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Abstract

Dyadic data refers to a domain with two finite sets of objects in which observa-
tions are made for dyads, i.e., pairs with one element from either set. This includes
event co-occurrences, histogram data, and single stimulus preference data as special
cases. Dyadic data arises naturally in many applications ranging from computational
linguistics and information retrieval to preference analysis and computer vision. In
this paper, we present a systematic, domain-independent framework for unsupervised
learning from dyadic data by statistical mizture models. Our approach covers differ-
ent models with flat and hierarchical latent class structures and unifies probabilistic
modeling and structure discovery. Mixture models provide both, a parsimonious yet
flexible parameterization of probability distributions with good generalization perfor-
mance on sparse data, as well as structural information about data-inherent grouping
structure. We propose an annealed version of the standard Expectation Maximization
algorithm for model fitting which is empirically evaluated on a variety of data sets
from different domains.



1 Introduction

Over the past decade, learning from data has become a highly active field of research distributed
over many disciplines ranging from pattern recognition and neural computation to statistics, machine
learning, and data mining. Most domain-independent learning architectures as well as the underlying
theories of learning have been focusing on a feature-based data representation by vectors or points
in an Euclidean space. For this restricted case, substantial progress has been achieved. However,
the focus on metric data has disregarded a variety of important problems which do not fit into this
setting. Examples that have recently received some attention are proximity data [HB97, BWD97]
which replace metric distances by the weaker notion of pairwise similarities and ranked preference
data [CSS98]. A variety of other types of non—metrical data can be found, for example, in the
psychometric literature [Coo64, Kru78, CA80], in particular in the context of multidimensional
scaling and correspondence analysis.

1.1 Dyadic Data

In this paper, we introduce a general framework for unsupervised learning from dyadic data. The
notion dyadic refers to a domain with two (abstract) sets of objects, X = {z1,...,27} and Y =
{#1,...,ys} in which the observations are made for dyads (z,y). In the simplest case — on which we
focus in the sequel — an elementary observation consists of (z, y) itself, i.e., a co-occurrence of z and
y, while other cases may also provide a scalar value w(z,y) (e.g., a strength of preference/association
or a rating). In some cases, additional observations of features for objects in X and/or Y may be
available, but we will restrict our attention to the immanent case of purely dyadic observations.
Some exemplary application areas of dyadic data are:

e Computer wvision, in particular in the context of image segmentation, where A corresponds
to 1mage locations, )} to discretized or categorical feature values, and a dyad denotes the
occurrence of a feature at a particular image location [HPB98].

o Text-based information retrieval, where X corresponds to a document collection, Y to the
vocabulary, and a dyad represents the occurrence of a token in the content of a document

[HPJ99].

o Computational linguistics in the corpus-based statistical analysis of word co-occurences which
has applications in probabilistic language modeling, word clustering [PTL93], word sense dis-
ambiguation [Hin90, DLP97] and discrimination [Sch98], and automated thesaurus construc-

tion [SPIT7h].

e Preference analysis and consumption behavior by identifying X' with individuals and Y with
objects. Dyads then correspond to single stimulus preferences. This type of data is the starting
point for a machine learning technique known as collaborative filtering [GNOD92, KMMH97].

1.2 Modeling Goals and Principles

Across different domains, there are two main tasks which play a fundamental role in unsupervised
learning from dyadic data: (i) probabilistic modeling, i.e., learning a joint or conditional probability
model over X' x Y, and (ii) structure discovery, e.g., identifying clusters and data hierarchies.

At a first glance, it may seem that statistical models for dyadic data are trivial. For object sets
with a nominal scale the empirical co-occurrence frequencies are sufficient statistics, capturing all we
know about the data. However, the intrinsic difficulty in modeling dyadic data is the data sparseness,
also known as the zero frequency problem [Goob3, Goo65, Kat87, WB91]. When the product set
X x Y is very large, a majority of pairs (z,y) only have a small probability of being observed
in a given sample. Most of the empirical frequencies are typically zero or at least significantly



corrupted by sampling noise. The sparseness problem becomes even more urgent in the case of
higher order co-occurrences where triplets, quadruples, etc. are observed as in n-gram language
modeling. Typical state-of-the-art techniques in natural language processing apply smoothing to
deal with zero frequencies of unobserved events. Prominent techniques are, for example, Katz’s
back-off method [Kat87], model interpolation with held—out data [JM80, Jel85], and similarity—based
smoothing techniques [ES92, DLP97].

In contrast, we propose a model-based statistical approach and present a family of latent class
[And97] or finite mizture models [TSM85, MB88] as a principled approach to deal with the data
sparseness problem. Mixture and clustering models for dyadic data have been investigated before
under the titles of class-based n-gram models [BAM*92], distributional clustering [PTL93], and
aggregate Markov models [SP97a] in natural language processing. All three approaches are recovered
as special cases in our general learning framework. There is also a close relation to clustering methods
for qualitative data like the information clustering approach (cf. [Boc74]).

The modeling principle of latent variable models is the specification of a joint probability distri-
bution for latent and observable variables. This unifies statistical modeling and structure detection:
a probabilistic model of the observables is obtained by marginalization, while Bayes’ rule induces
posterior probabilities on the latent space of structures w.r.t. given observations. The latter is cru-
cial for exploratory data analysis where the extraction of natural structures such as data groups and
data hierarchies are essential goals.

1.3 Latent Classes and Clusters

The common trait of mixture models is the assumption of an underlying latent class or cluster mem-
bership for observations or sets of observations. More formally, our starting point is an observation
sequence § = (", ¥")1<n<N ! which is a realization of an underlying sequence of random variables
(X", V™)1 cnen.

There are at least three different possibilities to define (flat) latent class models for dyadic data:

e The most direct way is to introduce an (unobserved) latent class for each observation, i.e., with
each dyad (z",y") is associated a latent variable A™ over some finite set A = {a1,...,ax}. A
realization a = (a”)1<n<n effectively partitions the observations § into K classes. This type
of model is called aspect-based and observations sharing the same class are simply referred to
as an aspect.

e Alternatively, latent classes can be introduced for objects in one of the spaces, resulting in
a model that is referred to as one-sided or asymmetric clustering model. Without loss of
generality we consider latent variables C'(z) over C = {¢1, ..., cx } and denote by ¢ = (¢(2))zrex
a realization which partitions X'. Reversing the role of X and Y results in a different model.

e Finally, latent classes can be defined for both sets simultaneously. Latent variables C'(z) over
C = {c1,...,ck} partition X while variables D(y) over D = {dy,...,dr} partition Y. This
type of model is called two-sided or symmetric clustering model.

The difference between aspect and clustering models has to be emphasized. While the latent class
structure of an aspect model partitions the observations, clustering models provide a group structure
on object spaces. As a consequence, identical observations (z,y) may have different latent classes
in aspect models, whereas latent variables are shared by sets of observations in clustering models.
Although the underlying latent class structures are very different in either case, we will show in the
sequel how clustering models can be derived as constrained aspect models.

The rest of the paper is organized as follows: In Section 2 we will give an overview over different
mixture models for dyadic data including extensions to hierarchical and more structured latent class

1We follow the convention to utilize subscript indices for unique names of members of sets, while superscript indices
are used to number observations.
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Figure 1: Graphical model representation of the aspect model: (a) in the symmetric parameteri-
zation and (b) in the asymmetric parameterization. Circles denote random variables (bold circles
correspond to observed quantities), ellipses represent parameters, and rectangular frames are utilized
for multiple instances. The directed graph structure represents conditional independence properties
in the standard way.

models and derive Expectation Maximization (EM) algorithms for maximum likelihood model fitting.
Section 3 discusses generalizations and modifications of the pure maximum likelihood framework
by annealed EM, cross validation, as well as a number of acceleration techniques. A variety of
experimental results from different application domains is presented in Section 4.

2 Mixture Models for Dyadic Data

2.1 Aspect Model

Model Specification The aspect model is built on the assumption that all co-occurrences in the
sample § are 1.i.d. and that the pairs of random variables X™ and Y" are conditionally independent
given the respective latent class A”. The randomized data generation process can be described as
follows:

1. choose an aspect @ with probability P(a),
2. select a X—object # € X with probability P(z|a), and
3. select a Y-object y € Y with probability P(y|a).

The corresponding complete data probability, i.e., the joint probability of the data and a hypothetical
instantiation for the latent variables, is given by

P(S,a) = HP(m",y",a"), where (1)
P y",a") = P(a")P(z"]a") P(y"[a") . (2)

A graphical model representation of the aspect model is depicted in Figure 1. By summing over all
possible realizations of the latent variables and grouping identical dyads together, one obtains the
usual mixture probability distribution on the observables

PS) = J] I[Py =Y with (3)

reX ye)y
P(z,y) = Y P(a)P(zla)P(yla) . (4)
acA

Here n(z,y)=|{(z",y") : 2" =& A y* =y}| represents the empirical co-occurrence frequencies. The
corresponding marginal counts for objects z and y are denoted by n(z) and n(y), respectively.



Expectation Maximization Algorithm Maximum likelihood estimation requires to maximize
the log-likelihood log P(S;6) with respect to the model parameters, which are concatenated in a
vector # for notational convenience. To overcome the difficulties in maximizing a log of a sum,
we apply the Expectation Maximization (EM) framework [DLR77, MK97] and alternate two re-
estimation steps:

e an Expectation (E)-step for estimating the posterior probabilities of the unobserved mapping
P(a|S; ") for a given parameter estimate 6,

e a Maximization (M)-step, which involves maximization of the ezpected complete data log-like-
lihood L(6]0") = >, P(a|S;6")log P(S,a;0) for given posterior probabilities with respect to
0

The EM algorithm is known to increase the observed likelihood in each step, and converges to a
(local) maximum under mild assumptions [MK97].

In the aspect model, § contains all continuous parameters, namely P(a), P(z|a) and P(y|a). The
E-step equations for the class posterior probabilities in the aspect model can be derived from Bayes’
rule and are given by

P(a)P P
PA"=a|X =2, V" = y;0) = D l)PWla) (5)
> P(a)P(z]a’)P(y|a’)
In the sequel the latter is simply denoted by P(a|z,y; ). Tt is straightforward to derive the M-step
re-estimation formulae by differentiating £ w.r.t. the different components of 8. After introducing
appropriate Lagrange multipliers to ensure the correct normalization one obtains

s %Z:lp(aw’y";@’), (6)
poly — Dagrme Pl o

Sy P(alzn ym; 6
Py = oyem Pl 8) ®)
Yals Plalen,y: )

Notice, that it is unnecessary to store all N - K posteriors, as the E- and M-step can be efficiently
interleaved.

Asymmetric Parameterization and Cross Entropy Minimization To achieve a better un-
derstanding of the aspect model, it is elucidating to switch to an equivalent asymmetric parameter-
ization (cf. Figure 1 (b))

P(z,y) = P(2)P(ylz) = P(2) ) P(alz)P(yla) . (9)

acA

From (9 one arrives at an interpretation of the aspect model in terms of a low-dimensional represen-
tation of conditional probabilities P(y|z) (or P(z|y), by symmetry). The class-conditionals P(y|a)
can be interpreted as non-negative J-dimensional vectors P(-|a) which span a subspace of dimen-
sionality < K (more precisely, they span a sub-simplex in the simplex of multinomial distributions
over V). The determination of P(a|z) is then equivalent to an optimal approximation of P(y|z)
in that subspace. In this view, the parameters P(a|z) correspond to coordinates in the subspace
spanned by {P(-|lax)}1<kr<k. By reversing the role of X and Y an equivalent dual formulation is
obtained. In fact, this shows that for the aspect model all conditional distributions P(y|z) for a
fixed z are obtained by convex combination of the prototypical class-conditionals P(y|a). Notice



that the estimation of P(z) = n(z)/N is decoupled from the other parameters. Hence, maximizing
the joint and predictive likelihood is equivalent.

It is well-known that, in general, maximum likelihood estimation can be equivalently stated
as the minimization of the cross entropy (or Kullback-Leibler divergence) between the empirical
distribution and the model distribution. In the case of co-occurrence data, the empirical distribution
is given by ]5(1‘, y) = %n(r,y) and in the asymmetric parameterization one may rewrite the log—

likelihood as

LL0:8) = Y Pla.y)log[P(x) Y Plalz)Plylo)] (10)

S P(a) [log P(x) + 3 P(yla) log Y Plala) P(yla)| . (11)

Since the estimation of P(z) can be carried out independently, maximum likelihood estimation for
the remaining parameters is equivalent to minimizing a sum over cross entropies between empirical
conditional distributions P(y|z) and model distributions P(y|z) = 3, P(a|x)P(y|z) weighted with
n(z) = N]:’(J:) Because of the symmetry of the model, an equivalent decomposition is obtained by
interchanging the role of the sets X and Y.

Probabilistic Factor Analysis for Discrete Data The dimensionality reduction obtained by
the aspect model is similar in spirit to factor analysis [Bar87]. The factor analysis of co-occurrence
data is also known as Latent Semantic Analysis (LSA) [LS89, DTGL90]. In LSA, the co-occurrence
matrix of counts C = (n(x;,y;))i; is decomposed by Singular Value Decomposition (SVD) into
C = UXV! with orthogonal matrices U and V and a diagonal matrix ¥ containing the singular
values of C. The approximation obtained by thresholding all but the largest K singular values to
zero is rank K optimal in the sense of the Ls-matrix norm.

Similarly, the aspect model can be represented as a matrix decomposition, where U= (P(zilak))i k,
V:(P(yj lax)); &, and 3 =diag(P(az))x. The joint probability model P in matrix notation can be
written as the product P = USV!. The weighted sum over outer products between rows of U and
V reflects the conditional independence assumption and the K factors correspond to the mixture
components. The mixing proportions substitute the singular values of the SVD.

The most important advantages of the aspect model compared to LSA are: (i) The aspect model
utilizes a statistically meaningful divergence measure, namely the cross—entropy between probability
distributions, to measure the quality of a low-dimensional approximation. In contrast, LSA is based
on a least squares principle for the approximation of co-occurrence counts. This is equivalent to an
additive Gaussian noise assumption which is not adequate for frequency tables. (ii) The mixture
approximation yields a well-defined probability distribution and factors have a clear probabilistic
meaning in terms of component distributions. In contrast, the LSA-model does not define a properly
normalized probability distribution and, even worse, may contain negative entries. In this regard,
the aspect model can be understood as a novel factor analysis approach for count data which utilizes
the likelihood as an objective function and does not make additional assumptions about non-intrinsic
loss functions or association measures.

2.2 One-Sided Clustering Model

Model Specification The asymmetric or one-sided clustering model differs from the aspect model
in that latent class variables are associated with each object z and not with single observations
(z",y™). Tt is thus a clustering model in the strict sense as it assumes a definite partition of the
X-space into groups. To make the connection with the aspect model explicit, we modify the latter
by introducing additional latent clustering variables C(z) € {e1,...,cx}, where latent variable
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Figure 2: Graphical model representation of (a) the one-sided clustering model and the (b) hierar-
chical clustering model.

states for cluster and aspects are identified, ¢; = ap. The clustering variables impose the following
consistency constraints on the aspect variables:

P(a|z,c) = P{A" =a| X" =z,C(z)=c} = b4, (12)

with the notation é,. = 1, if @ and ¢ are identified and é,, = 0, otherwise. These constraints
restrict the latent variable space and guarantee that all observations for a particular z share the
same latent aspect which is identified with ¢(z). The corresponding graphical model representation
is shown in Figure 2 (a). Notice that compared to the asymmetric parameterization of the aspect
model, the parameters for conditional distributions P(a|z) are replaced by P(a|z,c) which are no
free parameters, since they are determined by the consistency constraints (12) and are thus omitted
in the graphical model representation. From Figure 2 (a) one can directly read off the complete data
distribution along with the parameterization of the one-sided clustering model

P(8,¢)= ] Ple(x)) [T [P)Pyle(z))" " . (13)

zeX yey

In (13), aspect variables have been replaced by the respective clustering variable according to the
imposed constraints. Summing over the latent space of clustering variables, this effectively defines
the mixture

P(S) = [[ P(So), P(So) = P(o) ] [P(x)P(yle))" ™ . (14)

zeX ceC yeY

Here, S; denotes the set of all observations involving z. Notice that co-occurrences in S, are not
independent for given parameters (as they are in the aspect model), but are coupled by the shared
latent variable C'(z).

Expectation Maximization Algorithm As before, it is straightforward to derive an EM al-
gorithm for the one-sided clustering model. The update equations for the posterior probabilities
(E-step) are given by

P(0) [ ey P01V
Yo P() ey Plyle) @)

In contrast to the E-step equation for the aspect model in (5), all likelihood contributions for
observations in &, are combined in the calculation of posterior probabilities for the shared variable

P{C(z)=¢|S;,0} =

(15)



C(z). For the parameter update equation (M-step) one obtains

erx n(z,y) P{C(z)=¢|S;, 0}
Plyle) = Y ex (@) P{C(2) =[S, 0} (16)
P(c) = %ZP{C(:&):dSJ,,H}, (17)

zeX

and P(z) = n(z)/N. Alternating posterior calculations (15) and parameter re-estimations (16,17)
defines a convergent maximum likelihood procedure.

Cross—entropy Clustering and Naive Bayes’ Classification It is illuminating to rewrite the
class posterior probabilities in (15) as

P{C(z)=¢|8;,0} x P(c)exp ¢ —n(z) | — Z P(ylz)log P(y|c) . (18)
yey

Comparing (18) with standard models like the Gaussian mixture model [MB88] or probabilistic
vector quantization [RGF92] demonstrates that the cross entropy between the empirical conditional
probability P(y|:t:) and the class—conditional P(y|c) serves as a distortion measure in the one-sided
clustering model. Notice that with an increasing number of observations, n(z) — oo, posteriors
(almost surely) approach extremal values {0, 1}, an asymptotic behavior which differs from the
aspect model as is obvious by comparing (15) with (5).

Eq. (18) also allows us to give the one-sided clustering model an interpretation in terms of
information theory by identifying objects z with sources over the alphabet ). The conditional
probabilities P(y|c) correspond to K source codes with asymptotic expected codeword length I(y) =
E[—log P(y|c)] and the data are encoded in two stages by first specifying the code e(z) to utilize
for each z and then representing all co-occurring y in that code. The asymptotic average codeword
length of a code based on P(yle(x)) is exactly the cross entropy which governs the latent class
posterior probabilities (cf. [CT91]).

The one-sided clustering model can also be viewed as an unsupervised version of the naive
Bayes’ classifier, if we give ) the interpretation of a feature space for z € A'. Each sample set S,
then correspond to a set of feature values which are assumed to be conditionally independent. In
the supervised setting, the M—step estimation is performed once over the training data and class
posteriors for new data with unknown labels are computed according to the E—step equations. There
are further possibilities to weaken the conditional independence assumption both for the aspect and
the clustering model, e.g., by substituting the class-conditional multinomial distributions P(y|e¢)
by log-linear Markov models [WL90, Whi87] or tree dependency models [MJ98]. This direction,
however, 1s not further pursued in this paper.

2.3 Two-sided Clustering Model

Model Specification In the two-sided clustering model, the latent structure consists of cluster
partitionings ¢ and d defined over X and Y, respectively. The conditional model we propose, is

defined by
P(z,yle,d) = P{X" =z, Y" =y|C(z)=c, D(y)=d) = P(x) P(y) 6(c, d) (19)

where ¢(c,d) € IRE)F are K - L cluster association parameters. Intuitively, these weights increase
or decrease the probability of observing a dyad with associated cluster pair (e, d) relative to the
unconditional independence model. In order for (19) to define a proper probabilistic model, we have
to ensure a correct global normalization, which constrains the choice of possible cluster association
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Figure 3: Graphical model representation of the two-sided clustering model.

parameters. Prior probabilities P(c,d) = [[[, P(c(z))] - [Hy P(d(y))] complete the model specifi-
cation. The two-sided clustering model enforces a strict partition in X as well as in Y and thus
provides a principled approach to infer clustering structures simultaneously in both sets.

On the level of single co-occurrence observations, the simultaneous clustering in X~ and Y-
space implies that each observation has an associated latent aspect pair (A", B"), the first/second
component being identified with the latent class of the X' /Y—object, respectively. Similar to the one—
sided clustering model, we may interpret the two—sided clustering model in terms of a constrained
aspect model by identifying aj = cg, b; = d; and imposing two sets of compatibility conditions

P(ale,c) = P{A"=a|X"=2z,C(x)=c} = b4., and (20)
P(bly,d) = P{B"=b|Y"=y,D(y)=d} = bpq. (21)

From the graphical model representation of the two-sided clustering model in Figure 3 we obtain?
P(z,yla,b,C(z)=c, D(y)=d) = P(z|a,c)P(ylb,d), (22)

and by Bayes’ rule together with the conditional independences implied by the graph in Figure 3
one may rewrite

P(zla,C(z)=¢c) = %:mig, (23)
PUlt, D =d) = P05, D) (21)

which results in
PedlCa) = e.DW) =) = Pa)P() S bcbis S (25)

Comparing (25) with (19) suggests that the cluster association parameters ¢(c, d) correspond to the
ratio of the aspect probabilities P(a,b) and the product of marginal probabilities P(a)P(b) for the
corresponding aspect pairs. The equivalence of both formulations of the two-sided clustering model
in a maximum likelihood approach — via cluster associations ¢ on one hand and as a constrained
aspect model on the other hand — is proven in the following paragraph.3

2In order for Figure 3 to be a correct graphical model one has to demand the technical condition that no cluster
¢k or d; is empty. Otherwise it might happen, that P(z|a,C(z) =c) =0 forall z € X.

3Notice that P(c) and P(a) (and similarly P(d) and P(b)) are conceptually very different. P(c) is the prior
probability of an object z € X to have latent class ¢, while P(a) is the probability for the latent X—aspect of an
observation to be a.



Approximate Expectation Maximization Algorithm As the main difficulty in the two-sided
clustering model the latent mappings ¢ and d are coupled via the cluster association strengths
#(c,d). This is made explicit by performing the maximization of the (augmented) complete data
likelihood which constitutes the M-step of the EM procedure. Inserting the maximum likelihood
estimates P(z) = n(z)/N and P(y) = n(y)/N one has to maximize

Lole') = D> n(zy)d Y P{C(x)=c,D(y)=d|S,¢'} logé(c,d) (26)

zeX yey ceC deD
=YD W >3 P{C()=¢, D(y)=d|S, ¢'}é(c,d) - 1].
zeX yey ceC deD

with respect to ¢. Solving for the Lagrange multiplier reveals that A = —N. Differentiation of (26)
then yields

Trex Lyey PIC@) = ¢, D(y) = d]S. ¢/} "5 |
Y owex P1C(x)=c|S, ¢'} n;\f)] [Eyey P{D(y)=d|S,¢'} %

¢(c,d) = (27)

Tt is straightforward to verify that the expression in the numerator of (27) is equivalent to the M—step
re-estimation equation one would obtain for the parameters P(a,b) by taking the graphical model
in Figure 3 and the corresponding formulation in (25) as a starting point for EM. The terms in the
denominator of (27) correspond exactly to the marginals P(a) and P(b) of P(a,b). The remaining
update equations are simply given by

Pe)= 7 Y P(OG)=dS.¢), P(d)= 7 3 PID@)=dIS, &'} . (28)

zeX yey

From (27) it follows that posterior joint probabilities P{C(z)=¢, D(y) =d|S, ¢’} have to be computed
in the E-step in order to perform an exact EM-based likelihood maximization. To preserve the
tractability of the model fitting procedure, an approximate E—step seems to be adequate. We propose
to perform a variational approximation (also known as mean field approzimation) and replace the
exact computation of posteriors in the E-step by a factorial approximation, i.e.,

P{C(z)=c, D(y)=d|S, ¢} = Q{C(2)=¢|S, }Q{D(y)=d|S, ¢} , (29)

and to utilize this approximation for the parameter re-estimation in the M-step. Here, ) is an
approximating probability distribution which is chosen in order to minimize the KL-divergence to
the true posterior distribution (cf. [NH98, JGJS98, HPBI8]). The approximate E-step equations are
given by (cf. Appendix)

Q{C(x)=c|S,d} x P(c)exp [Zn(r, )Y _Q{D(y)=d|S, ¢} logé(c, d)] , (30)

Q{D(y)=dIS, 6} o P(d) exp [chv, )Y Q{C(x)=c|S, 8} loga(c. d)] . (31)

Notice that the mean field conditions form a highly non-linear, coupled system of equations. A
solution 1s found by a fixed—point iteration which alternates the computation of the latent variables
in one space (or more precisely their approximate posterior probabilities) based on the intermedi-
ate solution in the other space, and vice versa. However, the alternating computation has to be
interleaved with a re-computation of the ¢—parameters in between, i.e., after updating one set of



Q{C(z)=c¢|S, ¢} and Q{D(y) =d|S, ¢}, because certain term cancelations have been exploited in
the derivation of (30,31) (cf. Appendix). The resulting alternation scheme optimizes a common ob-
jective function in each step and always maintains a valid probability distribution.* Alternatively,
Markov chain Monte Carlo (MCMC) methods could be applied to approximate the required poste-
rior probabilities. Yet, the mean field approximation has the advantage to be more efficient due to
its deterministic nature.

Mutual Information Clustering It is elucidating to consider the hard clustering limit of the
two-sided clustering model. If we substitute all continuous parameters by their M-step re-estimation
formula, we obtain a goodness—of—ﬁt measure defined over instantiations ¢ and d, namely,

I(c,d)= ZE Y 1og o(c(x), d(y)) = 3" Pa,b)lo ((; b()b) (32)

zeXyeY acA beB

7T can be identified as the expected mutual information between the random variables A™ and B™.
Thus in the hard clustering case, the two-sided clustering model reduces to maximizing the mutual
information between the X'— and the Y—part of the aspects variables. In a more sloppy formulation
one may state that the mutual information between the partitions in X— and Y—space is maximized.

2.4 Hierarchical Clustering Model

Model Specification: Combining Aspects and Clusters The aspect model as well as the
clustering models define a non—hierarchical, ‘flat’ latent class structure. However, especially in the
context of structure discovery, it is important to find a hierarchical data organization. There are
well-known learning architectures like the Hierarchical Miztures of Fzperts [JJ94] which can fit
hierarchical models to data. Yet, in the case of dyadic data there is an alternative way to define
a hierarchical model by combining aspects and clusters. In the hierarchical clustering proposed
here, aspects are identified with the nodes (inner and terminal) of a hierarchy — e.g., a complete
binary tree — while clusters are identified with the terminal nodes. As before, both, a latent aspect
structure (A”);<,<n and alatent clustering structure (C(z))zex are introduced. In order to enforce
a hierarchical organization of aspects as intended by the given tree, these structures are related by
the following compatibility constraints:

P(a|z,c) = P{A"=a|X"=2,C(x)=c} =0, ifnotalec . (33)

The symbolic expression a T ¢ reads “a is on the path from the root to ¢”. By comparing these
constraints with the ones imposed in the one-sided clustering model in (12), it immediately follows
that the latter reduces to a “degenerated” hierarchy without inner nodes. In the one-sided clustering
model, all observations involving a particular  must have the same aspect, in the hierarchical model,
this condition is weakened such that all observations must have aspects which are associated with
a single path in the tree. The graphical model representation of the hierarchical clustering model
thus is 1dentical with the one-sided clustering model, the only difference is that the constraints
are weakened such that the clustering structure does not completely determine the aspect variables.
Hence, we have the freedom to introduce additional parameters P(a|z, ¢) for a | ¢ (cf. Figure 2 (b)).?
In addition to this fully parameterized model, the more parsimonious model P(a|z,c) = P(alc)
and the entropy maximizing model without additional parameters P(alz,c) = 1/depth(c) provide
interesting alternatives.®

4The EM approach for the two-sided clustering model often converges to an inferior local minimum when started
from a random initialization, because all posteriors typically approach uniform distributions. As a remedy, a solution
of the one-sided clustering model is utilized to initialize one set of latent variables.

5In the sequel, we implicitly assume that P(al|z,c) = 0 if not a T c.

8With the parameterization by P(alc) the model becomes non-identifiable and degenerates to the one-sided cluster-
ing model, however, we suggest to fit these mixing proportions that weight different abstraction levels in the hierarchy
from held-out data.
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By summing over the hidden variables one obtains the following nested mixture formulation of

the hierarchical model: P(S) = [[,cx P(Sz), where

n(z,y)

P = S POTI | Pela)Plale. o) P(x) . (34)

ceC y€Y LacA

In comparing (34) with the “flat” clustering model, one may notice that the class-conditional prob-
ability P(y|a) has been replaced by an inner mixture which is a mixture along the “vertical” axis of
the hierarchy.

Expectation Maximization Algorithm The E-step for the hierarchical model can best be
performed in a two stage manner. From the mixture formulation it is straightforward to generalize
the posterior probability of the one-sided clustering model,

P{C(z)=c|S,0} o P(c)]]

yey

n(z,y)
>~ P(yla)P(alz, c)] . (35)

acA

Because of the constraints imposed by the clustering variables, posteriors of aspect variables have
to be conditioned on values of the former, i.e., one has to compute

P(alz, c)P(y|a)

P{A" =alz,y,C(x)=c; 0} = . 36
(4 =ale.y, O =0} = s QeI (36)
The derivation of the M-step equations follows the standard procedure which yields
P(yla) o Y P{A"=alx,y;0}, (37)
nyr=y
P(alz,c) o Z P{A" =a|z,y,C(z) = ¢;6} , (38)

P(c) o« > P{C(z)=c|S,0} (39)

rzeX

completing the derivation of the EM algorithm.

2.5 Discussion

At this point it might be helpful to give a systematic overview of the presented models. It has
been stressed how different models along with their parameterization can be derived by imposing
constraints on the basic aspect model. As a consequence, the different models can be systematically
arranged in a simple Venn diagram (cf. Figure 4), where the partial order distinguishes more and less
constrained models. Obviously, the aspect model is the least constrained model, while the two-sided
clustering model possesses the most strongly restricted latent aspect space.

Another way to compare the different models is by their predictive probabilities on new data,
e.g., P(y|z,S), which is summarized in Table 1. In regard of Table 1, we would like to make the
following comments:

e There is an essential difference between parameters P(-) and posterior probabilities P{-} for
latent variables. For example, in the one-sided clustering model, the z-specific distribution
P(a|z) over aspects is replaced by the posterior probability P{C(z)=¢|S} of z having latent
class ¢; the latter will asymptotically (n(z) — oco) approach Boolean values which is not neces-
sarily true for the parameters in the aspect model. While the mixing weights P(a|z) are free

11
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Figure 4: Venn diagram for the family of co-occurrence latent variable models.

parameters in the aspect model, the corresponding weights in the clustering models are only
induced by the posterior uncertainty and would vanish, if the values of the latent variables
were known.

e This has also consequences in interpreting the class-conditional distributions P(y|a) and P(y|c).
In the aspect model, these do not have to be prototypical for any particular group of objects
from X, since P(y|z) is obtained by convex combinations of the class-conditionals. In contrast,
the one-sided clustering model attempts to identify class-conditionals which are characteristic
for a group of objects in .

e In the hierarchical generalization of the “flat” clustering model the class conditional P(y|c) is
replaced by a more flexible weighted combination. On the other hand, the class-conditionals
P(y|c) of the one-sided clustering model are further restricted in the two-sided clustering
model to be proportional to the marginal probability P(y) times a cluster-specific modulation
factor which depends on y only through its associated class. The latter reflects the additional
“coarsening” induced by grouping objects in Y.

2.6 Related Models and Previous Work

Brown et al. [BAM*92] have proposed an information criterion for class—based n-gram models in
language modeling. Word classes are formed such that the mutual information between classes of
adjacent words is maximized. Their model is closely related to the two-sided clustering model with
the main difference that in [BAM*92] the word classes for the predicting and predicted word are
identified (hence C(z)=D(z)).” Moreover, Brown et al. have proposed a non—probabilistic, hard
clustering variant for which they have introduced a greedy cluster merging algorithm.

Many of the ideas presented in his paper have been solicitated by the pioneering work of Pereira,
Tishby, and Lee [PTL93] on distributional clustering. In [PTL93], the aspect model mixture dis-
tribution is the starting point, however, neither are latent aspect variables introduced, nor is the
corresponding EM algorithm derived. Instead, Pereira et al. propose a clustering method simi-
lar to the one-sided clustering model, which is based upon two different principles: The posterior
class distributions P(c|z) are obtained by minimizing a cross—entropy criterion (or, equivalently,
Kullback-Leibler divergence) together with an entropic regularization with parameter 8, which re-

sults in maximum entropy cluster memberships P(c|z) « exp |3 Zyey p(y|:c) log P(ylc)|. For g =1

"Whether this identification is advantageous in terms of the predictive log-likelihood is, at least, doubtful. Al-
gorithmically, this identification poses additional problems, since the alternation scheme proposed for the two-sided
clustering model no longer applies.
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Model P(ylz,S)

Aspect > . Plalz)P(y|a)

One-sided Clustering > . P{C(x)=c|S} P(ylc)

Hierarchical Clustering | Y, P{C(z)=¢|S}>_, P(a|z,c)P(y|a)
Two-sided Clustering S P{C(2)=¢|S}P(y) > s P{D(y)=d|S} ¢(c,d)

Table 1: Systematic overview of the presented dyadic mixture models.

this differ from the E—step equations for the one-sided clustering model in (18) by a (missing) factor
of n(z) in the exponent and the class prior probabilities P(c¢). The reason is that all z objects are
treated equally, in particular irrespective of the number of observations in the sample set S;. Yet
in [PTL93], the centroid condition is derived from the maximum likelihood principle, after inserting
the maximum entropy cluster membership probabilities. Although both principles are considered to
be “complementary” and re-estimation equations are iterated according to a pseudo—EM scheme. In
[PTL93] it remains unresolved whether an underlying common objective function exists. In a new
formulation [TP98], both types of equations have been derived more rigorously in a rate—distrotion
theoretic ansatz from a mutual information principle. The latter might offer perspectives for a foun-
dation of unsupervised learning beyond the maximum likelihood principle, which has been the basis
of our work.

Saul and Pereira [SP97a] have — independently from our work — proposed a model called aggregate
Markov model which they have utilized as a back-off model [Kat87] in the context of language
modeling. Their approach is equivalent to the aspect model in its asymmetric parameterization, but
was restricted to a class-based bigram model (X = Y). They have also derived an EM algorithm,
but without employing annealing methods (cf. Section 3.1).

3 Generalizations and Extensions

3.1 Annealed EM

Annealed EM is an important generalization of EM-based model fitting which pursues three main
goals:

e Avoiding overfitting by controlling the effective model complexity,
e reducing the sensitivity of EM to local maxima, and
e generating tree topologies for the hierarchical clustering model.

Annealed EM is closely related to deterministic annealing, a technique that has been applied to
many clustering problems, including vectorial clustering [RGF90, RGF92, BK93], pairwise clustering
[AB97, PHBY9Y], and in the context of co-occurrence data for distributional clustering [PTL93].
The key idea is to introduce a temperature parameter T' and to replace the minimization of a
combinatorial objective function by a substitute known as the free energy. Here, we present annealing
methods without reference to statistical physics. Consider therefore the general case of maximum
likelihood estimation by the EM algorithm. The E-step by definition computes a posterior average
of the complete data log-likelihood which is maximized in the M-step. The annealed E-step at
temperature T' performs this average w.r.t. a distribution which is obtained by generalizing Bayes’
formulasuch that the likelihood contribution is taken to the power of 1/T, i.e., in mnemonic notation:
annealed—posterior ~ prior x likelihood'/T . For T > 1 this amounts to increasing the influence of
the prior which in turn results in a larger entropy of the (annealed) posteriors.
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For example, in the case of the aspect model and the one-sided clustering model, the annealed
E-steps generalizing (5,15) are given by

P(ale,y,0} o P(a)[P(z|a)P(yla)]"/T and (40)
P(clSs, 0} o P(e) [T Plyle)* @™, (41)
yeY

respectively. For fixed T' > 1 the annealed E-step performs a regularization based on entropy. This
is the reason why annealed EM not only reduces the sensitivity to local minima but also controls the
effective model complexity. Annealing, thereby, has the potential to improve the generalization for
otherwise overfitting models (for supervised learning problems cf. [PKM96, RMRGI7]). Recent the-
oretical investigations emphasize the benefits of annealing to avoid overfitting phenomena [Buh98].
In this paper, the advantages of deterministic annealing are investigated experimentally (cf. Section
4).

In statistical learning, deterministic annealing is used in the T" — T};, > 1 limit where the
stopping temperature T¢;, — 1 in the inifinte data aspymptotics. In hard clustering applications
one usually perform annealing in the limit T"— 0. Although there is no theoretical guarantee that
deterministic annealing finds the global minimum in general, many independent empirical studies
indicate that the typical solutions obtained are often significantly better than the corresponding
‘unannealed’ optimization. This is explained by the fact that annealing is a homotopy method,
where the original objective function (such as the log-likelihood) is smoothed for large T

For hierarchical models, the annealed EM algorithm offers a natural way to generate tree topolo-
gies. As is known from adaptive vector quantization [RGF90], starting at a high value of T" and
successively lowering T typically leads through a sequence of phase transitions. At each phase tran-
sition, the effective number of distinguishable clusters grows until some maximal number is reached
or the annealing is stopped. This suggests a heuristic procedure where we start with a single clus-
ter and recursively split clusters. In the course of the annealing, the sequence of splits is tracked.
The respective ‘phase diagram’ is used as a tree topology. Note that merely the tree topology is
successively grown, while the parameters and the posterior probabilities of the latent classes may
drastically change during the annealing process.

3.2 Expectation Maximization with Cross—Validation

Data sparseness is pervasive in the analysis of dyadic data. It is an an often neglected problem of
maximum likelihood estimation — which it shares with all empirical risk minimization methods —
the maximization of the likelihood based on the training data does not automatically guarantee an
equivalent performance on unseen new data. This effect 1s known as overfitting and is often severe
for sparse data.

Cross validation is the conceptually simplest criterion for model assessment: the model is trained
on one part of the available data and tested on the remaining observations. Then, this procedure is
repeated with a different data split. The average predictive log-likelihood may then serve as a model
score. Although cross-validation is of great use in model selection, it does not directly indicate how
to modify the model fitting procedure in order to obtain a better generalization performance. Farly
stopping is a common way to utilize cross—validation in model fitting: an iterative fitting method
is aborted, before the test error performance starts to degrade. This, of course, makes specific
assumptions about the nature of the fitting method. Moreover, there is no indication that early
stopping is optimal in any sense to circumvent overfitting phenomena.

In the context of the discussed EM procedures, a simple modification leads to an efficient (one-
step) approximation of leave-one-out cross-validation. We propose to modify the E-step such, that
the parameter estimates # used in computing posterior probabilities are corrected by subtracting
the influence of the observations related to the latent variable in question. To be more precise,
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consider the E-step of the basic aspect model. Neglecting the n—th observation associated with a
latent variable A™ leads to the modified equations

P(alz,y,07") o« P~ (a)P " (z"|a)P™"(y"|a) . (42)

Here P~" denote modified M-step estimates obtained by

P™™(a) « N-P(a)— P(alz,y,07") , (43)
P "(yla) o« N -P(a)-P(yla)— P(alz,y,07") , (44)
P™™(a) « N -P(a) P(z|a)— P(alz,y,077") , (45)

where the occurring posterior probabilities are the estimates computed in the preceding E-step.
Essentially, this amounts to removing the (direct) influence of the n—th observation on the last
M-step parameter estimation. Since EM is an iterative procedure, there is of course a remaining
indirect influence which may still lead to over-fitting problems.

In the one-sided clustering model all observations Sy are removed in estimating the posterior for

C(z), i.e.,
1

P7e) = = Y P{C@)=cl$,07} (46)
T'tx
P (yle) o« Y P{O()=c|S, 07" In(x' y) . (47)
T'tx

An efficient computation of these corrections based on additional bookkeeping quantities is straight-
forward. The interpretation of the leave-one-out E-step is very intuitive: for example, in the one-
sided clustering model, posterior probabilities P{C(z)=¢|S,0~ "} are calculated based on how well
the averaged statistics of the other objects z’ assigned to a particular cluster ¢ predict the observa-
tions which involve z.

In order to preserve strict optimization principles, the modification of the E-step has to be carried
out slightly more careful than by just eliminating certain observations (cf. Appendix). However, we
have found empirically that the naive corrections discussed above do typically not lead to convergence
or stability problems. We have, therefore, used the simpler equations in our experiments.

3.3 Accelerated EM

EM algorithms have important advantages over gradient-based methods. However, for many prob-
lems the convergence speed of EM restricts its applicability to large data sets. A simple way to
accelerate EM algorithms is by over-relazation in the M-step. This has been discussed in the con-
text of mixture models [PW78] and was recently ‘rediscovered’ under the title of EM () in [BKS97].
We found this method useful in accelerating the fitting procedure for all discussed models. Essen-
tially the estimator for a generic parameter 8 in the M-step is modified by

P = (1= g (48)
—(t+1) . . . . . . .
where 6 is the M-step estimate, 1.e., n = 1 is the usual M-step. Choosing 1 < 1 < 2 still
guarantees convergence, and typically n & 1.8 has been found to be a good choice to speed up
convergence. In case that a positivity or normalization constraint is violated after performing an
over-relaxed M-step, the parameter vector is projected back on the admissible parameter space

(replacing negative probabilities by a small positive constant). For an overview on more elaborated
acceleration methods for EM we refer to [MK97].
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Aspect X-cluster Hierarchical X /Y-cluster
K |1T P yr P yr P 1T P
1 - 685 - - - - - -
16 | 0.85 431 0.07 482 0.14 471 0.60 543
32 1 0.83 386 0.07 452 0.12 438 0.53 506
64 | 0.79 360 0.06 527 0.11 422 0.48 477

128 | 0.78 353 0.04 663 0.10 410 0.45 462

Table 2: Comparative results for context—dependent unigram modelling for all discussed models on
the Cranfield IR test collection (Cranfield, I=1400, J=1664, N=111803). All results are based on

ten—fold cross validation.

3.4 Multiscale EM

Multiscale optimization [HPB94, PB98] is an approach for accelerating clustering algorithms when-
ever a neighborhood structure exists on the object space(s). In image segmentation, for example, it
is a natural assumption that adjacent image sites belong with high probability to the same cluster
or image segment. This fact can be exploited to significantly accelerate the estimation process by
maximizing over a suitable nested sequence of variable subspaces in a coarse—to—fine manner. This
is achieved by temporarily tying adjacent sites in a joint assignment variable. For notational conve-
nience we again restrict the presentation to the one-sided clustering model, while extensions to the
two-sided clustering are straightforward.®

More formally a coarsening hierarchy for X is given by a nested sequence of equivalence relations
MDD over X, where M ¢ MUY and M) = {(z,z) : # € X}. In the context of image
analysis these equivalence relations typically correspond to multi-resolution pixel grids obtained by
subsampling. The log-likelihood is minimized at coarsening level [ by imposing constraints of the
form C(z) = C(z') whenever (z,z') € M. The coarse scale optimization at level [ thus simply
yields a further constrained aspect model. The computational advantage is a reduced number of
posterior computations in the E-step which has only to be performed once for each equivalence class.
After the maximization procedure at a resolution level [ is converged, the optimization proceeds at
the next level I — 1 by prolongating the found solution in M) to the subset defined by MU=1) thus
initializing the optimization at level [ — 1 with the solution at level [.

We like to emphasize that in contrast to most multiresolution optimization schemes, multiscale
optimization has the advantage to maximize the original log-likelihood at all resolution levels. Tt
is only the set of hidden variables which is effectively reduced by imposing the constraints on the
set of hidden variables M), We applied multiscale optimization in all image analysis experiments
resulting in typical accelerations by factors 10-100 compared to single-level optimization.

4 Applications and Experimental Results

This section presents four different application domains and discusses the applicability of statistical
models for dyadic data: (i) information retrieval, (ii) data mining in text databases, (iii) compu-
tational linguistics, and (iv) image segmentation in computer vision. Given the conception of this
paper, namely to present a largely domain-independent theory of unsupervised learning from dyadic
data, we will not attempt to perform a thorough and detailed performance comparison with state
of the art techniques on all of these problems; accompanying and forthcoming publications will deal
with the different applications separately. We will, however, show in sufficient detail, how the differ-
ent models can be applied to realistic problems and report some representative results on real-world

8 Multiscale optimization in its current form is not applicable to the aspect model.
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Figure 5: Annealing experiments on the TDT1 dataset for a model with K = 128 components

at different subsampling factors (from upper left to lower right: 32x,16x,8x,4x,2x,1x). I denotes
the number of documents in the training/held out data set, samll numbers indicate the inverse
temperatur 1/7 utilized for the respective training curves.

data. In addition, the different models are evaluated on data from different domains and the variants
and extensions of EM discussed in Section 3 are systematically compared. Our main goal is thus to
demonstrate the relevance of dyadic data models for many important applications and to investigate
questions of modeling and model fitting across domains.

4.1 Information Retrieval

Intelligent information retrieval in databases is one of the key topics in date mining. The problem
is most severe in cases where the query cannot be formulated precisely, e.g., in natural language
interfaces for document collections and digital libraries or in image and multi-media databases.
Typically, one would like to obtain those entries (documents, images, etc.) from a database which
best match a given query according to some similarity measure. Yet, it is often difficult to reliably
estimate similarities, because the query may not contain enough information, e.g., not all possibly
relevant keywords might occur in a query for documents.

Context—Dependent Unigram Models In a first series of experiments, we have investigated
the general question of how well the different mixture models perform in predicting the occurrences
of words y € Y in the context of a particular document z € X'. The latter can be thought of as a
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Figure 6: Annealing experiments on the TDT1 documents (subsampling 8x) with different number
of components K and for different inverse temperatures 1/7.

context-dependent unigram language model. Following the standard procedure in statistical learning,
the set of all word occurrences has been divided into a training, a validation and a test set. From
a statistical point of view the canonical goodness-of-fit measure is the average log-likelihood on the
test set. In the context of natural language processing it i1s, however, more customary to report the
perplexity P which is related to the average (per pattern) test set log-likelihood [ by P = exp(—1).
The validation set was used to determine the optimal choice of the computational temperature in
the annealed EM algorithm.

We have used a standard IR collection with 1400 documents from mechanical engineering (Cran-
field) to evaluate perplexity results. As a preprocessing step very infrequent and very common words
(stop word list) have been eliminated, moreover the Porter stemmer was used the generate word
stem. The results for different (maximal) number of components K are summarized in Table 1.

The main conclusions are:

e The lowest perplexity — with a perplexity reduction of almost 50% compared to the unigram
model — is obtained with the aspect model. The hierarchical clustering model performs better
than the more constrained flat clustering models. Hence, in terms of perplexity the least
constraints mixture models should be preferred over the clustering models.

e The optimal temperature for the aspect model is consistently above T' = 1 which is the standard
EM algorithm. For the clustering models the optimal generalization performance even requires
a much higher temperature.
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Recall

Method 10% 30% 50% 70% 90%
Medline, 30 queries

TF 72.7 56.7 44.6 32.4 15.3
TFIDF 71.4 64.4 49.7 37.4 17.8
ML (K =32, A =0.5) 76.3 62.0 49.6 37.1 21.1
ML (K =64, A =0.5) 70.6 60.3 48.1 34.9 20.6
AML (K =256, A =0.7) 78.4 69.2 58.4 45.9 32.0
AML (...) + TDIDF 79.3 69.9 63.4 52.2 33.0
abs. impr. vs. baseline +6.6 +13.2 +18.2 +19.8 +17.7
rel. impr. vs. baseline +9.1 4233 +36.1 +4+61.1 +115.7
Cranfield, 225 queries

TF 64.4 394 29.0 13.2 7.7
TFIDF 69.9 48.0 34.9 18.1 9.2
AML (K =256, A = 0.5) 66.0 42.2 35.0 16.1 10.6
AML (...) + TFIDF 70.5 48.8 36.9 22.2 14.1
abs. impr. vs. baseline +9.4 4139 +12.3 +13.0 +9.2
rel. impr. vs. baseline +14.6 +35.3 +424 4985 +119.5

Table 3: Retrieval precision results in percent evaluated on the Medline and Cranfield collection by
macro averaging. TDF and TDIDF denote the different term weighting schemes, ML, and AML refer
to an aspect model trained with EM (maximum likelihood) and annealed EM (annealed maximum

likelihood).

e Temperature-based complexity control clearly does much better than restricting the number
K of components. Even the aspect model with K = 8 components suffers from overfitting, if
trained with non—annealed EM.

To stress the advantages of annealed EM, we have investigated the effect of a temperature-based
regularization in more detail. In order to take the sample set size into account, we have utilized the
Topic Detection and Tracking (TDT1) corpus [LDC97] which consists of approximately 7 million
words in 15863 documents and which is large enough for subsampling experiments. Since we want
to focus on the control of overfitting and not on the problem of local maxima, all models have been
trained at a fixed temperature. Figure 5 shows perplexity curves for different inverse temperatures
1/T as a function of the number of annealed EM iterations. At all temperatures we have performed
early stopping once the perplexity on held-out data increased. For the 32x subsampling experiments
(I = 496 documents), we have repeated runs 5 times in order to evaluate the solution variability
for different (randomized) initial conditions. To further investiagte the effect of the model size, we
have also varied the number of components K at the subsampling level 8x. The resulting curves are
depicted in Figure 6.

The following observations can be made:

e The use of a temperature 7' > 1 yields a significant and consistent improvement for all sample
sizes (cf. Figure 5) and for models with a largely varying number of parameters (cf. 6).

e Although it has to be expected that the benefits of annealing are diminishing for larger data
sets and may even vanish in the infinite data limit, the effect of a T > 1 temperature is
still considerable, even for the full 7 million word TDT1 dataset. Thus overfitting is also an
important problem in large-scale data sets.

e Early stopping is quite successful to prevent overfitting. The experiments indicate that it may
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Figure 7: Model performance K = 256 on the Cranfield collection in terms of perplexity and precision
(absolute gain vs. baseline) at different inverse temperatures 1/7.

in fact take advantage of models with a huge number of parameters. In Figure 6 one observes
that although overfitting gets more and more severe with increasing K (the training curves
get steeper), the perplexity at the respective minima is nevertheless decreasing. However,
compared to an annealed training one needs approximately 4 times more parameters to achieve
the same performance. For example the annealed solution at K = 32/64 is of the same quality
as the one obtained at K = 128/256 with early stopping EM.

e The computational complexity of annealed EM at a fixed K 1is slightly higher compared to
standard EM, typically twice as many iterations are necessary to converge. Yet, in the above
experiments it achieves a prespecified performance with roughly 50% of the computing time
and 25% of the memory requirements of standard EM. This is because an iteration for a model
with 2K components is roughly twice as expensive as an iteration for K components.

Compared to the effect of annealing, the predictive EM variant showed only a slight though
consistent improvement for the aspect model. Given the additional computations necessary to
calculate the corrections, the practical use of predictive EM is somewhat limited for the aspect
model. Yet, predictive EM has shown to have a stronger effect in combination with clustering
models, which has to be expected, since the correction terms are more significant in this case.

The overrelaxed EM variant has also proven to be a valuable tool in our simulations with a typical
acceleration factor of 2 — 3. Overrelaxation helps in particular to accelerate the convergence process
of annealed EM and, of course, less important in combination with early stopped EM training.

Probabilistic Latent Semantic Indexing Beyond controversy, the most popular family of tech-
niques utilized in information retrieval is the so-called Vector Space Model (VSM), introduced by
Salton et al. [SM83, SB91, BAS95] in the SMART system. In the VSM, each document is represented
by a term vector with (transformed) frequency counts for term occurrences as components. The two
most important ingredients of the VSM are: (i) a function to measure similarity between documents,
typically the cosine between the two vector representations, (ii) a term weighting scheme to re-weight
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Figure 8: Upper levels of the CLUSTER hierarchy. Each node is described by the most probable
terms of the conditional probabilities P(y|a).

the influence of different terms. One very successfully applied weighting scheme is the TFIDF (term
frequency inverse document frequency) which transforms counts by n(z,y) = —log(fy) - n(z,y),
where f, denotes the fraction of documents which contain the term y. The similarity between a
document z and a query z’ (or a second document) is then computed by

S(z,2') = 2y 1@ YA Y) . (49)

V(S i) (5, 7607)

Since this angular similarity measure is scale invariant, we may as well replace the counts n(z,y) by
the empirical probabilities P(y|;v) =n(z,y)/n(z).

The key idea in Probabilistic Latent Semantic Indexing (PLSI) is to replace empirical conditionals
by multinomial word distributions derived from the aspect model. Namely, we consider linear
interpolations between the empirical probabilities and the conditional distributions derived from the
model

Pa(yle) = (1= A)P(ylz) + A Y P(yla)P(alz) . (50)

Intuitively this aims at exploiting semantic relations extracted by the aspect model, e.g., about
synonyms and words with similar meanings, to get improved matches. For example, although a
word y in a query may not occur in a document, the (indirect) conditional probability based on the
aspect model can nevertheless be high. This is similar to the dimension-reduction approach pursued
in standard LSI [DTGL90].

We tested the PLSI method on a number of medium-sized standard document test collection with
relevance assessments by computing precision—recall curves. The precision-recall curve reported in
the sequel have been obtained by so—called macro averaging (cf. [VR75, Chapter7]). For each query
q we determine n—best lists from which precision/recall pairs are computed for every n. A single
precision/recall pair is obtained as follows: If R, is the total number of relevant documents for a
given query ¢ and ry(n) is the number of relevant documents in the n—best list, then precision and
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Figure 9: Upper levels of the NEURAL hierarchy. Each node is described by the most probable
terms of the conditional probabilities P(y|a).

recall at n are defined as Precy(n) = rqfln) and Recg(n) = %. In Table 3, we have summarized
the results for the Medline collection (I = 1033) and the Cranfield (I = 1400) collection, with and
without the inverse document frequency term weighting and for models obtained by EM and annealed
EM training. The main conclusions we can draw are: (i) The use of the aspect model to estimate
document—specific word distribution yields substantial improvements in terms of retrieval precision.
In particular, in the regime of high recall, the relative gain is more than 100%, e.g., the average
number of irrelevant documents returned at the Rec = 90% level is more than halved. (ii) In many
experiments, we have observed that improvements in word perplexity and retrieval precision are
strongly correlated. This is stressed in Table 3 by comparing overfitted models trained according
to the likelihood criterion with perplexity optimized models trained on the annealed likelihood.
An exemplary run of annealed EM beyond the optimal stopping temperature which compares the
simultaneous development of word perplexity and precision curves is shown in Figure 7. It can be
seen that it is crucial to control the generalization performance of the model, since the precision is
inversely correlated with the perplexity. In particular, notice that the model obtained by maximum
likelihood estimation (at 7' = 1) actually deteriorates the retrieval performance.

4.2 Data Mining in Text Databases

Structuring and visualizing large databases is one of the key topics in data mining. Applications
range from interactive and coarse-to-fine information access to efficient data management and rep-
resentation. In this paragraph, we will focus on an application of the hierarchical clustering model
for structuring large text repositories. Clustering of documents provides a popular way of pre-
structuring a database that has been applied with mixed success in the context of query-based
retrieval (cf. [Wil88] for an overview), but is of great importance in interactive retrieval. The most
frequently used methods in this context are linkage algorithms (single linkage, complete linkage,
Wards method, cf. [JD88]), or hybrid combinations of agglomerative and centroid—based methods
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Figure 10: Exemplary relative word distributions over nodes for the CLUSTER dataset for the
keywords ’cluster’, ’decision’; 'glass’, 'robust’, ’segment’, and ’channel’.

[CKP92] which have no probabilistic interpretation and have a number of other disadvantages. In
contrast, the hierarchical mixture model provide a sound statistical basis and also has many addi-
tional features which make it a suitable candidate in this context.

We have performed experiments for information retrieval on different collections of abstracts.
To facilitate the assessment of the extracted structure we have investigated a dataset of N = 1584
documents containing abstracts of papers with clustering as a title word (CLUSTER) and a second
dataset of 1278 documents with abstracts from the journals Neural Computation and Neural Net-
works (NEURAL). This data is presumably more amenable to an interpretation by the reader than
are the standard text collections. The top—levels of a cluster hierarchy for CLUSTER and NEURAL
generated by the hierarchical clustering model are visualized in Figure 8 and Figure 9, respectively.

The overall hierarchical organization of the documents is very satisfying, the topological relations
between clusters seems to capture important aspects of the inter-document similarities. In contrast
to most multi-resolution approaches the distributions at inner nodes of the hierarchy are not obtained
by a coarsening procedure which typically performs some sort of averaging over the respective subtree
of the hierarchy. The abstraction mechanism in fact leads to a specialization of the inner nodes. This
specialization effect makes the probabilities P(y|a) suitable for cluster summarization. Notice, how
the low—level nodes capture the specific vocabulary of the documents associated with clusters in the
subtree below. The specific terms become automatically the most probable words in the component
distribution, because higher level nodes account for more general terms.

To further demonstrate the ability of the hierarchical clustering model to identify abstraction
levels in the hierarchy, we have visualized the distribution of the responsibility for observations
involving the same index word y for some particularly interesting examples in Figure 10. The first
tree for the word ‘cluster’ shows that, as expected, the occurrences of ‘cluster’ in documents are
explained to be a common feature of all documents, hence most of the occurrences are assigned to
the root. The word ‘decision’ is found on a level 3 node, indicating that it is a typical word for all
algorithmically oriented documents assigned to nodes in the subtree, but e.g. not for the left branch
of papers from physics and astronomy. The index term ‘robust’ occurs in two different meanings:
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Figure 11: Example run of an interactive retrieval session for documents on ‘texture-based image
segmentation’ with one level look-ahead in the cluster hierarchy.

first, it has a highly specific meaning in the context of stability analysis (an aspect characterized by
the terms ‘plane’, ‘perturb’; ‘eigenvalue’, ‘root’, etc.) and a rather broad meaning in the sense of
robust methods and algorithms. The word ‘segment’ occurs mainly in documents about computer
vision and language processing, but it is used to a significant larger extend in the first field. ‘glass’
is a specific term in solid state physics, 1t thus is found on the lowest level of the hierarchy. ‘channel’
is again ambivalent, it is used in the context of physics as well as in communication theory. The
bimodal distribution clearly captures this fact.

These examples are only spotlights, but they demonstrate that the extracted hierarchical or-
ganization reflects interesting structure inherent in the co-occurrence data. To demonstrate the
usefulness at least for one example, we have depicted a virtual interactive expansion of the CLUS-
TER hierarchy for a retrieval session on ’texture segmentation’ in Figure 11.

4.3 Computational Linguistics

In computational linguistics, the statistical analysis of word co-occurrences in lexical structures like
adjective/noun or verb/direct object has recently received a considerable degree of attention [Hin90,
PTL93, DLP93, DLP97]. Potential applications of these methods are in word—sense disambiguation,
a problem which occurs in different linguistic tasks ranging from parsing and tagging to machine
translation.

The data we have utilized to test the different models consists of adjective—noun pairs extracted
from a tagged version of the Penn Treebank corpus (I = 6931, J = 4995, N = 55214) and the LOB
corpus (I = 5548, J = 6275, N = 36723)°. Perplexity results on the Penn dataset are reported in
Table 4. The results are qualitatively very similar to the ones obtained on the Cranfield document

9Singular and plural forms have been identified.
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Aspect X-cluster Hierarchical X /Y-cluster
K 8 P 8 P I} P 8 P
1 - 685 - - - - - -
16 | 0.72 255 0.07 302 0.10 268 0.51 335
32 | 0.71 205 0.07 254 0.08 226 0.46 286
64 | 0.69 182 0.07 223 0.07 204 0.44 272

128 | 0.68 166 0.06 231 0.06 179 0.40 241

Table 4: Comparative perplexity results for adjective-noun pairs from the Treebank corpus.

collection, although this application is quite different from the one in information retrieval. This
further supports the conclusions drawn above.

A result for a simultaneous hard clustering of the LOB data with the SCM is reported in Figure
12. The visualization of the 7,, matrix reveals that many groups in either space are preferably
combined with mainly one group in the complementary space. For example the adjective group ‘holy’,
‘divine’, ‘human’ has its occurrences almost exclusively with nouns from the cluster ‘life’, ‘nature’,
‘being’. Some groups are very much indifferent with respect to the groups in the corresponding set,
e.g., the adjective group headed by ‘small’; ‘big’, ‘suitable’.

4.4 Unsupervised Texture Segmentation

The unsupervised segmentation of textured images is still one of the most challenging. Numerous
approaches to texture segmentation have been proposed over the past decades, most of which obey
a two—stage scheme. In the modeling stage: characteristic features are extracted from the textured
input image, e.g. spatial frequencies [JF91, HPB98], MRF-models [MJ92]. In the clustering stage fea-
tures are grouped into homogeneous segments, where homogeneity of features is typically formalized
by a clustering optimization criterion. Most widely, features are interpreted as vectors in a Euclidean
space [JF91, MJ92, PH95] and a segmentation is obtained by minimizing the K—means criterion,
which sums over the square distances between feature vectors and their assigned, group-specific
prototype feature vectors. Occasionally, the grouping process has been based on pairwise similarity
measurements between image sites, where similarity is measured by a non—parametric statistical
test applied to the feature distribution of a surrounding neighborhood [GGGD90, HPB98]. Pairwise
similarity clustering thus provides an indirect way to group (discrete) feature distributions without
reducing information in a distribution to their mean. Mixture models for dyadic data, especially the
one-sided clustering model, formalize the grouping of feature distribution in a more direct manner.
In contrast to pairwise similarity clustering, they offer a sound generative model for texture class
description which can be utilized in subsequent processing stages like edge localization [SB95]. Fur-
thermore, there is no need to compute a large matrix of pairwise similarity scores between image
sites, which greatly reduces the overall processing time and memory requirements. Compared to K—
means, these techniques provides significantly more flexibility in distribution modeling. Especially in
the texture segmentation application class features often exhibit a non—Gaussian, e.g., multi-modal
distribution, which is the main reason for the success of pairwise similarity clustering approaches
and the one—sided clustering model compared to standard K—means.

We applied the one-sided clustering model to the unsupervised segmentation of textured images,
where objects z correspond to image locations. Since the number of observed features is identical
for all sites, one can simply set P(2) = 1/N. In the experiments, we have adopted the framework
of [JF91, HPBY8, PBI8] and utilized an image representation based on the modulus of complex
Gabor filters. For each site, the empirical distribution of coefficients in a surrounding (filter-specific)
window is determined. All reported segmentation results are based on a filter bank of twelve Gabor
filters with four orientations and three scales. Each filter output was discretized into 16 equally
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Figure 12: Clustering of LOB using the SCM (K% = KY = 32) with a visualization of the ¢(c, d)
matrix and a characterization of clusters by their most probable words.

sized bins. As a consequence of the conditional independence assumptions, this results in a feature
space Y of size M = 192. For each channel, Gabor coefficients were sampled in a local window of
a size proportional to the scale of the filter. For the finest scale a rectangular 16 x 16 window was
utilized. A simple spatial prior was utilized for the class distribution to suppress small regions. For
such a prior distribution, multiscale EM is essential to compute high quality solutions.

The excellent segmentation quality obtained by the ACM histogram clustering algorithm is il-
lustrated by the results in Fig. 13. The mixture of K = 16 different Brodatz textures has been
partitioned accurately with an error rate of 4.7%. The errors basically correspond to boundary
sites. The result obtained for the mondrian of aerial images is satisfactory but due to missing
ground truth the quality could not be quantified. Disconnected texture regions of the same type
have been identified correctly, while problems again occur at texture boundaries. The segmentation
quality achieved on outdoor images in Fig. 14 are both visually and semantically satisfying. A de-
tailed evaluation of the one-sided clustering model for unsupervised texture segmentation is out of
the scope of this paper and will be published elsewhere [PH98].

5 Conclusion

As the main contribution of this paper a novel class of statistical models for the analysis of co-
occurrence data has been proposed and evaluated. We have introduced and discussed several different
models. These have been distinguished from a systematic point of view, namely by the way that
hidden variables are introduced, which effectively imposes constraints on the component distributions
of the mixture. Several recently proposed statistical models have turned out to be special cases. All
models have a sound statistical foundation in that they define a generative distribution, and all of
them can be fitted by an (at least approximate) EM algorithm.

The proper selection of the method of choice for a given problem crucially depends on the mod-
eling goal. We have argued, that it is often required to detect groups structure or hierarchical
representations. In these situations, one may sacrifice some precision in terms of statistical accu-
racy (i.e., perplexity reduction) in order to extract the structure of interest. Within the proposed
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Figure 13: Left: Mixture image containing K = 16 different textures from the Brodatz album-
Segmentation errors are depicted in black. Right: Mixture images containing 7 textures extracted
from aerial images.

framework, models have been derived to extract group structure on either one or simultaneously
both object spaces and to model hierarchical dependencies of clusters. We strongly believe that the
proposed framework is flexible enough to be adapted to many different tasks. The generality of the
developed methods has been stressed by revealing their benefits in the context of a broad range of
potential applications.

In addition to the modeling problem, we have addressed computational issues, in particular focus-
ing on improved variants of the basic EM algorithm. Most importantly, our experiments underline
the possible advantages of the annealed version of EM, which is a fruitful combination of ideas and
methods from statistics and statistical physics.
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Appendix

EM, Annealed EM and Free Energy Minimization

In [NH98], it has been shown that both, the E-step and M-step of the EM algorithm, are minimizing a
(generalized) free energy criterion. This fact is of importance, in particular for deriving approximate
E-steps. Let Z denote a generic latent variable with realizations z and consider the following family
of objective functions:

Fr(0,0)=>_ P(z|8,0) [log P(8|z,0) + Tlog % : (51)

Here S is a sample set, § a parameter vector, and 7" > 0 corresponds to the computational tem-
perature. Fp is the sum of the expected complete data log-likelihood £ and the entropy of the
posterior distribution. The derivative of £ and F; w.r.t. § is thus identical. By maximizing Fr
w.r.t. the probability distribution P(z|S, ") (treating the latter as variational parameters without
their intended meaning) we get

P(z]...) o< P(S|z,0)Y/T P(z]) . (52)
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Figure 14: Typical segmentation result on a real-world image with K = 3 (left) and K = 2 (right)
segments obtained by ACM.

For T' = 1 this indeed recovers the posterior probabilities. This proves that F; is maximized in
every E-step w.r.t. P(z|...) and in every M-step w.r.t. #; hence the free energy —F; is a Lyapunov
function of the EM algorithm. For arbitrary 7' > 0 (52) motivates annealed EM from an optimization
principle.

Approximate EM and Mean Field Approximation

The above optimization principle offers a systematic approach for deriving approximate E-steps by
restricting the optimization w.r.t. P(z|...) to a particular sub-family @ of distributions Q(z). The
approximating sub-family is chosen according to tractability considerations, i.e., it will typically
have a simplified factorial form. In the general formulation of the approximate E-step thus the
probability distribution Q(z) € Q is chosen which maximizes F;. It can also be shown that this
variational principle is equivalent to minimizing the KL-divergence between the approximation @
and the true posterior distribution P(z|S,#").

In the co-occurrence modeling framework, we have utilized this general principle for the two-sided
clustering model, parameterizing Q by

Qe,d) = lH Q(%C(l’))l- II ew.dw)| . (53)

zeX yeY

with the set of constraints >~ Q(z,¢) =1 and )", Q(y,d) = 1. Inserting into the expression for F;
and making use of factorial form of @) one obtains for the relevant (i.e., @—dependent) part Fy of
F1 (augmented by the Lagrange multiplier term to enforce the normalization)

Fi(0,0) = D n(z,y)Y Qz,c)Qy, d)logs(c,d)

T,y

(o) r(d)
+ X Qo) los g+ 3 Q- dow e (54)

£ |30 30 M) $ 5 Qe Q. d)oe ) - 1

T€X yey ceC deD
Performing the maximization of F w.r.t. one set of variables, e.g., Q(z,c), then yields

Q(z,c) o w(c)exp [Z n(z,y) Z Q(y,d)log é(c, d)] , (55)

y
provided that

N Ezex Zyey Q(Iv C)Q(y: d)n(:ﬂ, y)
[Coex Q. cn(@)] - [T,y Q. d)n(y)]

¢(c,d) = (56)
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Eq. (56) is simply the M-step equation with approximated posterior probabilities (cf. (27)), but one
has to assure that the variables Q(y,d) in (56) and (54) are identical in order to get the simple
expression in (55).

Leave-One-Out E-step

The same optimization framework can be utilized to derive a leave-one-out modified E-step from a
strict optimization principle. We demonstrate the idea for the aspect model and introduce variational
parameters Q(z, a) for (corrected) posterior probabilities. After substituting the (corrected) M-step
equations of all parameters into F one obtains

F@Q = > Qx,a)|log 111 > Q' a)—log Q(w, ) (57)

re€X ac A r'#x

2orga M@, Y)Q(2', a)
2orge M2)Q(2', a)

+ Z n(z,y)log

yey

Now, we can maximize F w.r.t. ). The derivation of stationary conditions is straightforward, but
involves some very technical algebraic manipulation.
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