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Abstract
This work is a continuation of [4]. The focus is on the problem of sampling inde-
pendent sets of a graph with maximum degree 6. The weight of each independent
set is expressed in terms of a fixed positive parameter A\ < %, where the weight of
an indepednent set o is Ml?l. The Glauber dynamics is a simple Markov chain Monte
Carlo method for sampling from this distribution.
In [4], we showed fast convergence of this dynamics for triangle-free graphs. This
paper proves fast convergence for arbitrary graphs.
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1 Introduction

For a more general introduction and a discussion of related work we refer the reader to the companion
work [4]. The aim of this work is given a graph G = (V, E) to efficiently sample from the probability
measure pg defined on the set of indepedent sets Q = Qg of G weighted by a positive parameter A.
Specifically, for all independent sets o € €2,

Alel
=7

pa(o)

where Z¢ =) cqn Melis the normalizing factor.

The Glauber dynamics [2] from statistical physics is a very simple Markov chain M C defined on
Q. The transition probability matrix P of M C' is defined as follows.

From an independent set o:

e Choose a vertex v of G uniformly at random.

e Let

=
>

, [ cU{v} with probability ¥
o\ {v}  with probability {1~

e If ¢/ is a valid independent set, move to state ¢’ otherwise remain at state o.

The stationary distribution of M C' is the probability measure pug. To sample from this distri-
bution, we simply start at an arbitrary independent set and follow the random walk defined by P
until we reach stationarity. We show that M C quickly converges to its stationary distribution in a
manner we formalize later. In particular, for graphs with maximum degree 8, the number of steps of
this random walk that are required to achieve stationarity, known as the mixing time, is O(n logné)

for A < £% and O(n?§?) for A = 5.
The simpler proof for the case of triangle-free graphs was given in [4].

2 Background

2.1 Markov chain fundamentals

Before getting into the proof, we need to review some background material and machinery. Consider
a discrete-time Markov chain (X;) with transition probability matrix P defined on a finite state space
Q2. We let P; denote the chain starting in state ¢ and P}(j) is the probability this chain is in state j
after ¢ steps. A classical theorem of stochastic processes states that if P has the following properties:

o aperiodicity: ged{t : P}(i) > 0} = 1 for alli € Q
e irreducibility: the graph with P as its adjacency matrix is connected
then the chain (X;) has a unique limiting distribution, referred to as the stationary distribution
ie.
tlggo Plj) == foralli,j € Q
In fact, 7 can easily be determined if the Markov chain is time-reversible, 1.e. satisfies all local-

balance equations. Specifically, a distribution 7 is the stationary distribution if it satisfies the
following:

7(4)P;(j) = w(j)P; (i) for all i, j € Q



Our goal is to bound the time until the chain is sufficiently close to the stationary distribution.
The traditional bound on the distance from stationarity is the variation distance,

drv (P m) = 2 37 PLG) = ()
JEQ

We are interested in the mixing time, 7:

7(e) = maxmin{t : dTV(PZ»tI, 7) < efor all t >t}

2.2 Coupling

The analysis relies on coupling to bound the mixing time. Coupling contructs a stochastic process
(X1,Y:) on Q x Q such that separately Xy, Y; are copies of the original Markov chain and if X; = V;
then Xt+1 = }/H-l'

The following standard result ties together coupling and the mixing time. In the theorem, o’
(similarly 7') refers to the state of the chain in state o after one step of the Markov chain.

Theorem 1 Let ® be an integer-valued function defined on X Q which takes values in {0, ..., D}.
Suppose there exists a f < 1 and a coupling of the Markov chain MC' such that for all o, 7 € Q:

E[®(c’,7")] < pP(0, T)

If B < 1 then the mizing time 1is

log(De™?

r(e) < 18D)
1-p

If B =1 and there exists a positive o such that for allt,
Pr[®(c’, ') # ®(0,7)] >

then the mizing time s
2D?
7(e) < T log(e™!)
«

Proof: The proof for the case when # < 1 is quite simple. Since @ is non-negative and integer-
valued, we have that for all Xg, Y,

Pr{X, # Vi < E[®(X,, Y)] < 8'®(Xo, Vo) < #'D.

The Coupling Lemma of [1, lemma 3.6] says that the variation distance is bounded above by
the probability the chains have not coupled. Using the lemma, taking logarithms, and rearranging
terms gives the desired result.

We refer the reader to [3] for the proof of the case 8 = 1. (]

3 Arbitrary Graphs

The following section considers a pair of independent sets o, and will omit obvious references to
them as parameters to functions.

We first need a bit of notation. Let D denote the set of disagree vertices, i.e. ) is the symmetric
difference between o and 7. The set of agree vertices is A = V' \ D. We use D, = T'(v)N D to denote
the disagree neighbors of a vertex v and d, is the cardinality of D, . Similarly, A, = T'(v) N A.



Let ¢ = 22~ We now define a potential function between ¢ and 7:

SA+2
(& ifveD
® =1 0  otherwise

—cdy if there exists a neighbor w of v such that w € o, w € p
By = —c(dy — 1) if there is no such w and d, > 1
0 otherwise

@ = Z[av + ﬂv]

v

4 Analysis

We now analyze the expected change ® after the next transition of the Markov chain. Our coupling
is simply the identity, i.e. each chain attempts the same move at every step. For simplicity, we
rescale everything by a factor n(1 + A).

n(1+A\)E[A®] = n(1+ 1)) ElAa,] + E[Af,]

We first try to manipulate the terms in the expected change in ® to ease the analysis.
Observe that for an agree vertex v if all of its’ neighbors agree then a, is still 0 after the next
move. For an agree vertex w, we can then amortize the expected change in «a,, over its disagree

neighbors as follows.
1
Y ElAay) = > ElAa]+ Y —E[Aay] (1)
v vED wWEA, w

To simplify our accounting, we divide F[A3,] as follows.
Let,
E[A¥B,] = F[AB,|Markov chain transitions on w]

We then have the following from the definition of 3, .

Zv E[Aﬁ’u] = = Zv,w E[Awﬂv]
= Zv EH)EF(’U) E[Awﬂv]

For an agree vertex w, we can now try to amortize the expected change in 3, over its disagree
neighbors.

STEAGI=D01 Y EAYA)+ D EIABI |+ D Y BlAYE:)
v vED wEF(U) wWEA, WEATEA,
Observe that the following is also true.
SEARI=Y| D EAYRI+ D) (E[Nﬂm > d_E A%) +Y. ). EATB)]
v vED weF(u) wEA, TEA, WEA TEA,d,=0

Observe that if a vertex v agrees, all neighbors w of v agree, and all neighbors of w agree, then
we are guaranteed that 3, is 0 and after the next move will still be 0.



SEsl=Y | X AavAl+ Y (FlAts+ Y AR Y T FIAA)

v veD |weT(v) WEA, TEAy w €Ay ,d,=0 w
(2)

Using (1) and (2), we can divide the expected change in ® over the disagree vertices as follows.

E[A®] =" [ElAa]+ Y 6u(w)

veED wel(v)

where ¢, (w) is the following:

E[Awﬁv] ifweD
# = LBl + BIAYA] + BN+ 3 (Seea, FIAS]+ Saen, amo FIATA]) ifwe A

The analysis will show that for each disagree vertex v, F[Aa,] + EwEF(v) oy(w) < 0.

Consider a disagree vertex v, without loss of generality we assume v € o, v &€ 1. Recall, a, = 8,.
The move that attempts to remove v from both independent sets definitely causes v to agree and
has weight 1. We also know that the move which attempts to add v to both sets works in both sets
if d, = 0. This move occurs with weight A. Thus,

—(14+ X6, ifd, =0

ElAay] = { —&, otherwise (3)

For a disagree vertex v and a neighbor w, we analyze ¢,(w) based on the following cases:

e weD:

We only need to consider E[A¥8,]. The only move that changes the configuration at w is
attempting to remove w from both independent sets. Since neighbors of v are either disagree
vertices or out of both independent sets, removing w only changes 3, if d, > 1. In this case,

we then have that
c ifd,>1

duo(w) = { 0 otherwise (4)

e w € A and w has a neighbor z such that z € #:

In this scenario there are no moves that change the configuration at w. Thus for all neighbors
xz of w,

E[Aay] = E[AYB,] = E[AY3:] =0

Now let us consider E[AYf,]. Notice that if d, = 0 then v agrees after the moves which
attempt to add or remove v from both independent sets. Whereas if d, > 0 then v only agrees
after the move which attempts to remove it from both sets. In the worst case, these moves
cause 3, to increase by c.

v e(l+2) ifd, =0
RS

otherwise

We still need to consider F[A*3,,] where z is an agree neighbor of w and all the neighbors of
agree. Attempting to add z to both independent sets can only decrease 3,,. Also, attempting



to remove x from both sets can only have an effect if z is already in both sets. If there 1s one
such z in both sets, then removing it from both sets may increase 3, by c:

> EATB]<c

T€A,,d.=0

Since the worst case is when d,, = 1, we have that

24 X)) ifd, =0
¢ (w) < { 2c otherwise

e w € A, and no neighbors of z are in 7:

We know that a,, = 0. There is one move that will cause w to disagree. Specifically, attempting
to add w to both independent sets will work in exactly one of the sets. This increases a,, by
by . Similarly, if d, > 0 this move will decrease 3, by c.

E[Aay] = Ay
oot [ —eh ifdy>0
E[A"fs] = { 0 otherwise

Now look at E[AYBy]. If dyy > 1 then the move which attempts to remove v from both
independent sets will increase 3, by ¢. Whereas attempting to add v to both sets will not
effect 3, .

v [ e ifdy>0
E[A"fu] = { 0 otherwise

Consider an agree neighbor z of w. Suppose z has some disagree neighbors or a neighbor which
is in both independent sets. Then the move which attempts to add w to both independent sets
and causes w to disagree will decrease 3, by c. In the other case for x that all of its neighbors
are out of both independent sets then the move that adds x to both sets decreases 3, by ¢
and occurs with weight A. Thus, for all agree neighbors z of w, either: (i) E[A¥] = —c) or
(ii) E[A"By] = —cX and d; = 0.

STEAYB]+ > E[A"Bu] = —cA(bw — du)

TEA, T€EA,,d:=0

For this case we have that

Aby — eA(6y — 1) ifd,=1,d, =0
) Abw —cA(by — 1) — A ifd,=1,d, >0
oW =0 L (X6, — A8y — du)) + 0 ifdy > 1,dy =0
i()\éw — Ay —dy))+e—ch ifdy >1,d, >0
Recall our setting of ¢ = ;\5—)\+2'

We leave it to the reader to verify that once again the worst case is when d,, = 1.

Aoy — cA(by — 1) ifd, =0
oy (w) < { A6y — cA(6y — 1) —cA  otherwise

Notice that for our setting of ¢, the following are true:

(24X > Aoy —cA(6y — 1)
2 > Aoy — A8y — 1) —cA



We then have that for w € A,

24+ A)e ifd, =0
do(w) < { 2c otherwise ()

Using (3), (4), and (5), we have the following:

ElAay)+ Y u(w) <

wel(v)

—6y + 2c(8, — 1) if dy =1

—(14+ XNy +(2+ N)eb, ifd, =0
—by + 2¢(6y — dy) + dyc  otherwise

Using the facts that for d, > 1,

—(14+ M)y + (24 N)eby = —by + 2¢(8y — 1) > —by + 2¢(8y — dy) + dye

by
N -9 > — ¢
31 JrQ[A(é 2)—2]> —(14+ X8y +(2+ A)cby
Therefore,
by
E[A®] < L 2uep A6 —2)—2]

n(l+2A) 6X+2

Notice that E[A®] < 0 when A < #25.
We now want to rephrase this bound on E[A®] to get a bound on § = max, » where

Elé(c’, )] = Bs,®(0, T)
We bound f as follows:

Bor®(o,7) = E[®(c, ")
(Bor — 1)®(0,7) = E[®(c',7")] — ®(0,7) = E[AQ]
ﬂa,T = 14 %

Since ® < Y - p 6y, we get a bound on g of:

1 A6—2)—2
n(1+2) (6A+2)

<1+

We rescale ® by &' — % to make it integer-valued. Thus, ®' < ”c—é. Plugging these bounds into

theorem 1 we get that when A < %,

n(1+ A)(6A +2) né
20—z o8l

T(e) <

Using the fact that 6 > 3,2 < %, we get A< 2,61 <6,¢> %

We can now simplify the bound on the mixing time. For A = (1 — a)%, where « 1s positive,
48
T(e) < =on log(3né/e€)
o

Theorem 2 For graphs of mazimum degree 6, MC mizes in time O(% log(né/c)) when A = (1 —
a)% for positive o < 1.

Corollary 3 For lattices of degree 6, the limiting Gibbs measure is unique when A < (1— a)ézz for
fized positive o < 1.



When A = % we have that 3 = 1. We simply need to bound a = Pr[A® # 0].

For any disagree vertex v, consider the move that attempts to remove v from both sets. This
move reduces a, by é,. Also, this move may increase 3, for w which are neighbors of v. Since
¢ < 1, we are guaranteed this move changes ® by at least ,(1 — ¢) > 0. Therefore, a > ﬁ

When ) = -2

= =
2n3X2(1 4+ A
T(e) < wlog(e_l) < 54n”6? log(e™1)

C

Theorem 4 For graphs of mazimum degree §, MC mizes in time O(n36?log(e™1)) when A = ﬁ‘
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