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Abstract

In this paper we present a new method to do automatic sleep stage classification. The algorithm consists of
basically three modules. A wavelet packet transformation (WPT) is applied to 30 seconds long epochs of
EEG recordings to provide localized time-frequency information, a feature generator which quantifies the
information and reduce the data set size, and an artificial neural network for doing optimal classification.
The classification results compared to those of a human expert reached a 70 to 80% of agreement.
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Introduction
Electroencephalogram analysis (EEG) is a very
useful technique to investigate the activity of the
central nervous system (CNS). It provides
information related to the brain activity based on
measurements of electrical recordings taken on the
scalp of the subjects. Inference and studies about
subject’s health and effective treatment of some
diseases can be carried out analyzing the
information obtained from the EEG. Processing of
the recorded information mainly concern spectral
analysis. Sleep EEG is a very important research
branch of medicine, because of the clinical
applications.
Sleep scoring by a human expert is a very time-
consuming task and normally could require hours
to classify a whole night recording (8 hours).
Every 30 seconds epochs are classified in different
sleep stages, according to the structure of the
signal and rules defined by Rechtschaffen and
Kales [7].
In the past 20 years different automatic methods
have been developed with the purpose of supplying
the visual classification. In this last decade  several
works introduced the use of neural network (NN)
as a tool for automated sleep scoring. Most of the
systems used spectral information of the signal
using Fourier Transformation [1].
The results are different from one system to
another. Performance of the NN varied in the range
60-90 % of recognition rates. Rigorous
comparisons between the reported systems can
hardly be done because they differ in recording
conditions and validation procedures.
In a paper published 1994, Jobert et.al [2]
illustrated advantages of the wavelet analysis over
the Fourier analysis in sleep research. Motivated
by the adaptive time-frequency localization
property of the Wavelet Transform (WT) and the
fact that some structures in sleep recordings have a
well defined time-frequency (t-w) pattern we
designed a system based on a specific Wavelet
Packet Transform (WPT) and a NN structure for
the classification task.

Fourier and Wavelet Analysis, Time-Frequency
Localization
The Fourier Transform (FT) has been widely used
for signal processing. It is a powerful tool to study
the frequency content of signals but it has the
draw-back that it does not provide any localization
in time. To overcome this problem the Windowed

Fourier Transform or Short Time Fourier
Transform (STFT) was suggested (1),

STFT f w s g t s f t e dtiwt( ( , )) ( ) ( )*= − −∫       (1)

where g is a given time window which can be
shifted in time.
Since the same window is used, t-w resolution is
fixed over the whole signal, determined by the
window’s supports in time and frequency domain.
The discrete version of the FT is made on a
rectangular grid m n Z t w. , ,∈ > >0 00 0  , (2),
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The window g is supposed to be compactly
supported and to fulfill some smoothness
properties. If g is Gaussian then the STFT is called
Gabor Transform [3].
A more elegant version of time frequency analysis
is wavelet analysis [4],[5] where  a so-called
mother-wavelet ψ ( )t is shifted and scaled leading
to a constant relative bandwidth. ψ ( )t is a
localized oscillation with the property :
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The Wavelet Transform (WT) is then defined
analogous to  (1)

WT f a b f t t dta b( ( , )) ( ) ( ),= ∫ ψ                            (4),
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ψ a b t, ( ) are called wavelets. They are scaled

(stretched and compressed) versions of the mother
wavelet ψ ( )t .
The t-w resolution depends on the scaling
parameter a. For smaller a  ψ a b t, ( )  has a narrow

time-support and therefore a wider frequency
support. When a increases, time support of
ψ a b t, ( )  increases as well and frequency-support

becomes narrower. The translation parameter b
determines the localization of ψ a b t, ( )  in time.



The discrete WT is defined taking discrete values
of a and b as follows (6):
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The tili ng of the t-w plane is very different from
the rectangular grid of the STFT. A logarithmic
frequency scale is obtained, Fig.1., which allows a
better study of short-time high frequency
structures.  Low frequencies are sampled with
large time steps while high frequencies are
sampled with small steps.

Fig.1. Time -Frequency Tiling a) STFT, b) WT
          Case a0 =2

In practical applications the values a0=2, b0=1 are
chosen. This choice naturally connects
multiresolution analysis with wavelets [6]. In this
case, WT can be seen as generated by a pair of
quadrature mirror fil ter, QMF (h,g), where h is a
low pass fil ter and g a high pass fil ter. We consider
only finite impulse response filter (FIR). h,g are
finite sequences related by :

g n h nn( ) ( ) ( )= − −1 1 ,

g n( ) =∑ 0 , h n( ) =∑ 2                                   (7)

where h  is related to the so-called scaling function
φ  [4] and g to the mother wavelet ψ  by :
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For a discrete signal x of finite length { 1..2N} ,
define the following operators H.G:
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H, G are convolution-decimation operators. H,G
acting on x are convolutions with both fil ters h,g
and a downsampling by two. This transforms the
signal x in two subbands of same length ,{ Hx} ,
{ Gx} . { Hx} contains the low pass band and { Gx}
the  high pass band.
Recursive application of  H and G on the low pass
band defines the WT, as shown in Fig.2.
Each band in the tree spans the whole time extend
of x, so time resolution decreases by a factor of 2
in each iteration , but frequency resolution  doubles
as one goes from the top to the bottom in the WP
tree .

Recursive application of the operators H,G on both
bands defines the „wavelet packets“ .  Fig.2
Every non-overlapping complete set of subbands,
allows a complete reconstruction of the signal,
including those obtained by mixing different levels
of the tree.  In this huge library of subbands one
can choose one distribution of subbands having a
good t-w resolution for the particular signal to be
analyzed.
The WT is just one special case of the WPT. Fig.2.

Fig.2. a) Wavelet Tree, b) Wavelet Packet Tree.
The top subband contains the signal x, with
Nyquist Frequency Fn.

EEG Sleep, Sleep Stages Structures
 In humans, 5 sleep stages and the stage awake are
defined [7],[8]. Each sleep stage is characterized



by an specific pattern of frequency content. The
EEG spectrum is divided in 5 bands for a better
study
Delta    0 - 4  Hz
Theta   4  - 8   “
Alpha   8 - 13  “
Beta1  13 - 22  “
Beta2  22 - 35  “
The following sleep stages are defined:  Fig.4.
Stage awake: Signal with continuity alpha activity.
Stage 1: No presence of alpha activity, low beta
and theta activity,
Stage 2: Less than 20 % of delta activity and
presence of K-complexes and spindles. K-
complexes are low frequency waves near 1.0 Hz,
with an amplitude of at least 75 mV. Spindles are
well defined waves in the range 11-15 Hz with a
time duration of more than 0.5 seconds. There is
no criterion about the amplitude of a spindle.
Stage 3: More than 20 % and less than 50 % of
delta activity,
Stage 4: More than 50 % of delta activity.
Stage  REM: Low amplitude waves with little
Theta activity and often sawtooth waves. REM and
awake signals might have a similar shape, but
REM have little alpha activity.
The classification of EEG sleep is usually made by
a visual scorer, which takes 30-s epochs and give a
classification according to the rules of
Rechtschaffen and Kale [7]. Not every epoch has
100 % properties of an specific stage. The decision
is made according to which stage properties are
present the most and that is sometimes difficult to
be carried out.
In Fig.4. we plotted signals from sleep stages 1,2,4,
awake and REM. Stage 3 signals have usually a
similar shape as those recorded in sleep stage 4,
they only differ in the ampli tude delta activity. We
plotted the scalogram: absolute value of the
Wavelet Packet’s coefficients. Absolute value of
each coefficient was color coded, according to the
color scale used. Fig.4. Every coefficient is
represented by a rectangle of size determined by
it’s t-w resolution.
Linear interpolation was made in order to give a
continuum color representation and a logarithmic
scale representation was used in the frequency
axis.
We see that the scalogram clearly shows ,
specially, in stages 2, 4 and awake the expected t-
w characteristics of the pattern. K-complex and
sleep spindles are well localized. The continuity
alpha activity typical from awake stage is well

represented. Even when the coloration coding
could not be optimal for representing Beta activity,
one can see the little beta activity in the first half of
the stage 1 signal. Slow wave phenomena (K-
complexes and delta waves) have usually great
ampli tude and get the most intense color.
On the right column the power spectrum or
spectrogram is depicted, calculated with the
Fourier Transform. The signals are segments of 16
seconds (2048 Samples).The EEG was sampled at
128 Hz.
In the spectrogram the frequency content of the
bands is well represented.

Methods
A WPT of depth 8 (i.e. 8 levels) was designed. Out
of the family of generated subbands  we selected
those containing frequency information of the
following 7 bands. Fig.3.

1.   0.4   -  1.55 Hz } K-complexes + Delta
2.   1.55 -  3.2    “   } Delta
3.   3.2   -  8.6    “  } Theta
4.   8.6  - 11.0   “   } Alpha
5.  11.0 - 15.6   “   } Spindle
6.  15.6 - 22.0   “   } Beta1
7.  22.0 - 37.5   “   } Beta2

Fig.3 WPT , selected subbands

Time resolution varies according to the band in
logarithmic scales according to the branch of the
tree, where the coefficients belong to. Small-
frequency waves(delta wave, K- complexes) have
broader time resolution and high-frequency waves
(spindle, alpha waves) have finer time resolution
For every 30 seconds epoch taken from the central
EEG electrode C3, we calculated the mean
quadratic value (the so-called Energy E) of the WP
coefficients for each of the 7 bands. These 7
numbers E ii , := 17 were used as features for the
epoch. Additionally we defined 6 more features



based on total energy and the ratio of different
energy values:

8.Total Energy of the 7 bands  E Ei
i

8
1

7

=
=
∑

9. Ratio (E1 + E2)/E8   Percent     Delta  Activity
10. “  “      E4/E8              “   “      Alpha   “  “
11. “  “    (E1 + E5)/E8     “   “      KK and Spindle
12. “  “      E4/E3             Ratio      Alpha/Theta
13. “  “    (E1 + E2)/E3     “ “        Delta/Theta ,

Classification and Results
For the classification task we used a Feed Forward
Backpropagation Network with the following
structure: 13 neurons in the input layer, each one
getting one of the 13 features; 10 neurons in the
hidden layer fully connected to the first layer and 6
neurons in the output layer, with a defined target
vector of zeros and a one in the position according
to an specific sleep stage. The output layer was
fully connected to the hidden layer. The goal of the
network was to correctly classify the 30 seconds
epochs of sleep recording characterized by the 13
parameters.
We used the wavelet db20, from the Daubechies
Family of Orthogonal Wavelets, with compact
support and highest number of vanishing moments.
Different number of neurons in the hidden layer
were tested , varying the number from 6 to 15
hidden neurons, being the optimum of the learning
rate by 10 neurons. More than 10 did not bring any
improvements in the results.
The data set consisted of 2 EEG, sampled at a
frequency of 200 Hz, which provided a total of

1690 30 seconds epochs, distributed as follows:
340 epochs of REM, 350 of awake, 400 of S2, 300
of S1 and 150 of S3 and S4 respectively. Because
of the few number of data in stages 3 and 4, we
decided to test the performance of the network
only on the other 4 stages. 200 samples of every
stage were used as training set and the rest to test
the performance of the network.
The results are shown in the confusion matrix-table
(Tab. 1). The table is organized is as follows: in
each row the performance of the network is
represented by an specific sleep stage, each column
represents the results of the classification. In the
case of  ‘No decision’ the net could not classify
the epochs. The diagonal of the table represents the
number of epochs which were right classified.

The training process showed high dependency on
the initial weights distribution in the network. The
most used training functions, Gradient descent
Backpropagation with and without momentum
showed the fastest iteration in the learning process,
but the solution always converged to a local
minimum, although some random noise was added
to the weights. The training function which showed
the best performance was the Levenberg-
Marquardt (LM). Using this, the iteration process
slowed down considerably, but convergence to a
minimum was always reached and the cost
function converged to zero much faster than with
other training functions. All the results presented
here were obtained using the LM training function.

Learning set: 800 Epochs
# Epochs Rem Awake S2 S1 No Decision Total Agree. %
   Rem 194 0 0 3 3 200 97
Awake 2 196 1 0 1 200 98

S2 0 0 198 2 0 200 99
S1 1 1 7 190 1 200 95

800 97.5
Table1. Neural Network performance on the learning set

Testing Set: 590 Epochs
# Epochs Rem Awake S2 S1 No Decision Total Agree. %
   Rem 91 1 0 43 5 140 65
Awake 5 111 0 25 9 150 74

S2 1 0 181 13 5 200 90.5
S1 16 2 0 75 7 100 75

590 77.6



Table2. Neural Network performance on the test set.

Conclusions
A new method for doing automatic sleep stage
classification has been presented and the
application on data set tested. As far as we know,
only Fourier Transform methods have been used in
this problem. As explained, wavelet transform
allows an adaptive time frequency resolution, and a
method using WT should be able to identify the
different time-frequency pattern of the sleep
stages. The aim of the report was to show first
results of the designed algorithm The net we used
learned with a 97.5 % of agreement over the whole
learning set. Performance on the whole test set
reached a 77.6 % of agreement, which can be
considered as an encouraging result. The data used
for testing and training the system are in fact small.
In further experiments, the system is supposed to
be tested in at least 8 EEG recordings, 4 for
training and 4 for testing. We expect also to be
able to draw out of the EEG signal more detailed
information in order to propose the system as an
alternative for supplying visual scoring.

Acknowledgments
The authors wish to thank Gottfried Junghans
(FHTW) and Prof. Dr. Michael Dlabka (FH
Telekom) for the fruitful discussions on neural
network topics.

Bibliography
[1] Claude Robert, Christian Guilpin, Ayme Limoge,
Review of neural network application in sleep research.
Journal of Neuroscience Methods 79 (1998) 187-193.
[2] Marc Jobert, Christian Timer, Eric Oiseau and
Harmut Schulz, Wavelets - a new tool in sleep biosignal
analysis, Journal of Sleep Research (1994) 3, 223-232.

[3] D. Gabor, Theory of communication, Journ. IEEE,
93 (1946) 429-457.
[4] Martin Vetterli, Jelena Kovacevic, Wavelet and
Subband Coding, Prentice Hall Signal Processing
Series, 1995.
[5] Olivier Rioul and Martin Vetterli, Wavelets and
Signal processing, (1991), IEEE SP Magazine.
[6] S. Mallat, A theory for multiresolution.signal
decomposition: The wavelet representation, IEEE
Trans. Patt. Recog. And Mach. Intell., 11(7) July (1989)
674-693.
[7] Rechtschaffen, A., and Kales, A., A Manual of
Standardized Terminology, Technique and Scoring
System for Sleep Stages of Human Subjects, Public
Health Service, U.S, Government Printing Office,
Washington, DC, 1968
[8] N. Berbaumer, R.F. Schmidt, Biologische
Psychologie, Springer Verlag, 1991
[9] Ingrid Daubechies, Ten Lectures on Wavelets,
Society for Industrial on Applied Mathematics,
Philadelphia, Pennsylvania ,1992
[10] R.Rojas, Neural Networks, Springer Verlag 1995
[11] Nicolas Schaltenbrand, Regis Lengelle, and Jean-
Paul Macher, Neural network model: application to
automatic analysis of human sleep, Computers and
Biomedical Research 26, (1993) 157-171
[12] N. Schaltenbrand et.al, Sleep stage scoring using
the neural network model: Comparison between visual
an automatic analysis in normal subjects and patients,
Sleep, 1(1) (1996) 26-35
[13] Piotr Jerzy Durka, Time-frequency analysis of
EEG, Doctor Dissertation 1996.
[14] Michael Groezinger, et.al. Online Detection of
REM sleep based on the comprehensive evaluation of
short adjacent EEG segments by artificial neural
networks, Prog. Neuro-Psychopharmacol. & Biol.
Psychiat. Vol. 21, (1997)  951-963
[15] Mladen   Victor  Wickerhauser,  Adapted  Wavelet
Analysis, from Theory to Software, AK Peters,
Wellesley, Massachusetts 1994

Fig. 4 (Next page) Left Column: Signals, 16 seconds epochs from sleep stages 1,2,4, awake and Rem, and
corresponding scalogram. Horizontal axis in both graphs is time, vertical axis in the scalogram is
frequency in Hz.
Right Column: Spectrograms: Power Spectrum from the STFT
Color Scale, Minimum  Maximum




