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Abstract

In this paper we present a new method to do automatic sleep stage classfication. The algorithm consists of
basically three modules. A wavelet packet transformation (WPT) is applied to 30 seconds long epochs of
EEG recordings to provide localized time-frequency information, a feature generator which quantifies the
information and reduce the data set size, and an artificial neural network for doing gptimal classfication.
The clasdfication results compared to those of a human expert reached a 70 to 80% of agreement.
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I ntroduction

Electroencephalogram analysis (EEG) is a very
useful technique to investigate the activity of the
central nervous gstem (CNS). It provides
information related to the brain activity based on
measurements of eedrical recordings taken on the
scalp of the subjeds. Inference and studies about
subject’s health and effedive treatment of some
diseases can be carried aut analyzing the
information dotained from the EEG. Processing of
the recorded information mainly concern spedral
analysis. Sleep EEG is a very important research
branch o medicine because of the clinical
applications.

Sleep scoring by a human expert is a very time-
consuming task and normally could require hours
to classfy a whde night recording (8 hours).
Every 30 seconds epochs are clasdfied in diff erent
sleep stages, according to the structure of the
signal and rules defined by Rechtschaffen and
Kales[7].

In the past 20 years different automatic methods
have been devel oped with the purpose of supgying
the visual classfication. In this last decade several
works introduced the use of neural network (NN)
as a tool for automated slegp scoring. Most of the
systems used spectral information o the signal
using Fourier Transformation [1].

The results are different from one system to
anather. Performance of the NN varied in the range
6090 % of recogntion rates. Rigorous
comparisons between the reported systems can
hardly be dore because they differ in recording
condtions and vali dation procedures.

In a paper published 1994 Jobet et.a [2]
illustrated advantages of the wavelet analysis over
the Fourier analysis in sleep research. Motivated
by the adaptive timefrequency localization
property of the Wavelet Transform (WT) and the
fact that some structures in sleep recordings have a
well defined time-frequency (t-w) pattern we
designed a system based on a specific Wavelet
Packet Transform (WPT) and a NN structure for
the clasdfication task.

Fourier and Wavelet Analysis, Time-Freguency
L ocalization

The Fourier Transform (FT) has been widely used
for signal processing. It is a powerful tool to study
the frequency content of signals but it has the
draw-back that it does not provide any localization
in time. To overcome this problem the Windowed

Fourier Transform or Shot Time Fourier
Transform (STFT) was suggested (1),

STET(f (w,9)) = J’ g (t-9)f()e™d (1)

where g is a given time window which can be
shifted in time.

Since the same window is used, t-w resolution is
fixed over the whoe signal, determined by the
window’s supports in time and frequency domain.
The discrete version o the FT is made on a
rectangular grid mn0OZ,ty >0,wy >0 , (2),

STFT,..(f) :J’g* (t—nt,) f (e ™™ 'dt (2

The windowv g is spposed to be compactly
supported and to fulfill some smoothness
properties. If g is Gaussan then the STFT is called
Gabor Transform [3].

A more degant version d time frequency analysis
iswavelet analysis [4],[5] where aso-called
mother-wavelet ((t) is ifted and scaled leading

to a comstant reative bandwidth. Y (t)is a
localized oscillation with the property :

[vou “)w=0)=0 3

The Wavdet Transform (WT) is then defined
analogousto (1)

WT(f (a,b)) =J’ f (O ap(t)dt (4),
where

1 t-b .
Wa,b(t):EW(?)1aDR b OR ()

Y,p(t)are called wavelets. They are scaled
(stretched and compressed) versions of the mother
wavelet ((t).

The t-w resolution depends on the scaling
parameter a. For smaller a (J,,(t) has a narrow
time-support and therefore a wider frequency
support. When a increases, time support of
W, (1) increases as well and frequency-support
becomes narrower. The trandation parameter b
determines the localization of U, ,(t) intime.



The discrete WT is defined taking discrete values
of a and b asfoll ows (6):

a=aj,b=nbyaf’, mnOza,>Lb,>0

Wl (f) =2, 72 J’ f (t)(ag™t - nbo)dt (6)

The tiling d the t-w plane is very different from
the rectangular grid o the STFT. A logarithmic
frequency scale is obtained, Fig.1., which allows a
better study of short-time high frequency
structures. Low frequencies are sampled with
large time steps while high frequencies are
sampled with small steps.
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Fig.1. Time-Frequency Tiling @) STFT, b) WT
Caseag=2

In practical applications the values a;=2, by=1 are
chosen. This choice naturally  conrects
multiresolution analysis with wavelets [6]. In this
case, WT can be seen as generated by a pair of
quadrature mirror filter, QMF (h,g), where h is a
low passfilter and ga high passfilter. We consider
only finite impulse response filter (FIR). h,g are
finite sequences related by :

g(n) = (-)"h(A-n),
Y 9 =0, h(n) =2 Y

where h isrelated to the so-call ed scaling function
¢ [4] and gto the mother wavelet ¢ by :

Ax) = Z h(n)v2¢(2x - n)

t)
Y=y gnvap2x-n)

For a discrete signal x of finite length {1..2},
define the foll owing gperators H.G:

(HX)y = Z h(n - 2k)x,,

©)
(BN =) 9(n=2Kk)x,

H, G are convdution-dedmation gperators. H,G
acting on x are convolutions with both filters h,g
and a downsampling by two. This transforms the
signal x in two subbands of same length {Hx},
{Gx}. {Hx} contains the low passband and { Gx}
the high passband.

Recursive application d H and G on the low pass
band definesthe WT, as srown in Fig.2.

Each band in the tree spans the whaole time extend
of X, so time resolution deaeases by a factor of 2
in each iteration , but frequency resolution daubles
as one goes from the top to the bottom in the WP
tree.

Recursive application o the operators H,G on both
bands defines the ,, wavelet packets‘. Fig.2

Every non-overlapping complete set of subbands,
allows a complete reconstruction d the signal,
including those obtained by mixing different levels
of the tree. In this huge library of subbands one
can choose one distribution o subbands having a
goad t-w resolution for the particular signal to be
analyzed.

The WT isjust one special case of the WPT. Fig.2.
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Fig.2. @) Wavelet Tree, b) Wavelet Packet Tree.
The top subband contains the signal x, with
Nyquist Frequency Fn.

EEG Sleep, Sleep Stages Structures
In humans, 5 sleep stages and the stage awake are
defined [7],[8]. Each sleep stage is characterized



by an specific pattern o frequency content. The
EEG spectrum is divided in 5 bands for a better
study

Delta 0-4 Hz

Theta 4 -8

Alpha 8-13 *“

Betal 13-22 “

Baa2 2-35*“

Thefollowing slee stages are defined: Fig.4.
Stage awake: Signal with continuity alpha activity.
Stage 1: No presence of alpha activity, low beta
andtheta activity,

Stage 2: Less than 20 % of delta ativity and
presence of K-complexes and spindes. K-
complexes are low frequency waves near 1.0 Hz,
with an amplitude of at least 75 mV. Spindes are
well defined waves in the range 11-15 Hz with a
time duration of more than 0.5 seconds. There is
no criterion about the amplitude of a spindle.

Stage 3: More than 20 % and less than 50 % of
delta activity,

Stage 4: Morethan 50 % of delta activity.

Stage REM: Low amplitude waves with little
Theta activity and doften sawtooth waves. REM and
awake signals might have a similar shape, but
REM have little alpha ativity.

The clasdfication d EEG sleep is usually made by
avisual scorer, which takes 30-s epochs and give a
clasdfication according to the rules of
Rechtschaffen and Kale [7]. Not every epoch has
100 % properties of an specific stage. The decision
is made according to which stage properties are
present the most and that is sometimes difficult to
be carried aut.

In Fig.4. we plotted signals from sleep stages 1,2,4,
awake and REM. Stage 3 signals have usually a
similar shape as those recorded in sleep stage 4,
they only differ in the amplitude delta ectivity. We
plotted the scalogram: absolute value of the
Wavelet Packet’'s coefficients. Absolute value of
eadh coefficient was color coded, according to the
color scale used. Fig.4. Every coefficient is
represented by a rectangle of size determined by
it’st-w resolution.

Linear interpolation was made in arder to give a
continuum color representation and a logarithmic
scale representation was used in the frequency
axis.

We see that the scalogram clearly shows
specially, in stages 2, 4 and awake the epeded t-
w characteristics of the pattern. K-complex and
sleep spindes are well localized. The continuity
alpha ativity typical from awake stage is well

represented. Even when the coloration coding
could not be optimal for representing Beta activity,
one can seethe little beta activity in the first half of
the stage 1 signal. Slow wave phenomena (K-
complexes and delta waves) have usually grest
amplitude and get the most intense color.

On the right column the power spedrum or
spectrogram is depicted, calculated with the
Fourier Transform. The signals are segments of 16
seaonds (2048 Samples). The EEG was sampled at
128Hz.

In the spectrogram the frequency content of the
bands is well represented.

M ethods

A WPT of depth 8 (i.e. 8 levels) was designed. Out
of the family of generated subbands we selected
those containing frequency information of the
following 7 bands. Fig.3.

1. 04 - 155Hz} K-complexes + Delta
2. 155- 32 “ } Ddta

3. 32 - 86 “ }Theta

4, 86 -110 “ } Alpha

5. 11.0-156 “ } Spinde

6. 156-220 “ } Betal

7.220-375 “ } Beta2
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Fig.3 WPT , sdeded subbands

Time resolution varies according to the band in
logarithmic scales according to the branch of the
tree, where the coefficients belong to. Small-
frequency waves(delta wave, K- complexes) have
broader time resolution and hgh-frequency waves
(spindle, alpha waves) have finer time resolution

For every 30 seconds epoch taken from the central
EEG dectrode C3, we caculated the mean
quadratic value (the so-called Energy E) of the WP
coefficients for each of the 7 bands. These 7
numbers E;,i =17were used as features for the

epoch. Additionally we defined 6 more features



based on total energy and the ratio o different
energy values:

;
8.Total Energy of the 7 bands E8= Z E
£

9. Ratio (E1 + E2)/E8 Percent Delta Activity

10.“ “  E4/ES “ «  Alpha “ *
11““ (E1+E5)/E8 “ * KK andSpinde
12.%“  E4/E3 Ratio  Alpha/Theta
13.“ “ (E1+E2/E3 ““  DetaThea,

Classification and Results

For the clasgfication task we used a Feed Forward
Backpropagation Network with the following
structure: 13 reurons in the input layer, each one
getting one of the 13 features;, 10 neurons in the
hidden layer fully conneded to thefirst layer and 6
neurons in the output layer, with a defined target
vedor of zeros and a one in the position according
to an specific deg stage The output layer was
fully conreded to the hidden layer. The goal of the
network was to correctly classfy the 30 seconds
epochs of sleep recording characterized by the 13
parameters.

We used the wavelet db20, from the Daubechies
Family of Orthogaal Wavelets, with compact
support and highest number of vanishing moments.
Different number of neurons in the hidden layer
were tested , varying the number from 6 to 15
hidden neurons, being the optimum of the learning
rate by 10 reurons. More than 10 dd not bring any
improvements in the results.

The data set consisted o 2 EEG, sampled at a
frequency of 200 Hz, which provided a total of

1690 ® seconds epochs, distributed as foll ows:
340 epochs of REM, 350 of awake, 400 of S2, 300
of S1 and 150 of S3 and $4 respectively. Because
of the few number of data in stages 3 and 4, we
dedded to test the performance of the network
only on the other 4 stages. 200 samples of every
stage were used as training set and the rest to test
the performance of the network.

The results are shown in the confusion matrix-table
(Tab. 1). The table is organized is as follows: in
each row the peformance of the network is
represented by an specific deep stage, each column
represents the results of the clasdfication. In the
case of ‘No dedsion’ the net could not classfy
the gpochs. The diagonal of the table represents the
number of epochs which wereright classfied.

The training process $iowed high dependency on
the initial weights distribution in the network. The
most used training functions, Gradient descent
Backpropagation with and without momentum
showed the fastest iteration in the learning process
but the solution always converged to a local
minimum, although some random noise was added
to the weights. The training function which showed
the best peformance was the Levenberg-
Marquardt (LM). Using this, the iteration process
slowed down considerably, but convergence to a
minimum was always reached and the cost
function converged to zero much faster than with
other training functions. All the results presented
here were obtained using the LM training function.

Learning set: 800 Epochs

# Epochs Rem Awake S2 S1 No Decision| Total Agree. %
Rem 194 0 0 3 3 200 97
Awake 2 196 1 0 1 200 98
S2 0 0 198 2 0 200 99
Sl 1 1 7 190 1 200 95
800 97.5
Tablel. Neural Network performance on the learning set
Testing Set: 590 Epochs
# Epochs Rem Awake S2 S1 No Decision| Total Agree. %
Rem 91 1 0 43 5 140 65
Awake 5 111 0 25 9 150 74
S2 1 0 181 13 5 200 90.5
Sl 16 2 0 75 7 100 75
590 77.6




Table2. Neural Network performance on the test set.

Conclusions

A new method for doing automatic sleep stage
classification has been presented and the
application on data set tested. As far as we know,
only Fourier Transform methods have been used in
this problem. As explained, wavelet transform
allows an adaptive time frequency resolution, and a
method using WT should be able to identify the
different time-frequency pattern of the sleep
stages. The aim of the report was to show first
results of the designed algorithm The net we used
learned with a 97.5 % of agreement over the whole
learning set. Performance on the whole test set
reached a 77.6 % of agreement, which can be
considered as an encouraging result. The data used
for testing and training the system are in fact small.
In further experiments, the system is supposed to
be tested in at least 8 EEG recordings, 4 for
training and 4 for testing. We expect also to be
able to draw out of the EEG signal more detailed
information in order to propose the system as an
aternative for supplying visual scoring.
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Fig. 4 (Next page) Left Column: Signals, 16 seconds epochs from sleep stages 1,2,4, awake and Rem, and
corresponding scalogram. Horizontal axis in both graphs is time, vertical axis in the scalogram is

frequency in Hz.

Right Column: Spectrograms. Power Spectrum from the STFT

Color Scale, Minimum HEEEE" 1 M aximum



\tﬂrum

0 b 10 15 20
Frequency Hz

Awvake

Powver Spectrum

1] 5 0 18 0
Freguency Hz

1
Spindle

+— Spindle

+— K-Complex

Spindle 4

Powwer Zpectrum

1] b 0 15

Freqguency Hz

20

Powver Spectrum

!

H] 10 14 20
Freguency Hz

Powver Spectrum

b 10 15 20
Fregquency Hz




