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Abstract
We consider the problem of sampling independent sets of a graph with maximum
degree 6. The weight of each independent set is expressed in terms of a fixed positive
parameter A < %, where the weight of an independent set ¢ is Al The Glauber
dynamics is a simple Markov chain Monte Carlo method for sampling from this dis-
tribution. We show fast convergence of this dynamics. This paper gives the more
interesting proof for triangle-free graphs. The proof for arbitrary graphs is given in
a companion paper [28]. We also prove complementary hardness of approximation
results, which show that it is hard to sample from this distribution when A > £ for a

constant ¢ > 0.
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1 Introduction

The hard-core model in statistical physics is a simple representation of a gas as a graph G = (V, E)
[3, 6]. Vertices represent possible sites for the non-negligible sized particles. To prevent particles
from overlapping, adjacent sites cannot simultaneously be occupied. We are interested in the hard-
core measure which is the probability measure pg defined on the set of independent sets Q = Qg of
G = (V, E) weighted by a parameter A > 0. Specifically, for all independent sets o € Qg,

Alel
=7

pa(o)

where Zg = ZUEQG Melis the normalizing factor, often referred to as the partition function. Equiv-
alent models arise in the Operations Research community when considering properties of stochastic
loss systems which model communication networks [15], [17].

Sampling from the hard-core measure and computing the partition function are closely related
problems. As described in [13, 26], there are randomized approximation-preserving reductions be-
tween the two problems.

We consider a very simple Markov chain M C' defined on Q¢. This chain is referred to as the
Glauber dynamics in the statistical physics community [10]. The transition probability matrix P of
MC' is defined as follows. From an independent set o:

e Choose a vertex v of G uniformly at random.

o Let

=

1

o\ {v} with probability 13

>

, { oU{v} with probability

e If ¢/ is a valid independent set, move to state ¢’ otherwise remain at state o.

The stationary distribution of M C' is the hard-core measure. To sample from this distribution,
we simply start at an arbitrary independent set and follow the random walk defined by P until we
reach stationarity. Our main result is that M C' quickly converges to its stationary distribution in a
manner we formalize later. In particular, for graphs with maximum degree 8, the number of steps of
this random walk that are required to achieve stationarity, known as the mixing time, is O(n logné)
for A < % where n is the number of vertices in the input graph G'. This implies an efficient method
to sample from the hard-core measure, and from the results of [13, 26], an fpras (fully-polynomial
randomized approximation scheme) to approximate Z. An fpras produces an estimate within a 1+¢
multiplicative factor of the correct answer with probability at least %, and runs in time polynomial
in £ and n [14].

In this work, we present the proof for triangle-free graphs and A < %. The generalization
to arbitrary graphs is much more complicated and laborious. The boundary case of A = 632
much easier to handle in the context presented for arbitrary graphs. These extensions are left for a
separate note [28].
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1.1 Related Work on Sampling

The conference version of this paper [18] showed rapid mixing of a modified Glauber dynamics
MCcgq4 for X < ﬁ. In joint work with Michael Mitzenmacher, we discovered a modification of the
chain M C.q4. which leads to rapid mixing for A < %. We omit the proof since it is weaker than
the result we present on the Glauber dynamics. Independently of our work, Dyer and Greenbhill [9]
also discovered the modification of M4y, leading to the same improved bounds on A.

Dyer and Greenhill [9] and Randall and Tetali [25] have used these bounds on the mixing rate of
these modified Glauber dynamics to bound the mixing rates of the simple Glauber dynamics. These
comparison approaches give weaker bounds on the mixing rate.



J. Propp and D. Wilson noticed that our proof of rapid mixing and similar types of proofs which
use coupling actually show fast convergence of their coupling from the past technique [22, 23]. Their
work can be used to generate samples exactly from the hard-core distribution [11].

1.2 Computational Complexity Hardness Results

Exactly computing |Q¢| is # P-complete even when restricted to bipartite graphs with maximum
degree four [27]. Using standard boosting techniques and hardness of approximation results for
independent sets, it is known to be NP-hard to approximate |Q¢| for general graphs within a factor
of 27" for any € > 0 [26, 12]. Using the same approach, we show it is NP-hard (unless RP = N P)
to compute Zg within any polynomial factor when A > £, for a positive constant ¢ < M where
1 4 € is the latest hardness of approximation result for finding the maximum independent set in
graphs with maximum degree four. The latest bound on ¢ is % from [4].

1.3 Infinite Volume Gibbs Measure

Work on proving rapid mixing of the Glauber dynamics and related Markov chains is closely related
to a large body of research in the Statistical Physics community. In this section, we briefly introduce
a major topic of interest in the Statistical Physics community and mention its connection to our
work.

We refer the reader to [10] for a general introduction to the concepts presented in this section. The
following definitions focus on Z¢ but hold for arbitrary lattices. Let @ denote the d-dimensional
cube of side length L, i.e. @r is the induced subgraph of Z? on the set of vertices {0,..., L — 1}4.
Also consider @, the complement of Qr in 2%, ie. Qr = 29\ Qy.

In statistical physics, the hard-core measure is the associated Gibbs measure for this model. For
a fixed independent set 7 € {2za, the Gibbs measure on @y, is defined as:

T Ael
HQL(U) = ZZ?
L

where {cNQr}U{rNQr} is a valid independent set on Z%, and the partition function 74, is the
appropriate normalizing constant.

The question of interest is whether there is a unique limiting Gibbs measure as L — oo, inde-
pendent of 7 [6].

Work on the question of uniqueness has focused on two-dimensions. It is widely believed that
there is a critical parameter A. such that uniqueness holds for A < A.. Simulations suggest A. is
about 3.79 [2], but rigorous bounds on A, are much worse. Most lower bounds rely on showing
the Dobrushin-Shlosman [8] condition is satisfied. Satisfying this condition is quite similar to using
coupling to prove fast convergence of a Markov chain which allows updates of larger structures of
the input graph such as a k x k subsection of the grid. The best lower bounds using this approach
are roughly A, > 1.185 [16, 24, 7]. These proofs are usually computer assisted. A different approach
has recently been used by van den Berg and Steif [3]. They relate A. to the critical probability p.
for site percolation on the grid. Specifically, they show A, > 13;95'

Work on showing that for large enough A, the limiting Gibbs measure is not unique was done by
Dobrushin [6] and rediscovered by Louth [17] in a different context.

The infinite é—regular tree is the only graph where A. is rigorously known exactly. For such
§—1
graphs, Kelly [15] showed A, = 6651_(2)5 :

As J. van den Berg explained to us, there is an intimate connection between fast convergence
of the Glauber dynamics (or any Markov chain whose transitions depend on a small subgraph of
the input graph) and uniqueness of the limiting Gibbs measure. Specifically, our results which show
rapid mixing in O(nlogn) time of the Glauber dynamics on the grid for all boundary conditions



imply uniqueness of the Gibbs measure. Similarly, using results of Martinelli and Olivieri [19, 20]
and Aizenman and Holley [1], most results which show uniqueness (which actually show the stronger
condition of so-called weak spatial mixing [19]) imply mixing of the Glauber dynamics in O(nlogn)
time for the grid for any boundary condition.

The results we present in this work are for general graphs and imply bounds on A, for arbitrary
lattices. Work in the statistical physics community has centered on the grid. For this special class
of graphs, their results are stronger than ours and imply fast convergence of the Glauber dynamics
for larger A than we prove.

2 Machinery

2.1 Background

Before getting into the proof, we need to review some background material and machinery. Consider
a discrete-time Markov chain (X;) with transition probability matrix P defined on a finite state space
Q. A classical theorem of stochastic processes states that if P has the following properties:

e aperiodicity: ged{t : P}, >0} =1 forall i € Q

e srreducibility: there exists a t such that there is a positive probability of going from state i to
state j after ¢ steps, i.e. Pitj >0, forall 4,7 € Q

then the chain (X;) has a unique limiting distribution, referred to as the stationary distribution =,
le.
lim P»t]» =m; forall ¢, € Q

t—oo
In fact, 7 can easily be determined if the Markov chain is time-reversible, 1.e. satisfies all local-
balance equations. Specifically, a distribution 7 is the stationary distribution if it satisfies the
following:
7TZ'PZ']' = 7T]'P]'Z' for all 1,] € Q
Our goal is to bound the time until the chain is sufficiently close to the stationary distribution.
The traditional bound on the distance from stationarity is the variation distance,

1
Ai(t) = 5 > |Ph —

jeq
We are interested in the mixing time, 7:

7(€) = maxmin{t : A;(¢') < e for all ¢/ >t}

2.2 Coupling

We use coupling to bound the mixing time. Coupling constructs a stochastic process (X;,Y;) on
Q x Q such that separately X;,Y; are copies of the original Markov chain and if X; = Y}, then
Xit1 =Y.

An important tool in our analysis is Bubley and Dyer’s path coupling [5]. Our statement of their
theorem follows that in [9].

We first need to define the notion of neighbors and paths in 2. We consider a pair of states
0,0, € Q neighbors if o, = cU{v},v € ¢ and denote it by o ~ o,. We call 7 = (7g, ..., 7) a simple
path if all 7; are distinct and 79 ~ 71 ... ~ 7. Then p(o,n) = {7 : 0 = 70,9 = 73, 7 is a simple path}.

Using path coupling we only need to analyze a coupling for neighboring states. The path coupling
theorem is more general than stated here, but this is sufficient for our purposes. In the following
theorem o (similarly o) refers to the state of the chain in state o after one step of the Markov
chain.



Theorem 1 [5] Let ® be an integer-valued meiric defined on Q x Q which takes values in {0, ..., D}
and for all o,n € Q there exists a T € p(o,n) such that

®(o,n) = Z(I)(Ti;Ti+1)

Suppose there exists a § < 1 and a coupling of the Markov chain MC such that for all 0,0, € Q:
E[(I)(o'/’ 0';’))] S ﬁq)(0-7 UU)
Then the mizing time s
log(De1)

T(e) < -

3 Analysis of Glauber Dynamics

In this section, we analyze the Glauber dynamics for triangle-free graphs.

3.1 Potential Function

Consider a pair of states o ~ o, where vertex v has degree 8,. Recall that o, = o U {v}. The
obvious idea for a potential function between such states is just é,, the Hamming distance weighted
by degree. Our potential function is an obvious extension of this. Consider a vertex w which is a
neighbor of v. We call w blocked if it has a neighbor which is in both independent sets. Suppose the
next move of the Markov chain attempts to add w into the independent set. This might only work in
one of the chains, causing an increase in ®. Notice that this bad situation occurs if w is not blocked.
Otherwise, this move is blocked from occurring in both chains. Our potential function is simply the
weighted Hamming distance minus a constant ¢ < 1 times the number of blocked neighbors of v.

Specifically, for ¢ = %, our potential function @ is as follows. We use T'(v) to denote the set
of neighboring vertices of v. Denote the set of blocked neighbors of v by

B(o,v) ={w:weT(v),[(w)Neo # 0O}
b(o,0y) = by — ¢|B(o,v)]
Consider arbitrary states o, n.

<I)(O', 77) = 7{I;l(iann) <I)(TZ',TZ'+1)

This potential function @ clearly satisfies the following conditions for all o, € Q and thus is a
metric:

e &(o,n) < ®(0,() + ®((,n). This is true since (o, n) is defined as a minimum over all paths
including those going through (.

e ®(0,n) = 0(n,0)
e &(o,n) > 0 which follows from ¢ < 1 and thus ®(o,0,) > 6,(1 —¢) > 0 for all ¢, 0, € Q.

e ®(0,n)

0—=o0o=mn



3.2 Analysis

Let ® = ®(0,0,). We now analyze E[A®]. Our coupling is simply the identity, i.e. each chain
attempts the same move.

Notice that the only moves which might affect @ either transition on v, a neighbor of v, or a
neighbor of a neighbor of v. Let,

E[AT?®] = E[A®|Markov chain attempts to add z into the independent set]
E[A™*®] = F[A®|Markov chain attempts to remove z from the independent set]
E[A"®] = 25 E[AT" 0] + 5 E[A" @]

This gives,

E[A@]:l E[A"®]+ > E[AY®]4+ > E[A9]
n wel(v) z€el(D(v))

Consider a move which

e transitions on v:
Since all neighbors of v are out of both independent sets, a move which transitions on v works
in both chains. Afterwards, both chains are in the same state. Thus,

E[AT"®] = F[A™Y®] = —6, + ¢|B(0, v)]
E[AY®] = —é, + ¢|B(o,v)|

e transitions on w, where w is a neighbor of v:
Since w is in neither independent set, E[A™Y®] = 0.

Consider the move which attempts to add w into the set. Suppose w is not blocked. This
move only works in the chain in state 0. To determine the effect of this move for such a w,
observe the following;:

EATY®] = &(0y, 0,) — B(0, 04)

D(oy,0y) < B(oy,0) + B0, 0y)

D(oy,0) = by — ¢|B(o, w)]
Combining these give E[ATY®] < §,, — ¢|B(o, w)].
Note that,
H%\(éw —¢|B(o,w)|) ifw¢ B(o,v)

0 otherwise

E[AY®] < {

e transitions on z, where z is a neighbor of a neighbor of v:
Suppose z is in both independent sets and consider the move which removes z from both sets.
This move may unblock a vertex w. The set of such w are

ay ={w:w € B(o,v),T(w)No = {z}}

We have,
lagle ifzeo
0 otherwise

E[A~"®] = {

Consider the case when z is in neither independent set. Since the graph is triangle-free, v is not
in the neighborhood of . Thus, the move which attempts to add z into the independent set
works in both or neither set. It works in both chains if no neighbor of z is in either independent
set, i.e. T'(2)No = @. The only possible effect of such a move is to make a vertex w blocked.
The set of such w are

By ={w:weT(v)NT(z),w ¢ B(o,v)}



Thus,

tog1_ ) —|Bele fT(z)No=0
ElAT 9] = { 0 otherwise
Combining these,
%c ifz€o
E[A™@] = ¢ —3:le ifa g o T(z)Nno=0
0 otherwise

We now collect terms of E[A®]in a manner that divides the contribution from z over its neighbors
w. Note that for any such z, either E[AT®] or E[A~%®], but not both are non-negative. We can
amortize these over those w € a,; or w € f;. Notice that a blocked (unblocked) vertex w can only
be in ay (B;, respectively).

For a blocked vertex w in the neighborhood of v, let

I'(w) = {2 2 € N(w)\ {v},w € a,)
1

lov |

Similarly, for an unblocked vertex w in the neighborhood of v, let

Mw)={z:zeT(w)\{v},we b}
1
T

E[A™®] = E[AY®]+
zel(w)

E[AT®]

E[A™®] = E[AY®] + >
zel(w

E[AT®]

We now have that
1
E[A®] = — |E[A*®]+ ) E[A™3)]
n wel(v)

We can bound E[A*¥®] as follows.

e Suppose w 1s blocked.
We know that E[AY®] = 0. We also know that it can be in a, for at most one z. Thus,

C

1+

E[A™®] <

e Suppose w is unblocked.
For each neighbor z of w (other than v), either z € B(o, w) and thus contributes to E[AY®] or
z ¢ B(o,w) which implies T'(z)Ne = @ and it contributes to E[A”®]. From these observations
we have,

H_L)\[éw - ClB(O’, w)” + erF(w)\B(u,w),x#v _H—L)\c
— |B(o,w)] — 3 — 1~ |B(o,w))

55 6w
= Xl — by — 1]

E[A*v @]

where the second equality is from noticing the summation is over a set of size exactly 6, — 1 —
| B(o, w)|. From algebraic manipulations and our definition of ¢ we have that

(24 Ne= A6 —c(§ — 1) > A(bw — (6 — 1))

This implies that if w is blocked then E[A**®] < 1_%\(2 + Ae.



Using our bounds on E[A**®] we have

n(l+ \E[A®] = 1+A[Emww+zwwwEqu}

( )
(1 + )\)[_6” + C|B(U’ U)H + EwEB(o,u) c+ ZwéF(v)\B(o‘y'L)) 6(2 + A)]
(L4 M[=60] 4+ Xwenow) €2+ A) + Xwerwnpion €2+ A)
—(14+XM)by + 6yc(2+ A)

5512 A6 —2)—2]

A

Therefore,
1 by

n(l+A)6A+2
Notice that E[A®] < 0 when A < 525.

We now want to use this bound on E[A®] with the path coupling theorem to get a bound on
the mixing time. Recall that the path coupling theorem uses a bound on 8 = max, 5, 85,5, Where

E[A®] < A6 —2) — 2]

E[®(d',0,)] = P05, (0, 00)

We want to determine 3, ,, in terms of E[A®(c, 0,)] = E[A®] as follows:

Bo0,®(0,0,) = E[@(c',0y)]
(Bros - D¥(0,0) = E0(c’,0l)]— &(c,0,) = F[AD)
[7)0,01u = 14 @

Observe that by our definition of ® we have & < §,. From this observation and our bound on
E[A®] we get a bound on j:

1 A6 —2)—2
n(l+2A) (6A+2)

The path coupling theorem needs a bound on 3 and for ® to be integer valued on {0,..., D}. At
the moment ® can have fractional values since ¢ is not an integer. Simply consider ®' = % which is
integer-valued. Since, ®(o, 0,) < 8§, < 6, we have ®(o, n) < né for arbitrary o, € Q. Thus, D < ”75.
Plugging these bounds on # and D into the path coupling theorem we get that when A < 63—2,

<1+

n(1+ A)(6A + 2) né
-2 o8l

T(€) <

Using the fact that 6 > 3, A < %, we get A< 2,61 <6,¢> %

We can now simplify the bound on the mixing time. For A = (1 — 04)5327 where « 1s positive,

T(e) < 4an log(3né/e€)

Theorem 2 For triangle-free graphs of mazimum degree 6, M C' mizes in time O(Z log(né/c)) when
A=(1- oz)éz—2 for positive o < 1.

We refer the reader to the discusion at the end of section 1 for a very brief discussion relating to
the following corollary.

Corollary 3 For triangle-free lattices of degree 8, the limiting Gibbs measure 1s unique when A <
(1- a)% for fized positive a < 1.



4 Hardness of Approximation

In this section, we detail how the standard boosting technique along with MAX-SNP-hardness of
4-MIS (finding the maximum independent set in graphs with maximum degree four) implies an NP-
hardness result for computing the partition function. Recall that since 4-MIS is MAX-SNP-hard
[21], there is an € > 0 such that no algorithm can guarantee an approximation factor better than
1+¢, unless P = NP.

Theorem 4 Unless RP = NP, there is no algorithm to approzimately compute Zg within any
polynomial factor when A > £ for some constant ¢ > 0.

Proof. Our proof follows that of [26, Theorem 1.17].

Consider a graph G with maximum degree four. Let r be a positive integer which will be
determined later. We boost the graph G — G by replacing each vertex v by an independent set C,
of size r and each edge e = {u, v} by the complete bipartite graph K, , between C, and C,. Notice
that the maximum degree 6 of G, is 4r.

Let Z denote the independent sets of GG.. FEach independent set S € 7 is a witness for an
independent set w(S) in G where:

w(S)={vev:5nC, # 0}

Suppose we have an fpras to compute Z¢, and thus can generate a sample S from the hard-core
measure [13]. For some constant ¢ > 0, we show that for A > £, it is likely that S is a witness to a
large independent set in G. Specifically, with probability at least %, |w(S)| > T3¢, Where m is the
size of the maximum of the independent set in G. This gives a randomized algorithm to approximate
4-MIS within a factor 1+ e.

To determine the sufficient parameters, we consider those S € 7 which are witnesses to a small

independent set. For k = 22 let
Se= Y A

1+¢?
SeZ:|w(S)|<k

Notice that if S¢, < %ZGT then with probability at least % our sample S is a witness to a large
independent set. Straightforward bounds on Z¢, and S¢, turn out to be sufficient for our purposes.
Since G has an independent set of size m, G, has at least (mlr) independent sets of size [ for all

! < mr. Weighting these by A, we have

o (=
=0

We also know,
m/[(14¢)

n o ir 7 mr €)an
sas 3 (02 (T)¥ saeamiesn
j=0

=0

Using these bounds we can determine for which r that Sg, < %ZGT:

(1+/\)mr/(1+e)2n S (1+)\)mr

N | —

gn+1 < (1+A)mr(e/(1+e)) < emr)\(le?)

We know m > ¢ because the greedy algorithm finds an independent set of at least such a size.
Thus, there is a gap when r > {, for some ¢ > 0. Since 6 = 4r, we have Sg, < %ZGT when



A > 2—1, for a constant ¢’ > 0. Notice that if we want to optimize the constant, we simply need

ZGTZ_SGT > 11 . Thus, we have ¢’ < 200149 where ¢ is from the hardness of approximation result
Gy poly(n) €
for 4-MIS.

This shows that unless RP = N P, there is no fpras to compute Zg, when A > %I. It is shown
in [26] that an algorithm which approximates Z¢, within any polynomial factor can be boosted to
obtain an fpras for Z¢g, . O

5 Comments on Extension to Graphs with Triangles

In this section we give a glimpse of the proof given in [28] for the extension to arbitrary graphs
by showing the potential function used in the analysis. The proof still uses coupling, but not path
coupling. Instead we define a potential function © = ©(c,n) between an arbitrary pair of states
o,n € Q. Let D denote the set of disagree vertices, i.e. D is the symmetric difference between ¢ and
n. We also use d, to denote the number of disagree neighbors of v, i.e. d, = |[DNT(v)].

(& ifveD
@ =1 0 otherwise

—cd, if there exists a neighbor w of v such that w € o, w € p
B, = —c(dy — 1) if there is no such w and d, > 1
0 otherwise

0= Z[av + ﬁv]

v
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