Biological neural networks are capable of slow gradual learning as well as rapid one-
shot memorization. The former involves an exposure to a large number of exemplars
and leads to the acquisition of perceptual-motor skills, category formation, language
skills, and certain types of semantic knowledge. In contrast, one-shot memorization
can result from a single exposure to an example and underlies, among other things,
the acquisition of “episodic memories” of everyday events, and memories of faces.

The primary focus of research in connectionist and neural network models has
been on slow gradual learning, but some researchers have also attempted the compu-
tational modeling of rapid one-shot learning within a framework described variably
as recruitment learning (Feldman, 1982; Shastri, 1988; Diederich, 1989) and wvicinal
algorithms (Valiant, 1994). In simple terms recruitment learning can be described as
follows: Learning occurs within a network of randomly connected nodes. Recruited
nodes are those nodes in the network that have acquired a distinct “meaning” (or func-
tionality) by virtue of their strong interconnections to other recruited nodes and/or
other sensorimotor (i.e., input/output) nodes. Nodes that are not yet recruited can
be viewed as “free” nodes. Such nodes are connected via weak links to a large num-
ber of free, recruited, and/or sensorimotor nodes. These free nodes form a primordial
network from which suitably connected nodes may be recruited for representing new
items. For example, a novel concept y which can be expressed as a conjunct of ex-
isting concepts zy and z; can be memorized by (i) identifying free nodes that receive
links from nodes representing z; as well as nodes representing z, and (ii) “recruiting”
one or more such free nodes by strengthening the weights of links incident on such
nodes from z; and x5 nodes.

Feldman (1982) showed that conjunctive concepts can be recruited with a high
probability if one makes suitable assumptions about network connectivity. He pre-
sented a probabilistic analysis of recruitment learning based on the degree of con-
nectivity and the number of intermediate layers in random interconnection networks.
Shastri (1988) extended the notion of recruitment learning to relational concepts. He
treated a concept as a collection of attribute-value bindings and suggested a two-
stage memorization process. In the first stage, “binder” nodes are recruited for each
attribute-value binding in a concept. In the second stage, these binder nodes are
joined together by the recruitment of another conjunctive node. Diederich (1989)
showed how this form of structured recruitment learning can be used to learn new
concepts expressed as modifications of existing concepts. Valiant (1994) proposed a
formal “neuroidal model” and described several algorithms for the recruitment learn-
ing of conjunctive and relational concepts. He also presented a quantitative analysis
of these algorithms using plausible assumptions about connectivity in the neocortex.
Valiant referred to these algorithms as “vicinal algorithms.”

While general arguments in support of the neural plausibility of recruitment learn-
ing and vicinal algorithms have been presented in the past (see Feldman, 1982;



Valiant, 1994), a specific neural correlate of such learning has not been proposed. In
this paper it is shown that recruitment learning can be firmly grounded in the biologi-
cal phenomena of long-term potentiation (I'TP) and long-term depression (LTD) that
involve rapid, long-lasting, and highly specific changes in synaptic strength. Toward
this end, a computational abstraction of LTP and LTD is proposed, and an “algo-
rithm” for the recruitment of binding-detector cells is described and evaluated using
biologically realistic data about region sizes and cell connectivity. In the proposed
grounding, the specification of a vicinal algorithm amounts to choosing a suitable
network architecture and a set of appropriate parameter values for the induction of
LTP and LTD.

The rest of the paper is organized as follows: Section 2 briefly reviews the phe-
nomena of TP and LTD. Section 3 describes a computational abstraction of cells,
synapses, L'TP, and LTD. Section 4 describes how a transient pattern of activity can
lead to the recruitment of binding-detector cells as a result of LTP (and optionally,
LTD) within quasi-random network structures. Finally, section 6 presents some con-
cluding remarks.

2 Long-term potentiation and depression

Long-term potentiation (LTP) refers to a long-term increase in synaptic strength'
resulting from the pairing of presynaptic activity with postsynaptic depolarization,
and has emerged as a promising cellular mechanism underlying activity-dependent
learning in the brain (Bliss & Lomo, 1973; Bliss & Collingridge, 1993; Lynch &
Ambros-Ingerson, 1993; Derrick & Martinez, 1996). LTP involves the unusual re-
ceptor NMDA which is activated by the neurotransmitter glutamate, but only if the
postsynaptic membrane is already depolarized. Once the NMDA receptor is acti-
vated, calcium ions flood into the postsynaptic cell and lead to a complex series of
biochemical changes that result in the induction of LTP.?

The conditions required for the activation of the NMDA receptor — presynaptic
activity in the presence of postsynaptic depolarization — can be brought about by a

LA synapse is the site of communication between two cells. Typically, a synapse is formed when
an axonal (output) fiber emanating from a “presynaptic” cell makes contact with the dendritic tree
(input structure) of a “postsynaptic” cell.

A synapse can be excitatory or inhibitory. The arrival of activity at an excitatory synapse from
its presynaptic cell leads to a depolarization of the local membrane potential of its postsynaptic
cell and makes the postsynaptic cell more prone to firing. In contrast, the arrival of activity at
an inhibitory synapse leads to a hyperpolarization of the local membrane potential of the postsy-
naptic cell and makes the postsynaptic cell less prone to firing. The strength of an excitatory (or
inhibitory) synapse determines the degree of depolarization (or hyperpolarization) that will result
from a given presynaptic activity. The greater the synaptic strength, the greater the depolarization
(hyperpolarization). For more on cell and synapses refer to (Kandel, Schwartz, and Jessell, 1991).

2While the site of LTP induction is postsynaptic, the site of its expression continues to be a
matter of controversy. Also, not all cases of LTP are mediated by NMDA receptors (see Zalutsky &
Nicoll, 1990).



high frequency burst of activity arriving at a synapse or by multiple converging inputs
arriving at a cell in close temporal proximity. The long-term increase in the efficacy
of a synapse resulting from brief but high-frequency activity at the synapse is referred
to as homosynaptic LTP. The long-term increase in the efficacy of synapses resulting
from convergent activity arriving at multiple synapses sharing the same postsynaptic
cell is called associative L'TP.

LTP possesses several properties that make it suitable for rapid memory formation.
It 1s induced very rapidly — within a few seconds, and is fully present within 20-30
seconds. Once stable, it can persist for a long time. Finally, it is synapse-specific,
and hence, can express specific associations and correlations.

In addition to potentiation, synapses can also undergo long-term depression (LTD)
(Linden, 1994; Artola & Singer, 1993). A synapse receiving no presynaptic activity
can undergo heterosynaptic LTD if other synapses of the same postsynaptic cell re-
ceive high frequency presynaptic activity. Finally, prolonged low frequency stimula-
tion of a synapse can lead to its homosynaptic LTD.?

3 Computational modeling of LTP and LTD

3.1 Computational abstraction of cell behavior

The computational abstraction of cells and synapses proposed below was guided by
two considerations. The first consideration was to use an abstraction rich enough to
capture temporal aspects critical for modeling LTP and LTD and to explain how LTP
and LTD can lead to the recruitment of a variety of functional cells and circuits. The
second consideration was to keep the model discrete and minimal so as to facilitate
its analysis and computer simulation.

A cell is modeled as a highly idealized integrate-and-fire neuron (e.g., see Maass
& Ruf, 1999). The spatio-temporal integration of activity arriving at the synapses of
a postsynaptic cell is modeled as follows:

The postsynaptic potential at time ¢, resulting from presynaptic activity, a;(fo),
occurring at synapse s; at time ¢, is given by:

a;i(to) * wi(to) to <t < (to+ wint)
pspi(t [ai(to)) =
0 otherwise

where w;(to) is the weight (or the strength) of synapse s; at time o, and w;,; is
the window of temporal integration which denotes the maximum amount by which
two incident activities may lead/lag and still be summated by the postsynaptic cell.
Consequently, psp;(t), the postsynaptic potential at s; at time ¢, is given by:

3There is also some evidence that a synapse may undergo associative LTD upon receiving presy-
naptic activity that is out of phase with strong rhythmic activity converging on other synapses of
the postsynaptic cell (Stanton & Sejnowski, 1989).



pspi(t) = 3. ai(t —7)xwi(l —7)

(0<7<wint)

Note that the postsynaptic potential resulting from presynaptic activity is being
modeled as a square-pulse of duration w;,;. Since actual psps in biological networks
have gradual onsets and gradual decays, the square-pulse approximation is a strong
idealization. However, this idealization does not render the proposed abstraction
biologically implausible for the following reason: It is known that models employ-
ing square-pulse psp functions are computationally weaker than models employing
piecewise linear psp functions (Maass & Ruf, 1999). Since psp functions with graded
onsets and decays can be approximated by piecewise linear psp functions, it follows
that a model employing square-pulse psp functions is computationally weaker than
a model employing psp functions with graded onsets and decays. Consequently, any
solution developed using synapses with square-pulse psp functions can be realized us-
ing synapses with biologically plausible graded psp functions. Thus while the use of
simple square-pulse psps in the abstraction facilitates the analysis and simulation of a
network model using the proposed abstraction, it does not detract from its biological
plausibility.*

A cell’s potential at time t resulting from the combined effect of presynaptic ac-
tivity at its synapses is given by pot(t), where

pot(t) = pspi(t)

k3

the sum being taken over all synapses of the cell. We will use “potential” and
“weighted sum of activity” interchangeably.

A cell may have two response modes (i) a normal spike response and (ii) a burst
response consisting of a short-term generation of spikes at a high frequency.® A
cell’s response is governed by two response thresholds — one pertaining to the spike
response and the other to the burst response — and one refractory period. The two
response thresholds are referred to as 6,,(t) (for spike response) and 6y,(t) (for burst-
response). The refractory period is referred to as w,.s. The response of a cell, O(1),
is characterized as follows:

*Of course, ease of simulation and analysis per se are not a virtue. For it to be interesting,
the proposed abstraction must be capable of supporting a range of useful recruitment and vicinal
learning algorithms. We will see one such application in this paper. Several others are described in
(Shastri, 1999a; 1999¢).

5The production of a burst response by a cell is not an uncommon phenomenon. In particular,
pyramidal cells in the neocortex as well as the hippocampal formation may produce a burst response.
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Ow pot(t) > 0y (1)
O(t) =1 Oy 05(1) < pot(t) < Oy.(1))

0 otherwise

In other words, a potential at, or above, the bursting-threshold leads to bursting, and
a potential below the bursting-threshold, but at, or above, the spiking threshold leads
to normal spiking. A potential below the spiking threshold leads to no response. After
a cell responds at time ¢, the resulting spike (or burst) travels unattenuated and arrives
at synapses downstream from the cell at time ¢ + d, where d is the propagation delay
(this activity constitutes presynaptic activity with respect to downstream synapses).

After a cell produces a response, it enters a refractory state for a duration w;..
During this interval, the cell does not produce a response irrespective of any inputs it
might receive. This is modeled by assuming that once a cell responds at time #, its
response thresholds become +oo during the interval tg < t < g+ w,.s. Subsequently,
the response thresholds revert to their resting (or steady-state) values of O, and Oy,
respectively.® That is,

+oco if the cell responded during the interval [t — w,.f,t — 1]
Hsr(t) =

O,, otherwise

and

+oo if the cell responded during the interval [t — w,.s, ¢ — 1]
Hbr(t) =

0, otherwise

Different types of cells may have different values of w;,s, wyes, O, and Op,. A cell
that can only produce a spike response can be modeled by setting ©;, to cc.

3.2 Modeling of Synaptic strengths

A projection refers to the set of links emanating from cells in a source region and
impinging on cells in a target region. It is assumed that all the synapses formed by
a projection are of the same type.

A synapse can be in any one of following three states: naive, potentiated, or
depressed. The state of a synapse signifies its strength (weight). For a given synaptic
type, the weights of all synapses in a given state are distributed within a restricted
band, with the weight bands associated with each state being disjoint. The weight
bands associated with synaptic states may differ from one synaptic type to another.

5The use of a discrete threshold function is also an idealization. As in the case of postsynaptic
potential, while this idealization greatly simplifies simulation and analysis, it does not detract from
the model’s biological plausibility.



3.3 Computational modeling of LTP

LTP is governed by the following parameters:

e polentiation threshold 0,,,

o weight increment Awyy,

o repetition factor k,

o maximum inter-activity interval 7,4, and

o probability of LTP, (jy,.

Consider a set of neighboring” synapses si,...,s, on the same postsynaptic cell.
Convergent presynaptic activity at sq,...,s, can lead to associative LTP of naive s;’s
and increase their weights by Auwy, if the following conditions hold:

L. Elgign pspi(t) > 0,

The above entails that synchronous presynaptic activity arriving at sq,...,s,
causes sufficient depolarization of the postsynaptic cell’s membrane potential.

2. Such synchronous presynaptic activity recurs (repeats) > k times.

3. The interval between two successive arrivals of presynaptic activity at a synapse
during the above repetition is < 7;,; time units.

The parameter (4, specifies the probability that a naive synapse will undergo LTP
if conditions 1-—3 are met. Here (;, provides a simple computational mechanism for
controlling the occurrence of LTP in a region. Among other things, the value of (j,
may be varied to model neuromodulatory effects arising as a result of a system’s
emotional and motivational states.

Homosynaptic LTP is modeled in an analogous manner. Repeated bursts of high-
frequency activity arriving at a synapse ¢, can lead to its homosynaptic LTP if (i) the
postsynaptic potential, psp;, resulting from each burst is > 6, (ii) the bursts repeat
> £k times, and (iii) the interval between two successive bursts is < 7;,; time units.

3.4 Computational modeling of LTD

Heterosynaptic L'TD is also modeled using five parameters. These are:

e potentiation threshold 6,,

“In the simplest case, all synapses associated with the same postsynaptic cell may be assumed to
be neighboring synapses.



o weight decrement Awyyy,
e repetition factor &,

e maximum inter-activity interval 7;,;, and

e probability of LTD, (j4.

When naive or potentiated synapses of a postsynaptic cell receive convergent
presynaptic activity, neighboring inactive naive synapses of the postsynaptic cell un-
dergo heterosynaptic LTD and their weights decrease by Awyyg.

As in the case of LTP, 8, dictates the minimum weighted sum of synchronous ac-
tivity that neighboring synapses of the postsynaptic cell must receive, and & specifies
the number of times such presynaptic activity must recur in order to induce heterosy-
naptic LTD of naive inactive synapses. Also as before, 7;,; specifies the maximum
permissible gap between the successive arrival of presynaptic activity.

The parameter (4 specifies the probability that an inactive naive synapse will
undergo LTD when the above conditions are met. A value of (;;4 = 0 means that
there is no heterosynaptic LTD and a value of (;;4 = 1 means that the occurrence of
LTP can lead to the heterosynaptic LTD of all the neighboring inactive naive synapses
of the postsynaptic cell.

A variant of the abstraction proposed above uses a synaptic weight modification
rule similar in spirit to the BCM rule (Bienenstock, Cooper, & Munro, 1982). In this
variant, 6, of a cell is variable and increases upon the potentiation of its synapses.
Hence, the potentiation of a certain number of synapses can raise the potentiation
threshold of the postsynaptic cell to a sufficiently high level and thereafter, make the
potentiation of its remaining naive synapses very unlikely. In computational terms,
assuming a steep increase in the potentiation threshold (8,) of a postsynaptic cell
after the potentiation of a small number of its synapses is analogous to assuming
Cta =~ 1 (i.e., widespread heterosynaptic LTD), whereby the LTP of a small number
of synapses can lead to the LTD of all remaining naive synapses.

3.5 Emergence of cells and circuits responsive to specific functionalities

LTP and L'TD can transform random networks into structures consisting of cells tuned
to specific functionalities. Typically, a cell receives a large number of inputs (affer-
ents), and hence, can potentially participate in a large number of functional circuits.
If, however, the weights of selected synapses on the cell increase via LTP (and, op-
tionally, the weights of other synapses decrease via LTD) the cell can become more
selective and participate in a limited number of functional circuits. Thus LTP and
LTD provide a promising neural mechanism for the formation of functional structures
within random networks via recruitment learning.



In the following section we illustrate how transient activity propagating through
neural circuits can automatically lead to the recruitment of functional cells via LTP

(and optionally, L'TD).

4 Recruitment of binding-detector cells

Our ability to remember events in our daily life demonstrates our capacity to rapidly
acquire new memories. Typically, such memories record who did what to whom where
and when, or describe states of affairs wherein multiple entities occur in particular
configurations. This form of memory is often referred to as episodic memory (Tulving,
1978), and there is a broad consensus that the hippocampal formation (HF) and
neighboring areas in the medial temporal lobes serve a critical role in its formation
(O’Keefe & Nadel, 1978; Squire, 1992; Cohen & Eichenbaum, 1993; Treves & Rolls,
1994).

The persistent encoding of an event must be capable of encoding role-entity bind-
ings. Consider the event described by “John gave Mary a book in the library on
Tuesday”. This event cannot be encoded by simply forming a conjunctive associ-
ation between “John”, “Mary”, “a book”, “Library”, “Tuesday” and “give” since
such an encoding would be indistinguishable from that of the event described by
“Mary gave John a book in the library on Tuesday”. In order to make the nec-
essary distinctions, the encoding of an event should specify the bindings between
the entities participating in the event and the roles they play in the event. For
example, the encoding of the event in question should specify the following role-
entity bindings: ({giver=John), (recipient=Mary), (give-object=a-Book), (temporal-
location=Tuesday), (location=Library)).

As explained in (Shastri, 1999c¢), it is possible to evoke a fleshed out representation
of an event by “retrieving” the bindings pertaining to the event and activating the
web of semantic and procedural knowledge with these bindings. Thus cortical circuits
encoding generic “knowledge” about actions such as give and entities such as persons,
books, libraries, and Tuesday can recreate the necessary gestalt and details about the
event “John gave Mary a book on Tuesday in the library” upon being activated with
the above bindings. This view is supported by work on “reflexive reasoning” (Shas-
tri & Ajjanagadde, 1993; Shastri, 1999b) and “executing schemas” (Bailey, Chang,
Feldman & Narayanan, 1998).

In view of the above, the recruitment of binding-detectors is expected to be a
critical step in the memorization of episodic memory. The following describes how
such binding-detector cells can arise spontaneously and rapidly within a biologically
motivated network structure as a result of LTP (and optionally, LTD).



4.1 A structure for the encoding of binding-detector cells

A structure for the rapid formation of cells responsive to binding matches consists of
three regions: ROLE, ENTITY, and BIND (see Figure 1(a)). Regions ROLE and ENTITY
are assumed to have 1 million primary (excitatory) cells each, while region BIND is
assumed to have 15 million cells. Regions ROLE and ENTITY have dense projections
to region BIND, with each cell in ROLE and ENTITY regions making 17,000 connections
with cells in region BIND. In other words, the projective field (PF) size® of the ROLE
to BIND projection as well as the ENTITY to BIND projection is 17,000. It is assumed
that these projections are uniformly distributed over BIND.

Each role and entity is encoded by a small ensemble of cells in the ROLE and
ENTITY regions, respectively. Cells in role and entity ensembles are also assumed to
be distributed uniformly within regions ROLE and ENTITY, respectively. Note that
role ensembles may overlap, and so may entity ensembles.

4.2 A neural correlate of the structure for encoding binding-detectors

There is a direct correspondence between the model structure described above and
the interaction between the entorhinal cortex (EC) which is a region in the medial
temporal lobe, and the dentate gyrus (DG) which is a component of the HF. The
ROLE and ENTITY regions correspond to subregions of the EC and the BIND region
corresponds to the DG. The projections from high-level cortical areas to ROLE and
ENTITY regions correspond to the well known cortical projections to EC (Van Hoesen,
1982; Insausti, Amaral & Cowan, 1987; Suzuki & Amaral, 1994). The dense and
diffuse projections from ROLE and ENTITY to BIND correspond to the dense and
diffuse projections from EC to DG (Amaral, Ishizuka & Claiborne, 1990; Amaral &
Witter, 1995). Moreover, the projective field and region sizes shown in Figure 1(a)
are based on anatomical findings presented in (Amaral & Witter, 1995; West, 1990).

4.3 The transient representation of role-entity bindings

It is assumed that the bindings constituting an event are expressed as a transient
pattern of rhythmic activity over distributed high-level cortical circuits (HLCCs).
These HLCCs project to cells in ENTITY and ROLE regions and, in turn, induce
transient patterns of rhythmic activity within these regions. Figure 2 is an idealized
depiction of the transient activity induced in ENTITY and ROLE regions by HLCCs to
convey the relational instance RI: ({r1 = fi1),(rs = f2)). Here r; and ry are roles, and
f1 and f; are entities bound to r; and r,, respectively. Each spike in the illustration
signifies the synchronous firing of a cell ensemble. It is shown that cells in the r; and
f1 ensembles are firing in synchrony, and so are cells in the ry and f; ensembles. The

8The set of cells in the target region that receive links from a cell ¢ in the source region is referred
to as the projective field (PF) of ¢. The PF size of ¢ refers to the number of synapses formed by ¢
with cells in the target region.
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Figure 1: (a) A structure for the formation of binding-detector cells. Arcs indicate
projections and the number on an arc indicates the projective field size. These pro-
jections are assumed to be uniformly distributed over the BIND region. Each role
and entity is encoded by a small ensemble of cells in the ROLE and ENTITY regions,
respectively. Cells in role and entity ensembles are also assumed to be distributed
uniformly within regions ROLE and ENTITY, respectively. Binding-detector cells are
recruited in region BIND. It is assumed that the ROLE and ENTITY regions lie in the
entorhinal cortex and the region BIND corresponds to the dentate gyrus (a part of the
hippocampus). The projective field and region sizes are based on (Amaral & Witter,
1995; West, 1990). (b) A schematic depiction of the ensembles of roles r; and ry and
entities f; and fy. Only links from cells in ry and f; ensembles to cells in BIND are
shown. Cells marked with an “X” are candidates for recruitment as binder cells for

the binding (ry = f1).
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Figure 2: The transient encoding of a relational instance RI given by the bindings:
({r1 = f1),(ra = f2)). Here r1 and ry are roles, and f; and f; are entities bound to
r1 and ry, respectively, in RI. Each spike in the illustration signifies the synchronous
firing of a cell ensemble. Cells in the r; and f; ensembles fire in synchrony and so
do cells in the ry and f; ensembles. The firing of cells in the ry and f; ensembles,
however, is desynchronized with the firing of cells in the ry and f; ensembles. This
desynchronization is assumed to be > w;,,; time units. Moreover, the period of firing,
7, is assumed to be < 7;,; time units. The dynamic encoding of RI can be viewed
as a periodic pattern consisting of two phases: p; and py (the order in which these
phases appear has no significance).

firing of cells in the r; and f; ensembles, however, is desynchronized with the firing of
cells in the ry and f; ensembles. This desynchronization is assumed to be > w;,; time
units. Note that the dynamic encoding of RI can be viewed as a periodic pattern
consisting of two phases: p; and py. Here p; and p, are mere labels and the ordering
of phases has no significance.

In effect, a role-entity binding is expressed by the synchronous firing of the cell
ensembles associated with the bound role and entity (von der Malsburg, 1986; Aj-
janagadde & Shastri, 1991; Singer & Gray, 1995; Lisman & Idiart, 1995). In general,
the transient encoding of a relational instance with n distinct entities participating
as role-fillers involves n interleaved quasi-periodic activities having a period =. It is
assumed that = < 7;,; time units. Such a spatio-temporal encoding enables multiple
role-entity bindings to be expressed and propagated concurrently without cross-talk
(Shastri & Ajjanagadde, 1993).

The following section explains how such a transient encoding of a relational in-
stance may be transformed rapidly into persistent circuits for detecting bindings.

4.4 Recruitment of binder cells for memorizing role-entity bindings

BIND contains two kinds of cells: principal cells® and Type-1 inhibitory interneurons.®

Each principal cell receives afferents from a number of cells in ROLE and ENTITY

®These correspond to granule cells in the dentate gyrus.
10The synapses formed by inhibitory interneurons on other cells have negative weights. The model
makes the plausible assumption that such synapses cannot undergo LTP and LTD.
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Figure 3: The BIND region consists of principal cells and inhibitory interneurons
(Type-1). In the illustration, G1—G3 are principal cells and inh is a Type-1 interneu-
ron. Afferents (incoming links) labeled r;1* and fi* are from cells in the ensembles
for role r; and entity fi, respectively. Since G1 and G2 receive synchronous activity
along afferents from ry and f; cells, they are candidates for becoming binding-detector
cells for the binding (ry = f1). It is assumed that the inhibition from inh prevents
the LTP of G1’s synapses, and only G2 becomes a binding-detector cell for (r; = fi).
Filled blobs denote inhibitory synapses, and the size of a filled blob is meant to convey
the strength of the (inhibitory) synapse. See text for more details.
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regions and makes synaptic contacts on a number of interneurons. The interneurons
in turn make contacts on a number of principal cells, thereby forming inhibitory
circuits within BIND (see Figure 3). The significance of inhibitory interneurons will
be explained later.

The potentiation threshold, 8,, of principal cells is sufficiently high, and hence,
LTP of a synapse occurs only if multiple synapses of a postsynaptic cell receive co-
incident presynaptic activity.!' Moreover, the response threshold, ©,,, of principal
cells is such that a cell does not fire unless it receives impulses at multiple potentiated
synapses. A set of values for 8,,, ©,,, synaptic weights, and other parameters of LTP
and LTD are given below'?:

O, = 1700; ©, = o0; 0, =890;
naive weight band = 100-110;

Ay = 1005 Apg = 50

Gp = 13 Cita = 0;

K =9 Wint = 2; Wref = 2.

The choice of 7;,; is governed by w;,; and the number of role-entity bindings in an
event. Thus any 7;,; > w;u: * n, where n is the number of bindings in the event, is
appropriate.

The transient encoding of the relational instance RI shown in Figure 2 leads to
the following events in BIND (refer to Figure 3). The synchronous firing of cells in
the r; and f; ensembles (henceforth, r; and f; cells) leads to the associative LTP of
active synapses of principal cells receiving sufficient afferents from r; and f; cells. At
the same time, depending on the value of (j;4, some of the inactive naive synapses of
these principal cells may undergo heterogeneous LTD. The LTP of synapses formed
by afferents arriving from r; and f; cells makes these principal cells behave as binding
detector cells for the binding (r; = f1) and we will refer to such cells as binder((r; =
f1)) cells.t?

The claim that binder((r; = f1)) cells behave as binding-detector cells for (r; =
f1) is substantiated quantitatively in Section 5, but it is not difficult to see why these

HHere and elsewhere in the paper, “coincidence” is defined with reference to win;, the window of
temporal integration. See Section 3.

12L,TD does not play a critical role in the recruitment of binding-detector cells described here. It
might, however, play an important role in the recruitment of other functional circuits.

13To be precise, a cell is deemed to be recruited as a binder({r; = f)) cell if during the memo-
rization of (r1 = f1), the cell’s synapses undergo LTP and the cell fires. The firing of the cell at the
time of its recruitment is crucial if the cell is to become part of functional circuits lying downstream
from the cell.
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cells will behave in the desired manner. Note that a binder((r; = f1)) cell will fire in
response to the synchronous firing of r1 and f; cells since the connectivity between rq
and fi cells and a binder((r1 = f1)) cell required for the latter’s recruitment during
the memorization of (r; = f1) also suffices for the latter’s firing during the retrieval of
(r1 = f1). At the same time, since O, is quite high (1700), a binder({ry = f1)) cell is
unlikely to fire as a result of stray impulses arriving at its synapses. Moreover, since
a BIND cell requires concurrent activity at numerous (> 9) potentiated synapses in
order to fire, it is unlikely that any binder({ry = f1)) cell receives sufficient activity
along potentiated links from ry cells alone or f; cells alone. Hence only the coincident
arrival of impulses at potentiated synapses from ry and f; cells is likely to satisfy O,
and cause a binder((r; = f1)) cell to fire. Thus a binder({r1 = f1)) cell fires whenever
r1 cells in ROLE fire in synchrony with f; cells in ENTITY, and hence, behaves as a
binding detector cell for the role-entity binding (r; = f1).

Similar LTP and LTD events occur at the synapses of principal cells that receive
coincident activity along afferents from ry cells in ROLE and f; cells in ENTITY, and
lead to their recruitment as binder({ry = f3)) cells. A binder({ry = f3)) cell fires
whenever ry cells in ROLE and f; cells in ENTITY fire in synchrony and behaves as
a binding detector cell for the role-entity binding (ry = f2). In general, numerous
principal cells in BIND are recruited as binder binding detector cells for each binding.

4.5 Encoding and Response Times

The time required for the recruitment of binder cells is given by & * 7;,;. If we assume
that the rhythmic activity encoding dynamic bindings corresponds to v band activity
(ca. 40 Hz) we get 7;,; ~ 25 msec. Assuming a plausible value of £ to be ~ 5 suggests
that binder cells can be recruited in about 125 msec.!* The time required for binder
cells to respond to a retrieval cue is at most 7;,;. Thus both the recruitment and
response times of the proposed model are consistent with the requirements of rapid
(one-shot) memorization and recognition.

4.6 Potential problems in the formation of binder cells

The process by which binder cells are formed is susceptible to several problems. First,
in order to form binder((r; = f;)) cells there should exist cells that receive afferents
from both r; and f; cells. Given the random connectivity between the regions ROLE
and ENTITY and BIND this cannot be guaranteed.

14Tf instead, we assume that the rhythmic activity encoding dynamic bindings corresponds to ¢
band activity (ca. 8 Hz) then 7;4; ~ 125 msec. This suggest that binder cells can be recruited in
about 525 msec. However, as discussed in (Shastri & Ajjanagadde, 1993; Shastri, 1999¢) T believe
that dynamic bindings of conceptual roles and entities are expressed as v band activity, and the set
of bindings pertaining to an event repeat over several () cycles. Tt is this “block” of repetition that
constitutes one period of § band activity (cf. Lisman & Idiart, 1995; Luck & Vogel, 1997).
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Second, there may exist cells that receive sufficient activity (> 6,) along afferents
from r; cells alone. Upon recruitment, such a cell could behave spuriously and produce
false-positive responses since it will fire in response to the firing of r; cells alone, even
if there is no coincident activity of f; cells. Similarly, cells receiving sufficient links
from f; cells alone could also produce false-positive responses.

Third, the same cell may get recruited as a binder cell for multiple bindings.
This could also lead to spurious activity. Consider a cell that gets recruited as a
binder cell for two bindings (r; = fx) and (r; = f;). This cell will fire in response to
subsequent inputs containing these two bindings as well as the bindings: (r; = fi),
and (r; = fi). Consequently, other cells connected downstream to this cell could
receive false-positive binding-match signals in certain circumstances.

As stated below, the probability of not finding cells for recruitment as binder cells
as well as the probabilities that binder cells will respond in a false-positive manner
can be shown to be very small using biologically motivated values of various system
parameters. The problem of too many cells becoming recruited for a binding turns
out not to be very serious in the case under consideration, and hence, is not discussed
here. In general, however, this problem can arise and can be alleviated partially by
inhibitory feedback and feedforward local circuits formed by principal cells and Type-
1 inhibitory interneurons. These inhibitory circuits act as soft-WTA and only allow
synapses of a limited number of cells to undergo LTP (cf. Marr, 1971; McNaughton
& Morris, 1987).

5 Quantitative Results

The following quantities have been calculated analytically'® using the region and
projective field sizes described in Section 4.1, the cell, synapse, and LTP parameters
described in Section 4.4, and by assuming that each role and entity ensemble contains

600 cells.

1. Pfqu, the probability that for a given binding no cells will be found in BIND
(DG) for recruitment as binding detector cells is less than < 107'%.

2. The expected number of cells in BIND (DG) that will receive appropriate con-
nections and will be candidates for recruitment for a binding is 195.0173.

3. The expected number of binder cells of various bindings that will fire in response
to a retrieval cue containing the three bindings (r1 = f1), (r2 = f2), and (rs =
f3) (see Table 1). As shown in Table 1, a vast majority of binder cells of any
given binding respond correctly to the cue. Even when the potential for cross-
talk is maximal (e.g., in the case of (r; = f3) binder cells) less than 3.3% of the
binder cells produce a false-positive response in any given time.
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Figure 4: The transient encoding of a retrieval cue consisting of the bindings:
(ri = fi),{r2 = f2), and (rs = f3). Each spike in the illustration signifies the
synchronous firing of a cell ensemble. Bindings are expressed as the synchronous fir-
ing of appropriate role and entity ensembles. Thus the cue is expressed as a rhythmic
pattern of activity consisting of three interleaved periodic spike trains, one for each
binding. This activity can be viewed as a periodic pattern consisting of three phases:

p1, p2, and ps.

Response
binder cell Phase p, Phase pg Phase p3
(binder type) OFF ON OFF ON OFF ON
(ri = f1) 0.0000 | 195.0173 || 195.0147 | 0.0026 || 195.0147 | 0.0026
({reg = feq))
(r1 = fa) 186.6288 6.3885 || 188.6288 | 6.3885 || 195.0147 | 0.0026
((rinL fznc)>
(r1 = fio) 186.6288 6.3885 || 195.0147 | 0.0026 || 195.0147 | 0.0026
((rin‘, - 6Iu)>
(rio = f1) 186.6288 6.3885 || 195.0147 | 0.0026 || 195.0147 | 0.0026
(<rewu — fznc)>
(r1i0 = fi0) 195.0147 0.0026 || 195.0147 | 0.0026 || 195.0147 | 0.0026
(<rez‘c — fezc)>

Table 1: The table describes how binder cells of all the memorized bindings respond
to a retrieval cue containing the three bindings (r1 = f1), (re = f2), and (rs = f3).
The expected number of binder cells responding correctly are marked in boldface.
Note that a vast majority of binder cells for any given binding respond correctly to the
retrieval cue. Each row in the table describes the response of binder cells of a specific
binding. This response typifies the response of a whole class of binder cells. Thus
the table completely characterizes the response of binder cells. This characterization
holds irrespective of the number of bindings memorized. See text for details.
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The retrieval cue is expressed as a rhythmic pattern of activity consisting of three
interleaved periodic spike trains, one for each distinct role-entity binding (see Fig-
ure 4). This activity can be viewed as a periodic pattern consisting of three phases.

Each row in the table describes the response of hinder cells of a specific binding.
This response, however, typifies the response of a whole class of binder cells. Thus
the data in Table 1 specifies the response of binder cells of all the bindings memorized
in BIND prior to the posing of the retrieval cue.

The response of (r1 = fi) binder cells typifies the response of binder cells of all
bindings mentioned in the retrieval cue (this is indicated by the row label (r., = f.;)
which refers to all bindings of the form (r; = f;), 1 < ¢ < 3). For example, the
response of (ro = f3) binder cells will be analogous to that of (ry = fi) binder
cells, except that while the latter will respond maximally in phase p;, the former will
responds maximally in phase ps.

Similarly, the response of (r; = fa) binder cells typifies the response of binder cells
of any binding of the form (r; = f;) such that both r; and f; occur in the cue, but
in distinct bindings (i.e., 1 <¢,5 <3, and ¢ # j). This is indicated by the row label
(Pine = finc). For example, the response of (rs = fi) binder cells will be analogous to
that of (ry = f3) binder cells, except that while the latter will produce more spurious
responses in phases p; and py, the former will do so in phases p; and ps.

Furthermore, the response of (r; = fio) binder cells typifies the response of binder
cells of any binding of the form (r; = f;) such that r; occurs in the retrieval cue, but
f; does not (this is indicated by row label {ri,. = fezc)). For example, the response
of (ry = fi5) binder cells will be analogous to that of (ry = fio) binder cells, except
that while the latter will produce more spurious responses in phase p;, the former
will do so in phase p;.

Similarly, the response of (rig = fi) binder cells typifies the response of binder
cells of any binding of the form (r; = f;) such that f; occurs in the retrieval cue, but
r; does not (row label (reze = fine))-

Finally, the response of (rio = fi0) binder cells typifies the response of binder cells
of any binding involving roles and fillers that do not appear in the retrieval cue (row
label (reze = feze))-

Thus Table 1 completely characterizes the response of binder cells. Note that this
characterization holds irrespective of the number of bindings memorized in BIND. In
particular, it holds even if all possible bindings involving roles and entities encoded
in ROLE and ENTITY have been memorized.

Note that an increase in the size of the retrieval cue (as measured by the number
of bindings) would not degrade the quality of the response produced by binder cells.
Consider a cue containing four bindings. The table describing the response of binder
cells to this larger cue will simply have an additional column for phase ps, whose
entries will be identical to that of the column for phase ps in Table 1.

15 Appendix 1 outlines the bases of these calculations.
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Since each binding is redundantly encoded by multiple cells, and since these cells
are physically dispersed in the BIND region, the probability that a diffuse cell loss
will destroy many binder cells for any given binding remains extremely small. In
particular, a diffuse loss of % of the cells in region BIND will lead to an expected
loss of only % of the 195.0173 (expected) binder cells for a given binding. Thus the
memorization of binding-detectors is robust with respect to diffuse cell loss.

The quantities in Table 1 are based on (4 = 0 (i.e., no LTD). This condition

results in a maximal sharing of binder cells among different bindings, and hence, these
results provide a measure of the system’s performance under conditions of maximal
cross-talk. A non-zero value of (j;4 would reduce cross-talk, but it would also lead
to a gradual reduction in the number of cells available for recruitment as more and
more bindings are memorized.
A word on the size of role and entity ensembles: As pointed out in Section 4.2,
the region and projective field sizes were chosen based on anatomical data. Plausible
parameter values for synapses, cells and the induction of LTP in BIND were chosen
to reflect the constraint that in the dentate gyrus, convergent activity at multiple
synapses 1s required for the induction of LTP and also for the firing of principal
(granule) cells. However, there did not exist sufficient empirical data to constrain the
size of ROLE and ENTITY ensembles — a priori, the size could be anywhere from a
few (~ 10) to several hundred thousand, or more. Various sizes were considered and a
size of 600 was chosen because it resulted in satisfactory values of Py, the expected
number of binder cells per binding, and the level of cross-talk.

6 Conclusion

A grounding of recruitment learning and vicinal algorithms in the biological phenom-
ena of LTP and LTD has been described. A realization and specification of a vicinal
algorithm using L'TP has been illustrated by showing how binder cells responsive
to specific role-entity bindings can be memorized rapidly in response to a transient
pattern of activity encoding the bindings. Using biologically plausible values for the
number of cells in the ROLE, ENTITY and BIND regions, and the density of projections
from the ROLE and ENTITY regions to BIND, it has been shown that the existence of
suitable binder cells for encoding arbitrary role-entity bindings is practically certain.
It has also been shown that the interference between binder cells for different bindings
remains extremely low.

The encoding of binding detectors is just one step in the memorization of episodic
memory. As argued in (Shastri, 1997; 1999¢) a proper encoding of episodic memory
also requires the recruitment of binding-error detector circuits, binding-error integra-
tor cells, relational match circuits, and binding-extractor cells. Shastri (1999a and
1999¢) discuss how the requisite cells and circuits can also be recruited rapidly via
LTP and LTD within quasi-random networks whose architecture and circuitry resem-
bles that of the hippocampal formation. The formation of these cells and circuits
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exercise the full-range of features included in the abstraction of LTP and LTD (e.g.,
spike versus burst firing modes) and further illustrate how interesting vicinal algo-
rithms can arise from a suitable choice of network architecture and parameters for

the induction of LTP and LTD.

Appendix 1

The following outlines the basic approach used in the computation of failure proba-
bility, the expected number of binder cells recruited for a binding, and the expected
number of binder cells for a binding that will fire spuriously in response to another
binding presented in a retrieval cue.

Let S, refer to the ensemble of role r, let |S,| denote the number of cells in S,,
and let |PFrorE—BIND| denote the PF size for the projection from ROLE to BIND
(recall that the PF size denotes the number of synapses made in the target region
by afferents emanating from a single cell in the source region). Then n,, the total
number of synapses made by cells in .S, with cells in BIND, is given by:

n, = |PFROLE—BIND| * | S|

Similarly, let Sy refer to the ensemble of entity f, let |S¢| denote the number of cells
in S¢, and let |PFENTITY-BIND| denote the PF size for the projection from ENTITY
to BIND. Then ny, the total number of synapses made by cells in S with cells in
BIND, is given by:

ng = |PFENTITY=BIND| * |5}

Since the PFs of ROLE and ENTITY cells are distributed uniformly and independently
over BIND, p,, the probability that a given synapse formed by afferents emanating
from S, impinges on a particular cell in BIND, can be approximated as p, = m,
where |BIND| denotes the number of cells in BIND. Similarly, ps, the probability that
a given synapse formed by afferents from Sy impinges on a particular cell in BIND,
can be approximated as p, = |BIITD|

Furthermore, p(S, = k), the probability that a given cell in BIND receives exactly
k afferents from S, is given by the binomial distribution:

n,

p(S, = k) = ( . )pf(l — )k

and the probability, p(S, > k), the probability that a given cell in BIND receives at
least k afferents from S, is given by:

(S 2 k) = (1 - ff ( " )pi(l —pr)”r_i)

1=0
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The probabilities p(Sy = k) and p(Sf > k) have analogous interpretations and may
be computed in an analogous manner.

Since the projections from ENTITY and ROLE to BIND are independent, p(S, >
k., Sy > ky), the probability that a given cell in BIND receives at least k, afferents
from S, and at least ks afferents from Sy, is given by: p(S, > k,, Sy > k) = p(S,
k.) * p(Sy > ks). In general, it is possible to compute: p(S, o, k., S¢ of ky)
p(S, 01 k) % p(Sy 09 kf), where 01 and 0y could be “=7, “>7 “<J" etc.

Appropriate combinations of kf and k, values required for the recruitment of a
cell in BIND are determined by 6, and synaptic weights along the projections from
ENTITY and ROLE. If all combinations of k, and k; values satisfying 8, are identified
and expressed as a set of mutually exclusive conditions, then p.,.4, the probability
that a given cell in BIND is a candidate for recruitment as a binder cell for (r = f),

1V

can be computed as follows:

Pcand = E p(ST 07’i sz) *p(Sf sz' kfz)

(Sror; kryy Sy o5, ky;)

where the sum is taken over mutually exclusive conditions that jointly cover the space
of possibilities under which a cell in BIND is a candidate for recruitment.

If peana 1s known, Py, the probability that none of the cells in BIND are candidates
for recruitment as binder cells for (r = f), equals:

Pfail = (1 - peand)'BIND|

and E(cand), the expected number of candidates for recruitment as binder cells for
(r = f), equals:

E{cand) = peand * |BIND|

The recruitment of BIND cells as binder cells for multiple bindings can lead to
spurious responses. In particular, the number of (r; = f;) binder cells that will fire
spuriously upon the presentation of the binding (r, = f;) in a retrieval cue is given
by the number of BIND cells that were recruited for both, the binding (r; = f;)
and the binding (r;, = fi). Note that the two recruitment events are not necessarily
independent (for example, consider ¢ = k, or j = [). An additional complication arises
because role ensembles can overlap in ROLE and so can entity ensembles in ENTITY.
Thus probabilities such as p(S,, = k1) and p(S,, = k2) cannot be treated as being
independent. The same holds for probabilities such as p(Sy, = k) and p(Sy, = ks).
Consequently, the joint probability that a cell is recruited for a given pair of bindings
cannot be computed by simply multiplying the individual recruitment probabilities.
Instead, the joint probability has to be computed by enumerating the set of mutually
exclusive conditions that together cover the space of possibilities in which a BIND cell
can get recruited for both the bindings. Once this set is enumerated, the expected
number of cells recruited by both bindings can be computed using the techniques
described above.
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