INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. ® Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

A survey of fuzzy clustering
algorithms for pattern recognition

A. Baraldi*, P. Blonda'
TR-98-038

October 1998

Abstract

Clustering algorithms aim at modelling fuzzy (i.e., ambiguous) unlabeled patterns
efficiently. Our goal is to propose a theoretical framework where clustering systems
can be compared on the basis of their learning strategies. In the first part of this
work, the following issues are reviewed: relative (probabilistic) and absolute (possi-
bilistic) fuzzy membership functions and their relationships to the Bayes rule, batch
and on-line learning, growing and pruning networks, modular network architectures,
topologically perfect mapping, ecological nets and neuro-fuzziness. From this dis-
cussion an equivalence between the concepts of fuzzy clustering and soft competitive
learning in clustering algorithms is proposed as a unifying framework in the compar-
ison of clustering systems. Moreover, a set of functional attributes is selected for use
as dictionary entries in our comparison. In the second part of this paper, five clus-
tering algorithms taken from the literature are reviewed and compared on the basis
of the selected properties of interest. These networks clustering models are: i) Self-
Organizing Map (SOM); ii) Fuzzy Learning Vector Quantization (FLVQ); iii) Fuzzy
Adaptive Resonance Theory (Fuzzy ART); iv) Growing Neural Gas (GNG); and v)
Fully self-Organizing Simplified Adaptive Resonance Theory (FOSART). Although
our theoretical comparison is fairly simple, it yields observations that may appear

*International Computer Science Institute, 1947 Center Street, Suite 600, Berkeley, CA 94704-1198, Ph.:
+145104643-9153, Fx.: +14-5104-643-7684, baraldiQicsi.berkeley.edu

'IESI-CNR, Via Amendola 166/5, Bari 70126, Italy, Ph.: +39-+80+5481612, Fx: +39-+80+5484311,
blonda@iesi.ba.cnr.it



parodoxical. Firstly, only FLVQ, Fuzzy ART and FOSART exploit concepts derived
from fuzzy set theory (e.g., relative and/or absolute fuzzy membership functions).
Secondly, only SOM, FLVQ, GNG and FOSART employ soft competitive learning
mechanisms, which are affected by asymptotic misbehaviors in the case of FLVQ), i.e.,
only SOM, GNG and FOSART are considered effective fuzzy clustering algorithms.

Key words: Probalistic and possibilistic fuzzy membership, on-line and batch learn-

ing, modular architectures, topologically correct mapping, ecological nets, fuzzy clus-
tering.

ii



1 Introduction

In recent years the synthesis between clustering algorithms and fuzzy set theory has led
to the development of several so-called fuzzy clustering algorithms whose aim is to model
fuzzy (i.e., ambiguous) unsupervised (unlabeled) patterns efficiently. The goal of this paper
is to review and compare self-organization strategies of clustering algorithms that have been
called fuzzy, or can be considered fuzzy, according to some definitions found in the existing
literature. The best of our knowledge, few such comparative studies have been attempted
(e.g., [1]). This may be due to the objective difficulty of comparing the great variety of
clustering approaches based on a meaningful set of common functional features. To select a
set of interesting functional features, in the first part of this paper the concepts of relative
and absolute fuzzy membership functions, batch and on-line learning, growing and pruning
networks, modular network architectures, topologically correct mapping, ecological net and
neuro-fuzziness are reviewed. Selected functional attributes are employed as dictionary
entries in the comparison of clustering algorithms. We derive our own interpretation of
fuzzy clustering inductive learning, intended as a synonym of soft competitive parameter
adaptation in clustering systems, from the existing literature. This conceptual equivalence
is employed as a unifying framework in the comparison of clustering algorithms.

This approach has been considered ”interesting” and ”quite reasonable” by some re-
searchers [2]. However, other authors believe that since ”fuzziness can be incorporated at
various levels to generate a fuzzy neural network, i.e., it can be at the input, output, learning
or neural levels” (see [3], where each input feature is expressed in terms of fuzzy membership
values indicating a degree of belonging to each of the linguistic properties low, medium and
high), our “claim of calling certain networks to be fuzzy /nonfuzzy seems improper and not
acceptable” [2]. In both cases, comments pertaining to the proposed terminology “fuzzy
clustering algorithm” do not affect the core of this work, which is centered on the com-
parison of learning mechanisms adopted by several clustering algorithms to model fuzzy
(ambiguous) patterns.

In the second part of this paper, the basic functional features of five clustering algorithms
are investigated to to see if these algorithms: a) employ, to any degree, fuzzy set-theoretic
concepts, such as absolute and relative membership functions, fuzzy set operations, granu-
larization, etc.; and/or b) belong to our conceptual framework of fuzzy clustering systems.
The clustering models investigated are:

i) on-line learning, static-sizing, static-linking Self-Organizing Map (SOM) [4], [5];

ii) off-line learning, static-sizing, no-linking Fuzzy Learning Vector Quantization, FLVQ [6]
(which was first called Fuzzy Kohonen Clustering Network, FKCN [7]);

iii) on-line learning, dynamic-sizing, no-linking Fuzzy Adaptive Resonance Theory (Fuzzy
ART) [19], [20];

iv) on-line learning, dynamic-sizing, dynamic-linking Growing Neural Gas (GNG) [26], [27];
and v) on-line learning, dynamic-sizing, dynamic-linking Fully self-Organizing Simplified
Adaptive Resonance Theory (FOSART) [28], [29], based on the Fuzzy Simplified Adaptive
Resonance Theory (Fuzzy SART) model [24], [25].



2 Fuzzy membership and probability density functions

This section proposes a brief review of probabilistic and possibilistic fuzzy membership
concepts, to be compared with Bayes’ view of posterior probability and likelihood.

2.1 Absolute and relative fuzzy memberships

Let X be instance k of the input manifold X, where £k = 1,...,n, such that n is the
total number of input instances. Let us assume that X} may belong to a generic state (also
termed category or component) C;, i = 1, ..., ¢, where c is the total number of possible states.
The extent to which X, is compatible with a vague (fuzzy) concept associated with generic
state C; can be interpreted “more in terms of a possibility (compatibility) distribution rather
than in terms of a probability distribution” [30], p. 58. This legitimizes some possibility
distributions, called fuzzy membership functions, that “we believe are useful, but might
find difficult to justify on the basis of objective probabilities” [30], p. 57. Depending on the
conditions required to state that ¢ fuzzy states C;, i = 1, ..., ¢, are a fuzzy c-partition of the
input data set, membership functions can be divided into two categories [61], [62]:

1. relative or probabilistic or constrained fuzzy membership values R; r; and
2. absolute or possibilistic fuzzy membership (typicality) values A; i,

where index k ranges over patterns and index i over concepts. Absolute and relative mem-
bership types are related by the following equation:

A
Rip= =" 1
>oh=1Ank

Relative typicality values, R; i, must satisfy the following three conditions [7], [30]:

i=1,..,¢, k=1,...,n. (1)

(i) Rir €[01],i=1,...,c, k=1,...,n;
(i) i1 Rix =1,k=1,..,n; and
(i) 0 < X0 Rip <myi=1,..c.

Constraint (ii) is an inherently probabilistic constraint [61], relating R; j, values to posterior
probability estimates in a Bayesian framework. Because of condition (ii), R; ) values are
relative numbers dependent on the absolute membership of the pattern in all other classes,
thus indirectly on the total number of classes. This also means that Processing Elements
(PEs) exploiting a relative membership function as their activation function are context-
sensitive, i.e., R;} provides a tool for modeling network-wide internode communication by
assuming that PEs are coupled through feed-sideways (lateral) connections [64].

Although possibilistic membership functions, 4;%, ¢ = 1,...,c, k = 1,...,n, may satisfy
conditions (i) and (iii) listed above (in this case, the upper bound of the membership
function is one and the fuzzy set is termed normal [30]), they always differ from probabilistic
memberships in condition (ii), which is relaxed as follows [61]

(iv) max; {4;x} >0, k=1,...,n.



Owing to condition (iv), the sum of absolute memberships of a noise point in all the “good”
categories need not be equal to one. Term A, j, is an absolute similarity value depending on
fuzzy state C; exclusively, given input pattern Xj. In other words, A; ;, is context-insensitive,
since it is not affected by any other state. Thus, PEs exploiting an absolute membership as
their activation function are independent, i.e., they feature no lateral connection.

Both probabilistic and possibilistic fuzzy clustering are affected by some well-known
drawbacks. On one hand in probabilistic fuzzy clustering, owing to condition (ii), noise
points and outliers, featuring low possibilistic typicalities with respect to all templates
(codebooks), may have significantly high probabilistic membership values and may severely
affect the prototype parameter estimate (e.g., refer to [62]). On the other hand, in possi-
bilistic fuzzy clustering, learning rates computed from absolute typicalities tend to produce
coincident clusters [62], [63]. This poor behavior can be explained by the fact that cluster
prototypes are uncoupled in possibilistic clustering, i.e., possibilistic clustering algorithms
try to minimize an objective function by operating on each cluster independently. This
leads to an increase in the number of local minima.

Different A;;, expressions in the existing literature and consistent with the definition
provided above were found to be useful. These include the following:

(v € (0,1] [61], @)
' a3
Aip = Gaussian;, =e 2] ¢ (0,1] (Gaussian mixtures; [66], [67]), (3)
e € (0,00) [58], (4)
(di,k) 4 )
| T=Gaussianizy € (1;00) [25], (5)

where d;;, = d(Xj,T;) is assumed to be the Euclidean distance between input pattern
X, and prototype (receptive field center) T; of the i-th category. Variables o;, ; and p; are
all resolution parameters belonging to range (0, 00) (see [62]).

2.2 Fuzzy memberships and mixture probabilities

To investigate the relationship between (objective) probability density functions and (use-
ful) fuzzy membership functions, note that absolute membership function (3) relates prob-
abilistic membership (1) to Gaussian mixture models, which are widely employed in the
framework of optimization problems featuring a firm statistical foundation [9], [31], [32],
[43]. In a mixture probability model consisting of ¢ mixture components C;, i = 1,...,¢,
let p(C;) be the a priori probability that a pattern belongs to mixture component C;, and
p(X|C;) the conditional likelihood that the pattern is X, given that the pattern’s state
is C;. If these statistics are known, a posteriori conditional probability p(C;|X) can be
estimated using Bayes’ rule as
p(Xi|C;) - p(Cy) ,

p(Ci| X) = ST o(X|Ch) - p(Ch)’ k=1,..n, i=1,...c (6)
If p(Ch) = 1/¢,Vh € {1,c¢}, i.e., all states are assumed to be equally likely, then Equation
(6) becomes

p(X¢|Ci) .
X)) = . k=1,n, i=1,...c
p(Ci| Xy) S (X0 k n, i c (7)




The following relationships hold true:
(1) p(Ci| Xk), p(Xk|C:) and p(C;) belong to range [0, 1];

(ii) Y51 p(Ch|Xk) = 1, k = 1,...,n, ie., mixture components C;, i = 1,...,¢, provide a
complete partition of the input space; and

(iii) 3°5=1p(Ch) = L.

From the comparison of Equation (1) with Equation (7), and of properties (i)-(iv) in Section
2.1 with properties (i)-(iii) above, we can write that,

when priors are considered the same (i.e., they are ignored), since {p(Xy|C;)} C {Air},
thus, {p(C;|Xk)} C {R;x}; in other words, when priors are ignored, (objective) like-
lihood and posterior probabilities are a subset of (useful) absolute and relative fuzzy
membership functions respectively.

To summarize, the combination of Equation (1) with constraints (i)-(iv) in Section 2.1
allows the human designer to choose any absolute membership function that, in addition to
satisfying the mild condition (iv) of Section 2.1, is considered useful for the application at
hand, although this choice may be difficult to justify on the basis of objective probabilities
(see Section 2.1). If the chosen absolute membership function satisfies, not only condition
(iv) of Section 2.1, but the more severe constraint (i) above, then absolute membership
values are equivalent to likelihood values; as a consequence, relative membership values
computed with Equation (1) can be considered posterior probability estimates in the case
in which priors are ignored.

3 On-line versus off-line model adaptation

All inductive learning systems, i.e., learning systems progressing from special cases (e.g.,
training data) to general models, are based on the following concepts: i) information ex-
tracted from a finite set of observed examples, termed training data set, can be used to
answer questions either about unobserved samples belonging to a so-called test set, or about
unknown properties hidden in the training data; and ii) the goal of the learning process is
to minimize a risk functional (theoretically computed over an infinite data set) by adapting
system parameters on the basis of the finite training set [35], i.e., the learning problem is
turned into an optimization problem [39].

When system parameters are learned from training data, there are two classes of learning
situations, depending on how data are presented to the learner: the “batch” setting in which
data are available as a block, and the “on-line” setting in which data arrive sequentially
[39]. In many practical problems, when a sequential data stream can be stored for analysis
as a block, or a block of data can be analyzed sequentially, the user is free to take either
the batch or the on-line point of view [39].

The goal of on-line learning methods is to avoid storage of a complete data set by
discarding each data point once it has been used [33]. On-line learning methods are required
when: a) it is necessary to respond in real time; b) the input data set may be so huge that
batch methods become impractical, because of their numerical properties (see below), or

4



computation time, or memory requirement; and c) the input data comes as a continuous
stream of unlimited length which makes it totally impossible to apply batch methods [33],
[39], [43]. On-line learning typically results in systems that become order-dependent during
training (in line with biological complex systems [44]). Moreover, on-line systems, where
parameter adaptation is example-driven [42], are more sensitive to the presence of noise as
they do not average over the noise on the data, i.e., they tend to provide highly oscillatory
(non-smooth) output functions that perform poorly in terms of generalization ability. For
example, clustering systems like Fuzzy ART, where a single poorly mapped pattern suffices
to initiate the creation of a new unit, may be affected by overfitting, i.e., the system may
fit the noise and not just the data.

Batch methods are preferred when our only interest is in a final answer, i.e., the best
answer that we can obtain from a finite training data set as the exact closed form solu-
tion to a minimization problem [39]. In batch learning problems (e.g., the simple case of
linear model regression, see [33], p. 92, and [39]), exact closed form solutions can lead to
numerical difficulties for very large data sets. In these cases the only computationally fea-
sible alternative is provided by iterative batch methods, such as the gradient descent of the
cost function [33], [42], that sweep repeatedly through the data set. To summarize, batch
learning methods are subdivided into: i) exact closed form solutions to the cost function
minimization problem; these solutions are numerically and/or computationally inapplicable
for very large data sets; and ii) iterative batch learning algorithms, such as the gradient
descent of the cost function.

In iterative batch learning algorithms, the learning rate parameter must be small and
its choice is fairly critical: if the learning rate is too small the reduction in error will be very
small; if it is too large instabilities (divergent oscillations) may result [33]. Analytically,
when convergence of iterative batch algorithms to exact closed form solutions is analyzed,
then useful hints on constraint of the learning rate value are gathered [39].

Although iterative batch learning algorithms are developed to process very large data
sets, they can spend an enormous amount of computation time in processing the entire
training set (e.g., in order to compute the gradient), but they may end up by taking a small
learning step in the parameter space after each processing epoch. If this is the case (e.g.,
for gradient descent algorithms), this functional feature is clearly incompatible with the
original motivation that justifies the study of such iterative batch learning schemes. In such
situations, an alternative solution, called “mini-batch” [39], is to average parameter update
values over subsets of the entire training data set. By taking intermediate steps in the
parameter space, iterative mini-batch algorithms may converge faster than their iterative
full batch counterparts. By stretching the same idea further, another alternative solution to
iterative full batch algorithms is to develop their on-line (stochastic)! approximations [33].

On-line learning algorithms are simple and intuitive because they are based on the fol-
lowing heuristic ([33], p. 46; [40]): the sum over the training samples, which is found in
the iterative and batch solution of the cost function minimization task, is dropped by sep-
arating the contribution from the last data point to provide a sequential update formula,
i.e., to allow one parameter update for every new data point presentation. Although this
heuristic seems reasonable, there should be some analytical proof that the on-line proce-

L «Stochastic” refers to the assumption that the single data point being presented to the learning system
is chosen on the basis of a stochastic process [39].



dure converges to a solution. It is known that the difference between exact batch-mode and
heuristic on-line updating is arbitrarily reduced by the adoption of “small” learning rates
[42], [48]. According to the view that on-line procedures are approximations of iterative
batch algorithms, learning rate constraints capable of guaranteeing convergence of the iter-
ative batch mode may be applied to the on-line problem under an appropriate definition of
convergence (for the linear regression case, see [39]). If these conditions hold, it has been
observed that on-line learning systems, by requiring significantly less computation time per
parameter update, can be significantly faster in converging than iterative batch algorithms
[39].

In general, the learning rate a(t) of the on-line update rule must satisfy the three
conditions applied to the coefficients of the Robbins-Monro algorithm for finding the roots
of a function iteratively, which are (see [33], pp. 47, 96):

i) limyy o0 a(t) = 0;

ii) 2282 et) = oo

and iii) 32%°, a?(t) < .

For example, in an on-line update procedure, if the learning rate remains fixed, then the
algorithm converges only in a stochastic sense [39], i.e., model parameters drift from their
initial positions to quasi-stationary positions where they start to wander around in dynamic
equilibrium [27]. When the learning rate decreases monotonically under Robbins-Monro
conditions (e.g., a(t) = 1/t, see [33], p. 96, and [27]), on-line learning algorithms can be
shown to converge to a point in the parameter space [39]. As a brief review of batch update
and on-line update techniques, refer to [27].

4 Beyond error gradient descent: advanced techniques for
learning from data

In recent years the neural network community has made a considerable effort in the search
for learning techniques that are more effective in dealing with local minima and general-
ization to new examples than the traditional approaches based on simple gradient descent.
These alternative approaches have to deal effectively with the curse of dimensionality and
with the qualitative principle known as Occam’s razor. As an example of the curse of
dimensionality, consider that any function estimator increases its number of adjustable pa-
rameters with the dimensionality of input space. As a consequence, the size of training
data required to compute a reliable estimate of adaptive parameters may become huge in
practical problems [33], [35].

The complexity of a learning system increases with the number of independent and
adjustable parameters, also termed degrees of freedom, to be adapted during the learning
process. According to the qualitative principle of Occam’s razor, a sound basis for general-
izing beyond a given set of examples is to prefer the simplest hypothesis that fits observed
data [33], [42]. This principle states that to be effective, the cost function minimized by
an inductive learning system should provide a trade-off between how well the model fits
the training data and model complezity. This also means that model complexity must be
controlled by a priori (background) knowledge, i.e., subjective knowledge available before
any evidence (e.g., empirical risk) provided by the training data is observed. Different in-



ductive principles provide cost functions considered as different quantitative formulations
of Occam’s qualitative principle [35].

A rough taxonomy of advanced techniques for optimal learning, originally proposed in
[40], is presented hereafter.

4.1 Global optimization

Instead of local algorithms like gradient descent, one may explore techniques that guar-
antee global optimization while effectively facing the curse of dimensionality. Among the
most significant developments in this area, Support Vector Machines (SVMs), based on the
Vapnik-Chervonenkis (VC) statistical learning theory and capable of detecting the global
minimum of a cost function for classification problems, are becoming increasingly popular
in finding solutions to both classification and function regression tasks [35], [36], [37].

4.2 Growing networks and pruning

Human designers typically have the opportunity to embed task-specific prior knowledge in
an inductive learning algorithm, e.g., by setting the topology and the complexity of a multi-
layer perceptron when backpropagation weight adaptation is applied. Pruning algorithms
begin training a network expected to be large with respect to the problem at hand, and
then continue by pruning nodes that do not affect the learning process significantly [40],
[42]. Vice versa, growing networks start from small networks that grow gradually until
convergence is reached [27], [40]. As a result, the complexity of the network is expected to
be tuned to the problem at hand, i.e., generalization capability is expected to increase.

4.3 Modular architectures: prior structures and experience-based fine-
tuning

Self-organizing neurological systems consist of highly structured, hierarchical architectures
provided with feed-back mechanisms [45]. In these systems, the combination of an initial
architecture produced by evolution and experience-based additional fine-tuning prepares
the whole system to function in an entire domain by generalizing its learned behaviour to
instances not previously encountered [46].

In line with biological learning systems, a classical engineering paradigm consists of
partitioning the solution to a problem between several modules specialized in learning a
single task, i.e., modular architectures are the natural solution to most significant practical
problems [40], [44]. In applied mathematics, the principle of tackling a problem by dividing
it into simpler subproblems whose solutions can be combined to yield a solution to the
complex problem is termed divide and conquer [38].

In supervised learning, an interesting modular proposal that addresses the major prob-
lem of providing effective integration of the system modules is presented in [38].

Analytically, the importance of developing modular architectures has been stressed in
[40], [41], where sufficient (but not necessary) conditions capable of guaranteeing local
minima free cost functions are detected, such that a simple gradient descent algorithm can
always reach the absolute minimum of the error surface.



Contiguous to the problem of fine-tuning modular learning systems on the basis of
training experiences is the problem of prior structures, i.e., the problem of learning from
tabula rasa [40]. Minsky claims that a“significant learning at significant rate presupposes
some significant prior structure” [47]. In other words, important properties of the model
must be “hard-wired or built-in, perhaps to be tuned later by experience, but not learned
in any statistical meaningful way” [71].

Intuitively, starting from some prior learning structure, experience-based (inductive)
fine-tuning of network parameters should allow a structured organization of a distributed
system to emerge naturally from elementary interactions of PEs. This is tantamount to
saying that competitive adaptation of distributed (localized: neuron-based, synapse-based)
parameters is expected to enhance the development of structured nets consisting of special-
ized subsystems (modules), in line with biological neural systems.

With regard to the exploitation of distributed parameters, it can be observed that, on
the one hand, most of the on-line clustering algorithms presented in the existing literature,
e.g., SOM [4], exploit a global (network-based) time counter, i.e., a time variable that is not
specialized on a localized basis, rather than distributed (localized: neuron-based, synapse-
based) time variables. As a consequence, at a given processing time, plasticity (i.e., the
potential ability of moving a template vector toward an input pattern) is the same for every
PE, in these networks. On the other hand, in recent years, several on-line Kohonen-based
network models exploiting distributed time variables have been presented [24], [26], [27],
[28]. For example, in GNG and FOSART a connection-based time variable is equal to the
number of times one synapse is selected at adaptation steps. In Fuzzy SART and FOSART
a neuron-based time variable is equal to the number of epochs that PE has survived. To
summarize, on-line clustering algorithms found in the literature depend to different degrees
on distributed parameters whose competitive adaptation is consistent with the development
of structured systems (i.e., specialized subsystems).

With regard to batch and iterative algorithms, such as Fuzzy c—means (FCM) and
FLVQ [6], [7], global time rather than distributed time variables are employed, i.e., at a
given processing time, plasticity is the same for every PE in the net. This is justified by
considering that when fuzzy clustering mechanisms are employed, all PEs acquire the same
input pattern simultaneously. However, one may consider that fuzzy membership functions
allow a pattern to belong to multiple categories to different degrees. In other words, in batch
algorithms the plasticity of every PE is considered as being the same, even though learning
“histories” of PEs may differ significantly. This becomes obvious if, for example, for every
PE we define a distributed (neuron-based) time counter (equivalent to an inverse plasticity
or stability variable) as the sum of the neuron learning rates at adaptation steps, such that
the learning rate of each PE decreases monotonically with its local time. To summarize,
in batch clustering algorithms found in the literature, exploitation of distributed rather
than global parameters may deserve further investigation in the framework of developing
self-organizing networks consisting of specialized subsystems.

5 Topologically correct mapping

The presentation of the Competitive Hebbian Rule (CHR) [49], introducing competition
among synaptic links, represented a fundamental breakthrough in the evolution of Fully



Self-Organizing artificial Neural Network models (FSONN). In this paper, a synaptic link
is defined as a lateral connection between two PEs belonging to the same neural layer,
and FSONN models are defined as those distributed systems capable of: i) dynamically
generating and removing PEs; and ii) dynamically generating and removing synaptic links.

CHR generates synaptic links as follows. For a given pattern X, k& € {1,n}, where
n is the total number of input patterns, let us consider: a) winner unit PE,; as the one
featuring the shortest inter-pattern distance d(Xy,Ty1) < d(Xy,T;), @ = 1,...,¢, where ¢
is the total number of PEs, T, is the template pattern of PE,;, and d(X,T;) is the
Euclidean inter-pattern distance between X} and T;; and b) the second best unit, PE,;,
as the one featuring activation value d(Xy,Ty2) < d(Xy,T;), 1 = 1,...,¢, © # wl. The
exploitation of the Euclidean inter-pattern distance in competitive learning shapes neuron
receptive fields as Voronoi polyhedra [49]. According to CHR, if connection between PE,,
and PE,> does not exist, it is generated.

It has been proved that CHR forms Topology Preserving Maps (TPMs) [49]. To define
a TPM, let us consider an input manifold X C RP, where D is the dimensionality of
input space, and a graph (network) G, consisting of vertices (neural units) PE;, i =1, ..., c,
such that a pointer T; € X (also termed category template or prototype), belonging to the
pointer set {S} = {T1,...,T.}, is related ("attached”) to vertex PE;. Given S, mapping ¢g
from input space X onto the vertices of G is defined as

¢s: X -G, X GX—>w1(Xk) € G, (8)

where X is a feature vector (input pattern), k € {1,n}, and the vertex PE,(x,), also
termed winner unit, is determined by

d(Xk,Twl(Xk)) < d(Xk,T'z(Xk))a Vie G, (9)

where d(-) is the Euclidean inter-vector distance. According to Equations (8) and (9),
a feature vector Xy is mapped to vertex PE,(x,), the pointer T,(x,) of which is closest
to X. This is equivalent to stating that X} is mapped to vertex PE,(x,) whose Voronoi
polyhedron V,;(x,) encloses Xj. The Voronoi polyhedron of a neuron PE; is the receptive
field of the PE centered on T;, and it is identified as V; C RP. The masked Voronoi
polyhedron of neuron i is defined as Vi(X) =V,NnX C X [49].

Inverse mapping ¢§1 from G onto X is defined as

¢5':G— X, i€G—T €X. (10)

Two pointers T;, T; are termed adjacent on the feature manifold X if their masked
Voronoi polyhedra are adjacent, i.e., if VZ-(X) N Vj(X) # 0. Two vertices PE;, PE; in G
are termed adjacent if they are connected by a synaptic link. Mapping ¢g from X to G is
defined as neighborhood (adjacency) preserving if any pair of adjacent pointers T;, T; on
X are assigned to vertices PE;, PE; that are adjacent on G. Mapping qﬁgl from G to X
is defined as neighborhood preserving if any pair of vertices PE;, PE; that are adjacent on
G are assigned to adjacent locations T3, T; that on X.

Thus, a TPM is defined as a mapping ¢s from X to G such that ¢g, together with
inverse mapping </>§1 from G to X, are neighborhood (adjacency) preserving [49].



Note that exploitation of CHR in FSONNs allows generation of networks consisting
of mutually disjointed (specialized and independent) maps [27], [49]. This modular or-
ganization enables the learning system to perform, both cooperative learning by adapting
concertedly those processing units that are connected within graph G (i.e., those units that
belong to the same map in the graph), and competitive learning among disjointed maps to
enhance specialization of the system’s modules.

6 Artificial cognitive systems and ecological nets

To perform cognitive tasks, biological neural systems exploit: i) dishomogeneous nets, where
several types of PEs are combined; ii) structured architectures, consisting of hierarchies of
subnets; and iii) feed-back mechanisms, where feed-back information is provided by the
external environment to the natural system in response to the system’s actions [50]. It is
the presence of this feed-back interaction with the environment that characterizes all natural
systems featuring cognitive capabilities [44]. Some artificial neural systems feature none of
the biological properties listed above. For example, SOM [4] and the Hopfield network [52]
are homogeneous systems; they feature no structured architecture and no supervision or
reinforcement by, or feedback from, an external environment (also termed supervisor). In
reinforcement learning, the neural system is allowed to react to each training case. It is then
told whether its reaction was effective or not [53]. To increase their biological plausibility,
artificial neural models should employ differentiated structures provided with dishomoge-
neous layers, specialized subnets, hierarchies of maps, etc. In parallel, the study of artificial
neural nets as stand-alone systems should evolve to become the science of ecological nets
(econets), where neural systems as well as their external environments are modeled [50].
For example, unlike Kohonen’s networks [5], an ART system employs a structured architec-
ture to self-adjust the network dimension to problem-specific conditions. In particular, the
ART orienting subsystem models the responses of the external environment to the learning
activities of the attentional subsystem [19], [20], [21], [22]. Thus, an ART system belongs to
the class of ecological nets.

7 On fuzzy clustering algorithms

A clustering algorithm performs unsupervised detection of statistical regularities in a ran-
dom sequence of input patterns.

Our attention is focused on fuzzification of clustering learning schemes. In the definition
presented in [8], it is stated that an artificial Neural Network (NN) model performs fuzzy
clustering when it allows a pattern to belong to multiple categories to different degrees de-
pending on the neurons’ ability to recognize the input pattern. This approach is well known
in the traditional field of coding techniques for data compression. Since the traditional k-
means clustering algorithms feature a cost function (discretization error) characterized by
many local minima, data compression techniques modify c-means algorithms by replacing
their Winner-Takes-All strategy (WTA), also termed crisp or hard competitive, with a
“soft-max” adaptation rule [9], hereafter referred to as soft competitive learning.?

2Note that terms soft-max and soft competitive learning rule adopted in this paper are not to be confused

10



A WTA parameter adaptation strategy is purely competitive and allows no cooperative
(soft competitive) learning. It is sensitive to initialization of templates, i.e., different ini-
tializations may lead to very different minimization results. In fact, WTA adaptations may
not be able to get the system out of a poor local minimum when this lies in the proximity
of the status where the system was started [27]. Unlike WTA learning, a soft competitive
learning scheme is defined as a learning strategy that not only adjusts the winning cluster
but also affects all cluster centers depending on their proximity to the input pattern [9]. In
general, soft competitive learning decreases dependency on initialization and reduces the
presence of dead units [27]. We observe that:

1. The fuzzy clustering definition provided in [8] is equivalent to the definition of the
soft competitive adaptation rule traditionally employed in the field of data compression [9],
i.e., a clustering algorithm is termed fuzzy clustering algorithm iff it employs a soft compet-
itive (non-crisp) parameter adaptation strategy.

2. As a corollary of point 1. above, a fuzzy clustering algorithm does not necessarily exploit
concepts derived from fuzzy set theory such as fuzzy set membership functions and fuzzy
set operations. For example, SOM pursues soft competitive learning by means of biologi-
cally plausible update rules that employ no fuzzy set-theoretic concept. Another interesting
example is the one provided by the Expectation-Maximization (EM) algorithm applied to
optimize parameters of a Gaussian mixture [31], [33]. Although it features a firm statistic
foundation and employs no fuzzy set-theoretic concept, EM applied to Gaussian mixtures
can be termed fuzzy according to definition 1. presented above.

It is to be noted that relative or probabilistic fuzzy membership functions are tradition-
ally applied to clustering algorithms in the intuitive belief that “vector quantizers based
on both winner and non-winner information about the relationship of an input pattern to
the prototypes will be better representatives of the overall structure of the input data than
those based on local information alone” [6]. Thus, several clustering algorithms, such as the
Fuzzy c—means (FCM) and the Fuzzy Learning Vector Quantization (FLVQ) algorithms,
combine local and global information in the computation of a relative fuzzy membership
function [6], [7]. From a functional standpoint, connectionist models where a “useful”
relative fuzzy membership function or an objective posterior probability estimate is com-
puted (e.g., FLVQ and EM applied to Gaussian mixtures, respectively), are equivalent to
distributed systems where a contextual (competitive and cooperative) effect mechanism em-
ploying feed-sideways (intra-layer) connections is employed (see Section 2). Note that only
few clustering networks employ intra-layer connections explicitly, i.e., by means of specific
data structures and parameter adaptation strategies [26], [27], [28], [29].

with the so-called soft-max function or normalized exponential employed in mixture models [33], and mixture-
of-experts [38].

11



8 Dictionary entries in the comparison of clustering algo-
rithms

From the general discussion developed in Sections 2 to 7 we derive the following set of
basis features for use as dictionary entries in a theoretical comparison of data clustering
algorithms:

o fuzzy set-theoretical concepts, such as absolute and relative membership functions
(see Section 2).

e On-line, batch and mini-batch learning modes, which apply to global (network-based)
as well as local (neuron- and connection-based) parameters in distributed learning
systems (see Section 3).

e Prior structure, modular architectures, growing and pruning distributed systems (see
Section 4).

e Topologically correct mapping, this concept being related to that of modular archi-
tectures consisting of specialized and disjointed (mutually independent) maps, which
belong to an output lattice of processing units (see Section 5).

e Ecological nets (see Section 6).

e Our own interpretation of a fuzzy clustering algorithm, intended as a clustering sys-
tem exploiting soft competitive (i.e., cooperative and competitive) versus hard (crisp,
purely) competitive adaptation of system parameters (see Section 7).

9 SOM

Starting from Kohonen’s on-line Vector Quantization model (VQ, an acronym used herein
in line with [4]), which employs a WTA learning strategy, on-line SOM develops a soft
competitive learning technique based on two constraints, derived from neurophysiological
studies and providing an annealing schedule [9], [64], [65]. They consist of two empirical
functions of time, which are user-defined and which obey two heuristic rules [4], [5], the
first of which requires learning rates to decrease monotonically with time according to a
cooling scheme, i.e., as the number of input pattern presentations increases, all learning
rates (winner as well as non-winner) must decrease towards zero (in line with the Robbins-
Monro theorem, see Section 3). Important properties of this cooling schedule have been
analyzed in [10], [27], [33], [35], [58], [59]-

The second heuristic rule applies to the output lattice of processing units and requires the
size of the update (resonance) neighborhood centered on the winner node to decrease mono-
tonically with time, such that a soft competitive learning strategy changes into a hard com-
petitive (WTA) one. This model transition is equivalent to stating that the initial overlap
(oversampling [11]) between nodes’ receptive fields must decrease monotonically with time
until it is reduced to zero, as hard competitive learning renders receptive fields equivalent
to Voronoi polyhedra [27]. Interpretations of this second heuristic rule, and relationships
between SOM and other optimization techniques such as “maximum-entropy” clustering

12



[12], deterministic annealing [13], and the Expectation-Maximization (EM) optimization
algorithm [31], are discussed in [9], [14], [15], [32], [35], [43]. From a general perspective, it
is to be remembered that compared to hard competitive learning soft competitive learning
not only decreases dependency on initialization, but also reduces the presence of dead units
(see Section 7).

Finally, it is important to point out that a batch and iterative SOM version has also
been presented [5], [34].

9.1 Input parameters

To simplify the discussion, our approach is to deal with a finite training data set {X},
consisting of n input patterns X, k = 1, ...,n, where X; € R”, such that D is the dimen-
sionality of the input space. The input data set is repeatedly presented to the network until
a termination criterion is satisfied.

e SOM employs an output array of PEs whose size ¢ is fixed on an a priori basis (i.e.,
the human designer has to make this design choice based on prior knowledge of the partic-
ular learning task).

e The dimensionality of the output lattice (1-D to 3-D) must be set by the human designer.
This choice implicitly fixes the number of adjacent vertices, which is equivalent to fixing the
number of synaptic links emanating from each PE of the output lattice (see Section 5). For
example, each PE belonging to a 1-D lattice features two adjacent vertices, PEs belonging
to a 2-D lattice feature eight adjacent vertices each, etc. This property of SOM is termed
static-linking. The peculiar feature of SOM is that it deals with the topological relationship
of node adjacency in graph G without dealing with synaptic links explicitly, as shown in
Equation (11) (see Section 9.2).

o It assumes that the initial position of clusters is known in advance. These initial positions
can be randomly assigned or may be driven by sample vectors extracted from the input
data set. The latter solution is likely to reduce the formation of dead units [27].

e It employs two user-defined monotone decreasing functions of time to compute: i) step size
€(t) (cooling schedule, see Section 3); and ii) size o(t) of the resonance domain centered on
the winner PE in the output lattice. These two decreasing functions are further combined
(multiplied) to compute the lateral excitatory signal generated by the winner and featuring
the shape of a “bell curve” (see Equation (11)). Time ¢ is the number of input pattern
presentations.

e It requires a termination threshold, e.g., the maximum number of epochs €,,,, which is to
say the number of times the finite training data set is repeatedly presented to the network.

9.2 Description of the algorithm

e Geometrical (distance) relationships in the input (measurement) space are employed to
enforce competitive learning mechanisms: for an input pattern X (¢t) = X(¢), Vk € {1,n},
where n is the total number of patterns and ¢ is the number of input pattern presentations,
winner unit PEy(; is detected as the processing unit featuring the shortest inter-pattern
distance d(X(t), T1(1)(t)) < d(X(¢),Ti(t)), i = 1,...,c, where T,,;(;)(t) is the template

13



pattern of winner unit PE,), and d(X(t),7;(t)) is the Euclidean or Hamming inter-
pattern distance. The exploitation of the Euclidean inter-pattern distance in competitive
learning shapes neuron receptive fields as Voronoi polyhedra (see Section 5).

e Topological relationships among PEs belonging to an output lattice (graph, see Section 5)
are employed to detect neighboring (cooperative, soft competitive) effects. In greater detail,
PEs belonging to the update neighborhood centered on winner unit PE,) are affected
by a lateral excitatory signal generated by the winner, which is shaped like a “bell curve”
(bubble strategy), such that [4]:

a,t(t) = g(t) . 67(||Tifrw1(t)||2/o-(t)2) (11)

where «;(t) is the learning rate of processing unit PE; at time ¢, r; and () denote
the spatial coordinates of the output unit PE; and winner unit PE,(;) in the external
lattice, and €(t) and o(t) are the two user-defined monotone decreasing functions of time
describing the amplitude and standard deviation of the Gaussian function respectively.
Note that in Equation (11), distance ||r; — ry1()|| is equivalent to a neighborhood-ranking
of the processing units within the external lattice, i.e., SOM differs from: a) the Neural Gas
(NG) algorithm, which employs the neighborhood-ranking of the reference vectors within
the input space [9]; and b) other clustering algorithms (e.g., “maximum-entropy” clustering
[9], FLVQ and FOSART, see Sections 10 and 13) where the adaptation step is a function
of the absolute distance of the reference vectors from the current input pattern within the
input space. Analysis of Equation (11) reveals that: i) when o(f) = 0, then nodes of
SOM become purely competitive and SOM becomes equivalent to a hard (crisp) c-means
clustering procedure [9]; and ii) when €(t) = 0, then SOM reaches termination (no template
vector is attracted by any input pattern). ¢ SOM employs the Kohonen weight adaptation
rule to position optimally cluster prototypes that belong to the resonance domain (update
neighborhood) centered on the winner PE, such that:

Ti(t + 1) = T;(t) + as(t) - (X(¢) — Ti(2)), (12)

where «;(t) is computed by means of Equation (11) such that if i = w1(Z) then () () =
€(t). It is important to observe that Equation (12) is related to on-line (McQueen’s) k-
means [16], [33], [43], whose batch (Lloyd’s or Forgy’s) version [16] is a special case of
the EM optimization of a Gaussian mixture [33]. Nonetheless, as long as Equation (11)
features o(t) > 0 (i.e., as long as the SOM soft learning strategy is not equivalent to a WTA
strategy), one cannot specify a cost function that is minimized by Equation (12), i.e., there
exists no cost function yielding Equation (12) as its gradient [9], [34], [65]. SOM instead
features a set of potential functions, one for each node, to be independently minimized
following a stochastic (on-line) gradient descent [65]. In [15], a cost function that leads to
an update strategy that is similar to, but not precisely the same as, Equations (11) and (12)
is discussed. This cost function was introduced in a nonneural context to design an optimal
vector quantizer codebook for encoding data for transmission along a noisy channel [17].

9.3 Limitations

Despite its many successes in practical applications, SOM contains some major deficiencies
(many of which are acknowledged in [5]).

14



e Since SOM does not minimize any known objective function, termination is not based on
optimizing any model of the process or its data [7].

e On-line SOM is order dependent (due to on-line learning), i.e., the final weight vectors
are affected by the order of the input sequence [7].

e Prototype parameter estimates may be severely affected by noise points and outliers. This
is due to the fact that learning rates in SOM are computed as a function of the number of
input presentations and node positions in the grid, while they are independent of the actual
distance separating the input pattern from the cluster template.

o The size of the output lattice, the step size and the size of the resonance neighborhood
must be varied empirically from one data set to another to achieve useful results [7].

e Probability density function (pdf) estimation is not achieved [34]. Attempts have been
made to interpret the density of codebook vectors as a model of the input data distribution
but with limited success [26],[27], [34], [51].

e It should not be employed in topology-preserving mapping when the dimension of the
input space is larger than three. In fact, SOM tries to form a neighborhood-preserving
inverse mapping ¢§1 from lattice G to input manifold X, but not necessarily a neighborhood
preserving mapping ¢g from X to G [49]. To obtain a topologically correct map by running
the SOM algorithm, the topological (adjacency) structure of the preset graph G has to
match the topological structure of the unknown manifold X [49].

9.4 Advantages

e Owing to its soft competitive implementation, SOM is expected to be less likely trapped
in local minima and less likely to generate dead units than hard competitive alternatives
9, [27], [62]

e Batch SOM is order independent, i.e., the final weight vectors are not affected by the
order of the input sequence.

e SOM can be employed as a vector requantization system. For some authors, “SOM was not
intended for pattern classification. Rather, SOM attempts to find topological structures in
the input data and display them in one or two dimensions” [54], i.e., SOM can be employed
in data visualization tasks because “SOM simply attempts to achieve a consistent spatial
mapping of the training vectors to (usually) two dimensions” [2]. More precisely, it can be
stated that SOM can be employed in topology-preserving mapping iff the dimension of the
input space is not larger than the dimension of the output lattice [49].

9.5 Architectural features

The main features of SOM are summarized in Table 2.

10 FLVQ

FLVQ [6] (which was first called FKCN [7]) has quickly gained popularity as a fairly suc-
cessful batch clustering algorithm.

FLVQ design aims to improve performance and usability of Kohonen’s on-line VQ and
SOM algorithms by combining the on-line Kohonen weight adaptation rule (12) with the

15



fuzzy set membership function proposed by the batch FCM algorithm [6], [7]. This allows
FLVQ to compute the learning rate and the “size” of the update neighborhood directly from
the data. Thus, FLVQ employs a smaller set of user defined parameters than SOM. Unlike
SOM, FLVQ is a batch clustering method and employs metrical neighbors in the input space
rather than topological neighbors belonging to an output lattice. In particular, to compute
the adaptation step, FLVQ takes into account the absolute distances of reference vectors
with respect to the current input pattern, while SOM employs the neighborhood ranking
of the processing units within the external lattice.

Recent advances in the field have presented a broad family of batch FLVQ algorithms
formally defined as a class of cost function minimization schemes. Hereafter, this class of
batch vector quantizers will be referred to as the Extended FLVQ Family (EFLVQ-F) [55],
[56], [57]. FLVQ updating can be seen as a special case of EFLVQ-F learning schemes
for a restricted range of the weighting exponent. FLVQ is also related to several on-line
fuzzy clustering algorithms such as the sequential Generalized LVQ (GLVQ) [58] and GLVQ
Family algorithms (GLVQ-F) [59], and the class of on-line Fuzzy Algorithms for Learning
Vector Quantization (FALVQ, whose proposed instances are termed FALVQ 1, FALVQ 2
and FALVQ 3) [54], [57]. Table 1 summarizes functional comparisons between these learning
vector quantization algorithms. For a detailed analysis of these models, refer to [60].

Table 1:
Batch Sequential
‘ ‘ updates ‘ ‘ updates ‘ ‘
Hard (crisp, purely) competitive learning - vQ
Relative membership function where
weighting exponent m is constant FCM, EFLVQ-F' GLVQ-F>
Relative membership function where weighting
exponent m = m(e) is a function of training epochs FLVQ -
Other membership functions with
Soft no weighting exponent m - GLVQ, FALVQ
competitive
learning Width of the learning rate GLVQ®, GLVQ-F~°
distrib. is constant FCM, EFLVQ-F! FALVQ
Width of the learning rate
distrib. decreases with time FLVQ -
Cooling schedule VQ, FALVQ,
(learning rate decreases with time) ]':IFLVQ—F4 GLVQ, GLVQ—F5
No cooling schedule FCM, FLVQ -
1 see [55], p. 252 (m = 2).
2 see [59], p. 1068 (m = 2).
3 extended to the entire net.
4 see [55], p. 251.
5 see [57], p- 33.

10.1 Input parameters

e FLVQ requires the user to define number ¢ of natural groups to be detected.

e It requires the initial and final weighting exponent mg and my, controlling the “amount
of fuzziness” of the algorithm. In [6], the heuristic constraint 7 > mg > my > 1.1 is
recommended.

e Parameter e,,,, is defined as the maximum number of epochs.

e A convergence error € is employed in the termination strategy.

16



10.2 Description of the algorithm

e Descending FLVQ employs a weighting exponent m = m(e) monotonically decreasing with
processing time e, where e is the number of processing epochs. The decreasing expression
of m(e) is [1]:

m(e) =mg — (e Am) where Am = (mo —my)/emax (13)

e FLVQ employs metrical neighbors in the input space (analogously to GLVQ, GLVQ-F
and FALVQ). In particular, FLVQ computes a membership function providing the degree
of compatibility of an input pattern with the vague concept represented by a cluster center.
To compute this inter-pattern similarity measure, FLV(Q combines winner and non-winner
information as follows:

1
) (m(e)-1)

-1
uik(e) = (d(Xk(e):Ti(e))Z )( (1) - : 1=1,2,...,¢c, k=1,2,...,n, (14)

c 1
2j=1 (W

where c is the total number of categories, n is the total number of input patterns, X (e) is
an input pattern and 7T;(e) is a cluster template at epoch time e, and d(Xy(e),T;(e)) is the
Euclidean inter-pattern distance between Xj(e) and T;(e). Equation (14) is a relative or
probabilistic membership function because it satisfies the three conditions required to state
that ¢ fuzzy subsets are a fuzzy c-partition of the input space (see Section 2.1).

e The FLVQ learning rule is:

Ti(e+1) = Ti(e) +mile) - Y wi(e)(Xx(e) — Tie))
k=1

=Ti(e) + Z a; (e)(Xk(e) — Ti(e)) = Zaiyk(e) - Xi(e), i=1,2,..,¢, (15)
k=1 k=1

where
wi o (e) = (ui k(€)™ (16)
1
ni(e) = ma (17)
aik(e) = ni(e) - wik(e). (18)

It can be observed that if d(Xy(e),T;(e)) — 0, i = 1,...,c, then u;,(e) — 1/c. This
causes ”the relative membership problem of FCM” [61]. It means that since Equation (14)
provides membership values that are relative numbers, then noise points and outliers may
have significantly high membership values and may severely affect the prototype parameter
estimate (15). Note that if all input patterns are outliers for the given set of template
vectors, then «a;x(e) = 1/n, i = 1,...,¢, k = 1,...,n, ie., according to Equation (15) all
templates collapse into the center of gravity of the input data set. It can also be observed
that Equation (15) belongs to the same class of weight adaptation rules employed in the
batch form of the SOM algorithm and in the batch and statistically firm EM optimization
of Gaussian centers in a mixture model [5], [33], [34]. Equation (15) shows that when

17



m(e) = m is fixed, then FLVQ is equivalent to FCM [6]. It can be proved that by decreasing
its weighting exponent m(e), descending FLVQ tends to reduce the width of the learning
rate distribution by means of model transitions. In this case, descending FLVQ satisfies
Kohonen’s second learning constraint requiring the size of the update neighborhood to
decrease monotonically (see Section 9). Unfortunately, due to improper initialization of
parameter m(e), the initial learning phase of FLV(Q may lead the algorithm to perform
trivial (non-adaptive) vector quantization. This is demonstrated by the following analysis
of FLVQ asymptotic behaviors.

Asymptotic case A: m(e) — oo causes trivial vector quantization. It is easy to verify
that [60]

n

lim Ti(e+1) = Ti(e) + % > (Xi(e) = Tile) =

m(e)—o0 ]

n
> Xi(e), i=1,2,.,c (19)
k=1

S|+

Equation (19) shows that when m(e) — oo, all input patterns are weighted equally whatever
category 7 may be. Therefore, all FLVQ cluster centers collapse into the same point, i.e.,
all input patterns are mapped into the same prototype which is the center of gravity of the
input data set. FLVQ shares with FCM this asymptotic behavior leading to trivial vector
quantization [60]. Unfortunately, Equations (14) to (18) applied iteratively are unable to
make identical centroids move away from each other, i.e., whenever centroids converge to
the center of gravity (grand mean) of the input data set then separate processing units can
no longer be adapted to different degrees. This asymptotic behavior is acknowledged in [1],
where it is recommended to keep m(e) away from infinity to prevent numerical instability
of FLVQ. Our analysis suggests that rather than numerical instability, limiting condition
m(e) — oo causes prototype collapse in both FLVQ and FCM.

Asymptotic case B: m(e) — 17 produces hard competitive learning plus trivial dead unit
relocation. Tt can be demonstrated that lim,,.)_,1+ w;x(e) = 1 if neuron i is the winner
unit for pattern X}, otherwise w; x(e) tends to zero. As a consequence,

( 1/n;, if neuron i is the winner unit for Xx/(e),
where 1 < n; < n is the total number of times
neuron % is the best-matching
unit during the current epoch t;

lim «;x(e) =4 0, if neuron 4 is not the winner unit for Xj(e),

m(e) =1 and if n; > 1, i.e., unit 7 is the winner for
at least one pattern Xy (e) # Xk (e), h € {1,n};
1/n, if n; =0, i.e., if neuron 7 is not the winner unit either for Xy (e)
L or for any other input pattern, i.e., if neuron ¢ is a dead unit;
(20)
Therefore, >
xp@efxyen XrE) .
lim Ti(e+1) :{ - o , ifn > 1 (21)
m(e)—1+ Zk:ln k(e), if n; = 0’

where set {X;(e)} consists of input patterns featuring 7;(e) as their best-matching template
at epoch number e. Equation (21) shows that if m(e) — 17, then both FCM and FLVQ
become similar but not equivalent to a batch (Forgy’s) c-Means algorithm [16]. Forgy’s

18



c-Means features a singularity condition when its hard competitive prototype updating,
2 Xy (e)e{X;(e)} Xk(€)/ni, deals with a dead unit (n; = 0). In this case, the prototype up-
date cannot be calculated. On the contrary, when Equation (21) encounters dead units,
these cluster centers are moved to the center of gravity of the input data set. In the case
of a descending FLVQ implementation, since the non-recoverable collapse of dead units
described by Equation (21) eventually occurs at the end of the iteration process (when
m(e) — 17), then this loss of resources cannot be considered as an asymptotic deficiency
of the algorithm.

Model case C: m(e) € (1,00). When descending weighting exponent m(e) is kept away
from infinity (asymptotic case A) and from value 1 (asymptotic case B), the update neigh-
borhood includes all ¢ nodes characterized by unequal excitation.

To summarize, if asymptotic case A is avoided in descending FLV(Q, then, on the one

hand, the width of the learning rate distribution decreases with time as model case C
approaches asymptotic case B, i.e., FLVQ behaves consistently with the second Kohonen
constraint. These theoretical conclusions about transitions of the FLV(Q learning strategy
as a function of decreasing m(e) (increasing epoch time e) are consistent with those regard-
ing FCM, EFLVQ-F and GLVQ-F [55], [56], [57], [59], all systems employing Equation (14)
as their relative membership function (see Table 1). This analysis is also consistent with
the heuristic choice 7 > mg > my > 1.1 recommended in [6]. On the other hand, learning
rate values do not necessarily decrease with time, i.e., FLV(Q does not behave consistently
with the first Kohonen constraint, its update mechanism being roughly opposite to that of
other clustering algorithms, like SOM. For example, in SOM, all ¢ learning rates (winner
as well as non-winners) decrease towards 0 as ¢ increases; vice versa, in FLVQ, asymptotic
Equations (19) and (20) show that learning rate «;;(e) may increase up to 1/n; for the
winner neuron when e increases (starting at e = 1 from a value which may be close to
1/n, see asymptotic case A), while the other (¢ — 1) rates tend towards zero or 1/n (see
asymptotic case B). Intuitively, this learning policy is not desirable because it does not
provide prototypes with the large initial plasticity values required to pursue fast (rough)
initial learning.
e In [6], it is clarified that FLVQ, like SOM, does not optimize any known objective function,
and that it is expected to reach termination when the FCM objective function is approx-
imately minimized [7]. In [55], [56], [57], EFLVQ-F learning schemes are formally derived
to minimize a given functional when m is constant. It is also shown that FLVQ updating
can be seen as a special case of EFLVQ-F learning schemes for a restricted range of the
weighting exponent. This does not mean, however, that FLVQ minimizes the EFLVQ-F
functional since the hypothesis m = constant does not hold true for FLVQ. We conclude
that despite recent advances in the field, the objective function minimized by FLVQ is still
unknown, just as the one minimized by SOM is unknown [60].

10.3 Limitations

e Since FLVQ does not minimize any known objective function, termination is not based
on optimizing any model of the process or its data [7].

e FLVQ is affected by the relative membership problem (high sensitivity to noise, i.e., low
robustness [62]).

19



e It does not provide prototypes with large initial plasticity values required to pursue fast
(rough) initial learning.

e FLVQ features instability when its traditional termination criterion is employed, such
that if 335, d(T;i(e), Ti(e — 1))? < ¢, then FLVQ is terminated. Experimental tests reveal
that clustering results improve when convergence is reached at m; values close to 1, while
termination parameter € is ignored (see Section 10.1) [60].

o It does not provide pdf estimation.

e It cannot be employed in topology-preserving mapping.

10.4 Advantages

e Owing to its soft competitive implementation, FLVQ is expected to be less likely trapped
in local minima and less likely to generate dead units than hard competitive alternatives
(e.g., FCM) [9], [27], [62].

e In FLVQ, due to batch learning, the final weight vectors are not affected by the order of
the input sequence when its traditional termination criterion is removed.

e With respect to SOM, FLVQ requires a smaller set of input parameters (its learning rate
and the size of the update neighborhood being computed directly from the data).

e FLVQ can be employed as a vector requantization system.

10.5 Architectural features

The main features of FLVQ are summarized in Table 2.

11 Fuzzy ART

In recent years, several ART-based models have been presented. ART 1 categorizes binary
patterns but features sensitivity to the order of presentation of the random sequence [21].
This finding led to the development of the Improved ART 1 system (IART 1), which is
less dependent than ART 1 on the order of presentation of the input sequence [69]. The
Adaptive Hamming Net (AHN), which is functionally equivalent to ART 1, optimizes ART 1
both in terms of computation time and storage requirement [23]. ART 2, designed to detect
regularities in analog random sequences, employs a computationally expensive architecture
which presents difficulties in parameter selection [22]. To overcome these difficulties, the
Fuzzy ART system was developed as a generalization of ART 1 [19], [20]. This means,
however, that ART 1-based structural problems may also affect Fuzzy ART.

The structured organization of ART systems is made up of two subsystems, termed
attentional and orienting subsystem. Although in its original form the ART 1 attentional
subsystem employs bottom-up (feed-forward) and top-down (feed-backward) connections,
it is easy to prove that this module is mathematically equivalent to an attentional subsys-
tem where feed-forward connections are adopted exclusively [24]. For example, AHN is a
feed-forward network functionally equivalent to ART 1 [23]. This simplification yields, as a
major consequence, a change in the meaning of the term “resonance” as traditionally ap-
plied to ART 1-based systems. This term should no longer indicate “the basic feature of all
ART systems, notably, pattern-matching between bottom-up input and top-down learned

20



prototype vectors” ([19], p. 760), just as the term “resonance” has never been applied to
pattern matching activities performed by a feed-forward network, e.g., SOM. In our view,
the term “resonance”, as employed in ART, means rather that all ART 1-based algorithms
share the same modular architecture, consisting of:

i) a completely generic (unsupervised), flat (without hidden layers), feed-forward (bottom-
up) pattern recognition network (as Kohonen’s networks, e.g., VQ and SOM), termed an
attentional subsystem; and

ii) a supervised/unsupervised knowledge interface unit, termed an orienting subsystem,
where the quality of unsupervised bottom-up pattern recognition is compared to top-down
requirements (expectations, or prior knowledge) provided by the external environment (su-
pervisor). In the orienting subsystem, if unsupervised knowledge matches external expec-
tations, then “resonance” occurs. This means that the unsupervised pattern recognition
activity of the attentional module is reinforced according to a reinforcement learning mecha-
nism, i.e., prototype adaptation takes place. If resonance does not occur, then the orienting
subsystem allows the attentional module to increase its resources (processing elements) to
meet external requirements.

Fuzzy ART requires a preprocessing stage where either input pattern normalization or
complement coding is used to prevent category proliferation. Input data normalization loses
vector-length information. Complement coding normalizes input vectors while preserving
their amplitude information, but it doubles the number of network connections [19], [20].

It can be proved that ART 1-based systems are all affected by the same design incon-
sistency: they all employ an inherently asymmetrical architecture to perform an inherently
symmetrical task - the assessment of an interpattern degree of match [24].

11.1 Input parameters

To simplify the discussion, our approach is to deal with a finite training data set {X},
consisting of n input patterns X, k =1, ...,n, where X, € R, such that D is the dimen-
sionality of the input space. The input data set is repeatedly presented to the network until
a termination criterion is satisfied.

e Fuzzy ART employs parameter @ > 0 (e.g., @ € [0.001,1), [20]) to break ties, i.e., to
bias the function in favor of the longer of two template vectors (see Equation (22)). A
typical « value is 0.001 [20].

e It requires vigilance threshold p € [0,1] as a relative number representing external ex-
pectations. In detail, p controls neuron proliferation (see Equation (23)), such that coarser
grouping of input patterns is obtained when the vigilance parameter is lowered. Parameters
p and « are interrelated as illustrated in [70] (when p decreases, a must also decrease).

e Learning rate 3 is independent of time and set within range (0,1) (see Equation (24)).

e It requires a termination threshold, e.g., the maximum number of epochs e,qz, i.€., the
number of times the finite training data set is repeatedly presented to the network.

11.2 Description of the algorithm

e The Fuzzy ART attentional subsystem computes activation values as a set of relative
numbers. Each activation value represents the “unidirectional” (asymmetrical) degree to

21



which the input pattern matches a template vector. In other words, the Fuzzy ART acti-
vation function is asymmetric with respect to the input and template vector pair, i.e., it
provides no assessment of the degree to which the template vector matches the input pat-
tern. The best-matching unit is selected as the one featuring the largest activation value.
The Fuzzy ART orienting subsystem overlooks the pattern recognition activity performed
by the attentional subsytem by computing the value of a “unidirectional” (asymmetrical)
match function. This match value is a relative number representing the degree to which the
winner template matches the input pattern. Next, vigilance testing is performed, where the
match value is compared to the user-defined vigilance threshold p. If the match value is
above the vigilance threshold, then the winner template is updated, otherwise a mismatch
reset condition and a search process are run in sequence. Because the winner template
detected by the activation function is not necessarily the best-matching template according
to the match function, then the orienting subsystem inhibits the winner neuron and sub-
mits the processing element featuring the second largest activation value to the vigilance
test. The sequence of operations, consisting of one mismatch reset condition and a search
process, is repeated until either the vigilance test is passed or no more nodes are available
for testing.

e In the attentional subsystem, for a given pattern X (¢) = Xy (t), Vk € {1,n}, where n is the
finite size of the training set and ¢ is the number of input pattern presentations, winner unit
PE,(;) is detected as the neuron that satisfies condition p,,1(y) (1) = max{p;(t),i = 1,...,c},
where activation value yu;(t) is computed as:

| TR min{T(0), XA(0)
a+ i TH)

15(t) = AF(Ti(t), X1 (1)) . i=1l..c YEe{ln), (22)

where AF'(-) is the activation function, ¢ is the total number of neurons, D is the dimension-
ality of the input space, T/(t) is the d-th component of vector T;(t) and « is the user-defined
parameter (see Section 11.1). Equation (22) is an inter-pattern similarity measure that sat-
isfies requirement (iv) presented in Section 2.1, i.e., it can be considered an absolute fuzzy
membership function. Equation (22) measures to what normalized degree pattern Xj(t)
matches template T;(¢) but it does not assess the reverse situation, i.e., to what degree T;(t)
matches X (t). In other words, this activation function is not symmetrical with respect to
Xp () and T4(8), i.e, AF(T3(), Xx(t) # AF(Xe(t), Ty(1)).

e In the orienting subsystem, Fuzzy ART employs a vigilance test defined as follows:

i1 min{ngl(t) (t), X¢(1)}
Y X ®)

where M F(-) is the match function that measures to what normalized degree template

Tw1(r)(t) matches pattern Xy (¢) while it does not assess the reverse situation, i.e., MF(Ty1(;)(t), Xi(t)) #
MF(X(t), Tyi(t)(t))- Inline with AF(-), M F(-) is an inter-pattern similarity measure that

satisfies requirement (iv) presented in Section 2.1, i.e., it can be considered an absolute fuzzy
membership function. If the vigilance test is satisfied, then the attentional subsystem is

activated to sequentially adjust the winner template according to Equation (24). Otherwise,

the mismatch reset condition and search process are activated (see above).

e Fuzzy ART employs a WTA strategy. The weight transformation law applied to the

MF (T2 (t), X (8)) = > p, (23)

22



winner template is [19]:

Tyt +1) = (1 =8)  Tpiy(t) + 8- (Xi(t) — Twi() (1))- (24)

Note that unlike Kohonen’s clustering networks (see Section 9), Fuzzy ART employs no
cooling schedule because the learning rate is constant in time.

e When no existing neuron satisfies the vigilance test, then ¢ = ¢+ 1, a new processing unit
PE, is allocated by the orienting subsystem and the new template vector is initialized as
T.(t+1) = Xi(t).

e With regard to Equations (22) and (23), Fuzzy ART substitutes the operators employed
in the ART 1-based activation function and match function with fuzzy-like operations (in-
tersection and cardinality). As observed by Simpson [8], to be correctly interpreted as fuzzy
operations, these operations would have to be applied to fuzzy set membership values, rather
than to the parameters (pattern and template vectors) of absolute fuzzy set membership
functions.?> To summarize, Fuzzy ART employs two absolute fuzzy membership functions,
i.e., it employs fuzzy set-theoretic concepts. Nonetheless, since it applies no soft competitive
learning strategy, Fuzzy ART cannot be termed fuzzy as defined in Section 7.

11.3 Limitations

e Since Fuzzy ART does not minimize any known objective function, its termination is not
based on optimizing any model of the process or its data [7].

e Owing to its hard competitive implementation, Fuzzy ART is more likely to be trapped
in local minima and to generate dead units than soft competitive alternatives [9], [27], [62].
e Fuzzy ART is order dependent due to on-line learning and example-driven neuron gen-
eration. Experimental evidence [69], as well as theoretical analysis [24], reveal that Fuzzy
ART sensitivity to the order of presentation of the input sequence is also due to some in-
consistencies detected in the system’s implementation [24], [69].

e Fuzzy ART may be severely affected by noise points and outliers, i.e., it may fit the noise
and not just the data. In other words, Fuzzy ART may be affected by overfitting, because
a single poorly mapped pattern suffices to initiate the creation of a new unit, while no noise
category removal mechanism is employed by the system.

e Since its learning rate is independent of time, Fuzzy ART lacks stability because of exces-
sive plasticity, i.e., the processing of a new data set may affect (i.e., move through the input
space) templates detected by the system during the previous learning phase. Nonetheless,
since the length of every template can only decrease with learning, templates cannot “cy-
cle”, i.e., Fuzzy ART does have a sort of stability [24].

e Fuzzy ART is time-consuming with respect to functionally equivalent implementations
[24]. In its traditional implementation consisting of ¢ nodes (see [19]), for each input pattern
the Fuzzy ART search process requires a minimum of one up to c iterations to detect the
winner unit that features the largest activation value among the units capable of satisfying
the vigilance test. Several ART-1 based models, either functionally equivalent to Fuzzy
ART (e.g, AHN [23]) or not functionally equivalent to Fuzzy ART (e.g., the Fuzzy SART
model [24]), reduce the number of searches to one , whatever the input pattern may be.

3Tt is curious to observe that the same criticism can be applied to the Fuzzy Min-Max clustering algorithm
presented by Simpson [8]

23



e It requires input data preprocessing (e.g., normalization or complement coding; in the
first case data vector-length information is lost, while in the second case the number of
network connections doubles) to prevent category proliferation [19].

e It does not provide pdf estimation.

e It cannot be employed in topology preserving mapping.

11.4 Advantages

e Feed-back interaction between attentional and orienting subsystems allows Fuzzy ART to
self-adjust its size depending on the complexity of the clustering task.

e Distinct sample vectors are employed to initialize reference vectors. This choice reduces
the risk of dead unit formation and may reduce computation time with respect to random
initialization.

e Fuzzy ART can be employed as a vector requantization system.

11.5 Architectural features

The main features of Fuzzy ART are summarized in Table 2.

12 GNG

GNG combines the growth mechanism inherited from the earlier proposed Growing Cell
Structures [73] with the synapse geration rule CHR [49]. GNG is capable of generating and
removing both synaptic links and PEs, i.e, GNG belongs to the class of FSONN models
(see Section 5). In particular, starting with very few units (generally, two), one new unit
is inserted every A adaptation steps near the unit featuring the largest local error mea-
surement. In other words, GNG employs a mini-batch approach (see Section 3) to decide
where to locate new PEs: by accumulating error information over a number of A pattern
presentations, i.e., by averaging over the noise on the data, GNG does not allow any single
poorly mapped pattern to initiate the creation of a new unit. In [75], it is anticipated
that the future development of GNG will employ, besides the neuron insertion criterion
described above, the following rule for neuron removal: every A adaptation steps, the unit
featuring lowest utility for error reduction is removed. This utility measure is defined as
the increase in overall distorsion error occuring if the unit of interest were removed from
the set of templates. The utility U(Ty1(;)()) of template vector To1(1)(t), wl(t) € {1,c},
where c¢ is the total number of neurons and ¢ is the number of input pattern presentations
is defined as follows [76]:

U(Tu1p(t) = > d(X ("), Twoq+) (t*)) — d(X (t), Tp1e(t7)), t*<t, (25)
X(t*)e{My1(t)}

where d(X (t*), Tyy1(+)(t*)) is the Euclidean inter-pattern distance between vectors X (t*)
and Twl(t*)(t*) at presentation time ¢*, TwQ(t*)(t*) is the second best matching template
for vector X (¢*), such that w2(t*) # wl(t*), and {M,;(;)} is the subset of the input pat-
tern presentation sequence featuring template of unit PE,,;(;) as the closest reference vec-
tor, i.e., {My1(} = {X(t*): unit PE,;) satisfies the condition d(X(t*), Ty1(;)(t*)) <
d(X (), Ti(t*),i=1,...,¢c, t* <t }.

24



An additional mini-batch learning policy is employed to remove synaptic links whose
utility has progressively faded away while the presentation of the input sequence goes on
[27]. To summarize, GNG exploits mini-batch learning techniques for inserting processing
units, deleting processing units and deleting synapses, and an example-driven CHR to
generate synaptic links, the latter strategy being more sensitive to the presence of noise
than mini-batch learning.

12.1 Input parameters

To simplify the discussion, our approach is to deal with a finite training data set {X},
consisting of n input patterns X, k = 1, ...,n, where X, € RP, such that D is the dimen-
sionality of the input space. The input data set is repeatedly presented to the network until
a termination criterion is satisfied.

e GNG employs two user-defined learning rates: €; € (0,1) is applied to the winner neuron,
while €, € (0,1), such that €, < € is applied to neurons belonging to the update neighbor-
hood. Typical values are: e; = 0.05, €, = 0.0006 [27].

e Parameter A € 't controls neuron generation at adaptation steps (see above).

e Parameters a and ( are used to decrease the error variables, so that more recent signals
are weighted more heavily than previous ones [73]. Typical values are: « = 0.5, § = 0.0005
[27].

e Parameter a,,, € N7 is the maximum age of a synaptic link. A typical value is:
Omaz = 88 [27].

e GNG employs a termination parameter, such as the maximum number of neurons ¢4

[27].

12.2 Description of the algorithm

e In line with SOM, GNG employs geometrical (distance) relationships in the input (mea-
surement) space to enforce competitive learning mechanisms. Let us consider: a) winner

unit PE,,(;) as the one featuring the shortest Euclidean inter-pattern distance d( Xy (), Tyy1 (1) (t)) <
d(Xk(t),Ti(t)), @ = 1,...,c, where t is the number of input pattern presentations; and b)

the second best unit PE, ;) as the one featuring activation value d(Xp(t), Tyyoq)(t)) <
d(Xi(t), Ti(t)), i = 1,...,¢, i # wl(t). Exploitation of the Euclidean inter-pattern distance

in competitive learning shapes neuron receptive fields as Voronoi polyhedra (see Section 5).

e As soon as neuron wl(t) is detected, the local error variable of winner neuron wl(t) is
updated; for example, for requantization tasks, the increase of accumulated error is defined

as

Ewl(t) (t) = Ewl(t) (t - 1) + (d(Xk (t)a Twl(t) (t))27 (26)
otherwise, for probability density function estimation,

Ey1()(t) = Eyiy(t—1) + 1. (27)

e In line with SOM, topological relationships among PEs belonging to an output lattice
are employed to detect soft competitive (competitive and cooperative) effects. In particu-
lar, GNG applies an update equation to the winner unit PE,,1(¢) and to its topologically

25



adjacent neighbors, i.e., the resonance neighborhood consists of all PEs directly connected
to the winner (such that one synaptic link, identified as Sy1()4, @ € {1, ¢}, © # wl(t), ex-
ists at time ¢). Therefore, due to dynamic generation/removal of PEs and synaptic links,
the resonance domain changes with time to include PEs that are topologically adjacent to
winner wl(t). Nonetheless, this behavior does not strictly satisfy the Kohonen constraint
requiring the size of the update neighborhood to decrease monotonically with time.

e Templates belonging to the update neighborhood are adapted in line with the Kohonen
weight adaptation rule (see Equation (12)). The update equation is

Ti(t+1) = Ti(t) + e(t) - (Xx(t) = Ti(2)), (28)

where €;(t) = €1, which is fixed by the user (see Section 12.1), if i = wl(t), and €;(t) = €,
and if vertice PE; is adjacent to the winner at time ¢ (see above).

o With regard to generation of PEs, GNG employs the following strategy: one new units
is inserted every A adaptation steps near the unit featuring the largest local error measure,
identified as unit g. In particular, the receptive field center of the new unit is located half
way between the templates of units ¢ and f, where f identifies the neuron featuring the
maximum accumulated error among the neighbors of ¢ (i.e., synaptic link S, s does exist).
The local error of the new unit is set to (E, + Ef)/2; then E, and Ej are decreased by a
fraction a.

e With regard to generation of synaptic links, GNG employs the following strategy. As
soon as units PE,,(;) and PE,(;) are detected, CHR is applied to PE,1(;) and PE, ;) so
that if connection Sy1() w2() does not exist, it is generated (see Section 5). In either case,
the age of the connection between PE,, ;) and PE, ) is reset to zero (the connection is
“refreshed”).

e With regard to removal of superfluous synaptic links and neurons, GNG employs the fol-
lowing strategy. After CHR is applied to the unit pair PEy,1(;) and PE,5(;), and connection
Swi(t),w2(t) 18 refreshed, the age of all edges emanating from PE,(; is increased by one.
Among these connections, edges whose age is larger than a,q; are removed. If this results
in units having no emanating edge, such units are removed.

e At the end of each input pattern presentation: i) the error variables of all units are de-
creased by a fraction 3; and ii) the termination test is checked (possibly involving parameter
Cmaz OF the mean accumulated error).

12.3 Limitations

e Since GNG does not minimize any known objective function, termination is not based on
optimizing any model of the process or its data [7].

e Since its neurons feature no “cooling schedule” (i.e., the learning rate does not satisfy
Kohonen’s first learning constraint), GNG lacks stability because of excessive plasticity, i.e.,
the processing of a new data set can radically alter maps detected by the system during the
previous processing stage (try simulations on the web at the address reported in [27]).

e It is not very easy to use, since it requires seven user-defined parameters whose meaning
is not always straightforward.

e Sample vectors are not employed to initialize reference vectors. In particular, new neurons
can be initialized outside the input manifold, and this increases computation time before

26



termination is reached.
e It combines mini-batch learning techniques (for neuron generation and removal, and for
synapse removal) with example-driven generation of synapses.

12.4 Advantages

e Owing to its soft competitive implementation, GNG is less likely to be trapped in local
minima and to generate dead units than hard competitive alternatives [9], [27], [62]. Note
that although GNG employs a soft competitive strategy, its update neighborhood size does
not decrease with time, as required by Kohonen’s constraints.

e Due to its insertion strategy, based on accumulated errors, it is robust against noise, and
this avoids overfitting.

e In the tests provided involving the 2-D two-spiral data set (194 patterns, 2 classes), a
two-stage hybrid classifier (supervised + unsupervised) exploiting GNG as its first layer
performs better classification than other distributed systems found in the literature [73].
The excellent adaptivity of GNG can be directly tested by simulations on the web [27].

e GNG is computationally efficient because its computation time increases linearly as (c+
No. of links).

e GNG can be employed in: a) vector quantization, b) density function estimation, and c)
structure detection in input data to be mapped in a topologically correct way onto submaps
of an output lattice pursuing dimensionality reduction.

12.5 Architectural features

The main features of GNG are summarized in Table 2.

13 FOSART

Created to overcome the GNG deficiencies listed in Section 12.3, FOSART is an on-line
learning algorithm which combines properties of SOM [5], GNG [27], FCM [6], and Fuzzy
SART [24] algorithms. FOSART employs a relative fuzzy membership function, derived
from the one employed by FCM and Fuzzy SART, to compute activation values, and a
Gaussian Basis Function (GBF) to compute absolute (possibilistic) fuzzy membership values
(see Section 3). Generalizing the soft competitive learning strategy adopted by GNG,
FOSART considers the whole output map to which the best-matching unit belongs as
the resonance neighborhood of the best-matching unit PE,@;). In line with Fuzzy ART,
FOSART applies an ART-based, example-driven vigilance test to control neuron generation
[19], [24]. Similarly to GNG, FOSART employs a new version of CHR, termed Constrained
Competitive Hebbian Rule (CCHR) to generate synaptic links on an example-driven basis
[49]. In line with GNG, FOSART removes synaptic links as well as neurons according to a
mini-batch parameter adaptation scheme. To summarize, FOSART as well as GNG belongs
to the class of FSONN models (see Section 5).

27



13.1 Input parameters

To simplify the discussion, our approach is to deal with a finite training data set {X},
consisting of n input patterns Xy, k = 1,...,n, where X}, € R?, and where D is the dimen-
sionality of the input space. The input data set is repeatedly presented to the network until
a termination criterion is satisfied. Each presentation sequence is termed a training epoch.

e FOSART requires the user to define an ART-based vigilance threshold as a relative
number p € (0,1]. Since coarser grouping of input patterns is obtained when the vigi-
lance parameter is lowered, in biological terms vigilance threshold p can be interpreted as
the quantity of nutrients provided by the external environment (supervisor) to the learning
system for neuron proliferation.

e It employs a synapse max-to-min length ratio threshold Ir > 1.

e To reach termination, FOSART requires a lower limit for the number of training epochs
each node has to survive, ey, > 1, this parameter affecting the overall number of training
epochs required by the algorithm to reach termination (consider that, in FOSART, units
are generated and removed dynamically as the number of input pattern presentations, t,
increases).

13.2 Description of the algorithm

Since FOSART has never been extensively presented in the literature [28], [29], and has
been subjected to continuous refinements, its current version is provided hereafter.

Step 0. Initialization. Pattern counter ¢ is set to 0. Two input patterns, X; and
Xo, are randomly chosen from the input set and two Processing Elements (PEs), PE; and
PEs, are generated. The PE counter, ¢, is set to 2. Template vectors T3 (t) and T5(t)
(representing centers of receptive fields equivalent to Voronoi polyhedra in the input space)
are set equal to pattern X; and X, respectively. PE-based (local) epoch counters e; and
eo are initialized to 0. FOSART employs PE-based time counters to compute PE-based
plasticities (learning rates). In FOSART, the “age” (local time) of a processing unit is an
integer value equal to the number of times the finite input data set has been iteratively
presented to the system while that processing unit exists. PE-based (local) best-matching
counters, bmy and bmgy, are initialized to 0.

Step 1. Input pattern presentation. The pattern counter is increased by one as
t =t+ 1, and a new pattern X (t), Vk € {1,n}, is presented to the network.

Step 2. Detection of processing units eligible for being resonant. Determine the
best-matching unit PE,;(;), and the second-best unit PE, 54, wl(t) and w2(t) € {1,c},
wl(t) # w2(t), as the pair of PEs featuring, respectively, the largest and the second-largest
Gaussian Radial Basis Function (GRBF) value, i.e.,

wl(t) = arg max {Gaussian;(t)} = arg min {d;(t)}, (29)
2t) = jang(t)} = i di(t)},
w2(t) = arg i:L“{rig,ﬁql)l(t){Gausszan (t)} = arg i:l,...I,Icl;ilr;éwl(t){ (t)} (30)

28



where GRBF is ,
(d; (%)
Gaussian;(t) = e~ 22 € (0,1], (31)
such that
di(t) = d(Xy(t), Ti(t))

is the Euclidean distance between input pattern Xj(¢) and prototype vector (receptive
field center) T;(t) of processing unit PE; at presentation time ¢. In Equation (31), spread
(resolution) parameter o is computed as

o= (1/p). (32)

Equation (32) considers o as being inversely related to user-defined parameter p; intuitively,
this relationship means that when the number of PEs employed to map any given input
manifold X onto an output lattice (network) G increases (this number being proportional
to the ART-based severity threshold), i.e., in input space, the size of the receptive fields of
neural units decreases. Note that since Gaussian;(t), i = 1,...,c feature the same spread
parameter ¢, then enforcing competitive learning among these GRBF's is equivalent to con-
sidering neuron receptive fields as Voronoi polyhedra [27].

Step 3. Resonance domain detection. From among processing units candidated by the
attentional subsystem as being resonant the orienting subsystem selects those that match
external requirements. Only these units are said to belong to the resonance domain. To
select these units, the orienting subsystem employs an ART-based vigilance constraint. The
vigilance test applied to the pattern matching activity of the attentional module is

Gaussian,(t) = p, p € (0,1], (33)

where user-defined vigilance parameter p provides a model of top-down external require-
ments (expectations, or prior knowledge) provided by the external environment (supervisor).
In the orienting subsystem, if unsupervised knowledge matches external expectations, then
“resonance” occurs. This means that the unsupervised pattern recognition activity of the
attentional module is reinforced according to a reinforcement learning mechanism, i.e., pro-
totype adaptation takes place. If resonance does not occur, the orienting subsystem allows
the attentional module to increase its resources (processing elements) to match external
requirements.

Step 4(a). Resonance condition: reinforcement learning. If the vigilance test
is satisfied and “resonance” occurs, the attentional subsystem is allowed to reinforce its
pattern-matching activity by adjusting template vectors of units belonging to the resonance
domain. The following sequence of operations is performed.

1. The best-matching counter of unit PE,,(; is increased by one, i.e., bmy ) (t) =
b (t — 1) + 1.

2. A Constrained Competitive Hebbian Rule (CCHR), which introduces a competitive
mechanism among synaptic links, is applied. CCHR requires that the ratio between

29



the length (computed in the input space, see below) of the longest and shortest con-
nection emanating from any processing unit at any time to be in all cases < Ir, where
Ir is a user-defined threshold (see Section 13.1). At this processing step, between the
best and second-best matching unit, PE, ;) and PE, ;) respectively, CCHR locates
a synaptic link, identified as Sy 1(1),wo(r) if: i) this connection does not exist already;
and ii) the ratio between the length of Swi(t)w2(t), computed in input space X as
the Euclidean distance between template vectors T,,1(;) and Tyo(;), and the shortest
synapse emanating from either PE, ;) or PEyo@) is below user-defined threshold
Ir. If connection Sy, () wo(r) 18 generated, then: iii) synapses emanating from either
PEy1 (1) or PEyg() that do not satisfy CCHR are removed; and iv) the synapse-based
(local) selection counter sbm., () wa() is initialized to one.

. If synapse Sy 1(2),w2(r) €xists, its local counter is increased by one, i.e., sbm.,1 (1) wo(z) (t) =
8bMy 1 (1) waq (t — 1) + 1.

. Activation values of the PEs belonging to the same map of winner unit PE,,1(, i.e.,
PEs topologically connected to the winner unit, are computed. Activation values are
relative fuzzy membership values computed as

_ A;(t)
SR A (t)

where A;(t) is an absolute membership value, and c,1(;) is the number of PEs be-
longing to the same map of winner unit PE,; at presentation time ¢. Equation
(34) shows that R;(t) is computed on the basis of the absolute memberships of PEs
that are topologically connected to PEy(;); this means that PEs belonging to the
same map are coupled through the computation of their relative membership values,
while PEs belonging to disjointed maps are computationally independent). Absolute
membership A;(t) is computed as (see Equation (5) in Section 2.1)

Ri (t) 1, ey cwl(t)a Rz (t) € (O’ 1)’ (34)

Ai(t) = (1- Gauslsz'ani(t))w Ai(t) € (1, 00). (35)

. FOSART applies a soft competitive learning mechanism, based on neighborhood —
ranking, to neural units belonging to the same map of best-matching unit PE, ;).
Best ranking 7,1(;) = 0 is assigned to the best-matching unit PEy, (). Next, r; (t) =1
if processing unit PE; is directly linked to PE,(y), ri(t) = 2 if processing unit PE;
is indirectly linked to PE, (), but directly linked to any processing unit featuring
neighborhood-ranking equal to 1, etc.

. A stochastic (on-line, sequential) weight adaptation law, derived from stochastic opti-
mization of the parameters of a Gaussian mixture model [33], is applied to all process-
ing units belonging to the resonance domain. For every unit PE; that is topologically
connected to the best-matching unit PE, ;) the adaptation of the receptive field
center is computed as follows

Ti(t + 1) = Ti(t) + Bi(t) - (Xi(t) — T;(t))

30



1 ~ VK (E),
= m . Z Oéz(t )X]C(t ), 1= 1, "'acwl(t)a Vk € {l,n} (36)
t*=1 “2 =1

where )
a;
Bi(t) = ———2—, i=1,.,Cpip), 37
(t) S o () 1(2) (37)
Oéz'(t) = ei(t) . hi(t), 1= 1, ---acwl(t)a (38)

where learning coefficients §;(t), ai(t), €(t), and h;(¢) all belong to range (0,1], such
that «;(t) < min{e;(t), hi(t)}, where, in line with Kohonen'’s first and second learning
constraints (see Section 9): i) adaptation step ¢;(t) is expected to decrease monotoni-
cally with time; and ii) neighborhood function h;(t) is expected to: a) monotonically
decrease with the lattice distance between units PE; and PE,,;(;); and b) monotoni-
cally decrease its spread parameter with time. Inspired by the Neural-Gas algorithm
[9], FOSART computes ¢;(t) as

&i(t) = €i(t)(€i(t), Ri(t)) = €mi(ein/ema) <O min, (39)

where e;(t) is the PE-based epoch counter at presentation time ¢, e, is the user-
defined decay parameter described in Section 13.1, while variables €;,; and €f;, are
computed as

1> €ni = max{RZ-(t), 6} > €fin = min{Ri(t), 6} >0, (40)

where parameter € is the maximum lower limit for the learning rate (e.g., € = 0.005
is fixed by the human designer). Coefficient €;(¢) is monotonically non-increasing
with PE-based (local) epoch counter e;(¢) and monotonically non-decreasing with
R;(t). Owing to the exploitation of R;(t) in Equation (40), €;(t) depends on the set
of distances between the input pattern and prototypes belonging to PEs connected to
the winner. This dependency between the learning step size and the set of distances
between the input pattern and template vectors relates FOSART to the “maximum-
entropy” clustering algorithm [9]. In Equation (37), term h;(¢) reduces the overlap
between receptive fields according to the following expression, inspired by the Neural-
Gas algorithm [9]

hi(t) = hi(B)[ri(2), vi(ei(?))] = e /), (41)

where 7;(t) is the neighborhood ranking of node PE; and +;(e;(t)) is a spread value
computed as a monotonically decreasing function of time, e.g.,

Yi(€i(t)) = Yini (Y pin [ Yini) 6D/ emin, (42)

where vin; > 7vfin. Widely employed settings for these parameters are v;,; = 5, and
Ytin = 0.01 [9], [64]. Thus, learning coefficient h;(t) is monotonically decreasing with
neighborhood ranking 7;(t) and PE-based epoch counter e;(t) if i # wl(t).

Step 4(b). Non-resonance condition: new processing element allocation. If reso-
nance condition (33) is not satisfied, i.e., “resonance” does not occur and one new processing

31



unit is dynamically allocated to match external expectations. Thus, the PE counter is in-
creased as ¢ = ¢+ 1, and a new node PE, is allocated to match input pattern Xgt¢, such
that T.(t + 1) = Xk (¢). As a consequence, FOSART requires no randomization of initial
templates since initial values are data-driven. Moreover, the PE-based (local) epoch counter
ec(t) is initialized to 0. The PE best-matching counter, bm,, is initialized to 1.

Step 5. Controls at epoch termination. When the entire input data set is presented to
the system, i.e, if [(t%mn) == 0], where operator % computes the remainder of ¢ divided by
n, then the following operations occur: a) PE-based time (epoch) counters are incremented
by one as e;(t + 1) = e;i(t) + 1, i = 1,...,¢; b) superfluous cells are removed, such that if
PE; features local counter brmn; == 0, i = 1, ..., ¢, i.e., PE; has not been the best-matching
unit for any pattern assignment during the latest processing epoch, then it is removed, and
PE counter c is decreased as ¢ = ¢ — 1; ¢) superfluous synaptic links are removed, such that
Vi € {1,c}, Yh € {1,c}, if synapse S;, exists and features sbm; ) == 0, i.e., synapse S; p,
has not been selected by any pattern assignment during the latest processing epoch, then
it is removed; d) all PE-based local counters bm;, i = 1, ..., ¢, are reset to zero; and e) all
synapse-based local counters sbm; , Vi € {1,c}, Vh € {1,c}, are reset to zero.

Step 6. If PE-based local counter e;(t) > emin, © = 1,...,c¢, then stop. Otherwise, goto
Step 1.

13.3 Limitations

e Since FOSART does not minimize any known objective function, its termination is not
based on optimizing any model of the process or its data [7].

e FOSART is order-dependent due to on-line learning and example-driven neuron genera-
tion.

e It combines mini-batch learning techniques (for neuron generation and removal, and for
synapse removal) with example-driven generation of synapses.

e FOSART employs one up to three parameters defined by the human designer rather than
by the user. According to [28], these parameters can be considered as significant prior struc-
tures (see Section 4.3), i.e., an important property of the model that must be “hard-wired
or built-in, perhaps to be tuned later by experience, but not learned in any statistically
meaningful way” [71].

o In several tests regarding satellite image clustering that are in progress, FOSART features
Mean Square Error values larger than those obtained with SOM [72].

13.4 Advantages

e Owing to its soft competitive implementation, FOSART is expected to be less prone to
being trapped in local minima and less likely to generate dead units than hard competitive
alternatives [9], [27], [62]. In the tests provided, the system is stable with respect to small
changes in input parameters and in the order of the presentation sequence [28], [29].

e Due to its neuron removal strategy, it is robust against noise, i.e., it avoids overfitting.

e Feed-back interaction between attentional and orienting subsystems allows FOSART to
self-adjust its size depending on the complexity of the clustering task.

32



e Distinct sample vectors are employed to initialize reference vectors. This choice reduces
the risk of dead unit formation and may reduce computation time with respect to random
initialization.

e In the tests provided involving the 2-D Simpson data set (24 patterns) [8], the 2-D two-
spirals data set (194 patterns, 2 classes) [73], a 3-D digitized human face (9743 patterns)
[18], and the 4-D IRIS data set (150 patterns, 3 classes), FOSART performances are com-
petitive with or better than those of other clustering models found in the literature (VQ,
Fuzzy Min-Max, FCM, FLVQ, FALVQ, GLVQ-F, ING). For example, typical error rates
for unsupervised categorization of the IRIS data set are 10-16 mistakes [6]. In this case
FOSART, scoring 11 mismatches, performs better than: i) the Fuzzy Min-Max neural net-
work model, where the smallest number of misclassified patterns is 18 when the number
of clusters is 3 [8]; ii) the off-line Fuzzy c-means algorithm affected by 15 misclassifications
[74]; iii) the on-line Kohonen VQ algorithm affected by 17 misclassifications [74]; iv) the
class of on-line FALVQ algorithms, affected by 16 misclassifications [54]; and v) the on-line
GLVQ-F algorithms, affected by 16 misclassifications [59].

e FOSART is computationally efficient because its computation time increases linearly as
(c+ No. of links).

e FOSART can be employed in: a) vector quantization, b) density function estimation,
and c) structure detection in input data to be mapped in a topologically correct way onto
submaps of an output lattice pursuing dimensionality reduction.

13.5 Architectural features

The main features of FOSART are summarized in Table 2.

14 Conclusions

Comparison of clustering models, synthesized in Table 2, shows that SOM, GNG and FOS-
ART develop a soft competitive adaptation strategy, i.e., these models satisfy the definition
of fuzzy clustering network adopted herein. Paradoxically, among these architectures only
FOSART exploits fuzzy set-theoretic concepts (such as absolute and relative fuzzy mem-
bership functions). Fuzzy ART employs a hard competitive adaptation mechanism. FLVQ
is affected by asymptotic misbehaviors. Since GNG and FOSART inherit several features
from SOM, the importance of SOM is outstanding. Several conclusions stem from our crit-
ical review.

1) The “fuzziness” of SOM shows that a network exploiting local rules derived from neuro-
physiological evidence can verify the definition of fuzzy clustering network proposed in this
work, although no fuzzy set-theoretic concept is explicitly adopted.

2) An effective soft competitive strategy makes PEs mutually coupled in terms of both com-
petitive and cooperative contextual effects; in architectural terms, PEs mutually coupled
on the basis of their context feature horizontal (intra-layer) connections. While intra-layer
connections are found in every biological cognitive system, their explicit adaptation has
been introduced in artificial neural networks only recently [49].

33



3) Within the framework of the multi-disciplinary science of artificial complex systems
[44], fuzzy set-theoretic concepts may be adopted to model soft competitive learning mech-
anisms that are considered useful by the human developer, although they may be difficult
to justify on the basis of objective probabilities. These useful mechanisms may be identified
in advance by neurophysiological studies of biological neural systems (see point (1) above).

34



Table 2:

H Functional H Clustering Algorithms H
features
I I SOM [ FLVQ [ Fuzzy ART | GNG [ FOSART I
network-based time, time time, lear.rate RFS
(global) variables lear.rate
neuron-based RFC RFC, RFC RFC, RFC,
variables lear.rate lear.rate accum.error accum.error,
age,
lear.rate
connection-based N N N age age
variables
coop./competitive SC sct HC SC SC
RFC adaptation
on-line/batch on-line batch on-line on-line on-line
RFC adaptation
neuron generation N N example- mini- example—
strategy driven batch driven
neuron removal N N N mini- mini-
strategy batch batch
link generation N N N example- example-
strategy driven driven
link remowval N N N mini- mini-
strategy batch batch
neuron receptive RFC RFC RFC RFC RFC,
field information RFS
inter-pattern distance Eucl.dist. inverse peculiar? Eucl.dist. Gaussian
or similarity measure Eucl.dist. basis funct.
size of the neuron NB NB UB NB UB
receptive field
learning rate MTD peculiar® TCO TCO MTD
size of the update MTD D N TCH® TCH?
neighborhood
objective function N N N N N
minimization
fuzzy set-theoretic N AMF, AMF N AMF,
concepts RMF RMF
econet N N Y N Y
prior modular N N Y N Y
structure
self-organizing N’ N N Y Y
modular structure®
vector quantization Y Y Y Y Y
density estimation N N N Y Y
TPM N® N N Y Y

Legenda

N = No; Y = Yes;

SC = Soft Competitive (cooperative and competitive); HC = Hard Competitive (purely competitive);

NB = Not-Bounded; UB = Upper-Bounded;

RFC = Receptive Field Center; RFS = Receptive Field Spread;

AMF = Absolute Membership Function; RMF = Relative Membership Function;

MTD = Monotonically Time Decreasing; TCO = Constant in Time; TCH = Changes with Time;

TPM = Topology Preserving Mapping;

l; FLVQ’s learning strategy may be affected by asymptotic misbehaviors.

2 Fuzzy ART employs an interpattern similarity measurement that is not symmetrical.

3: In descending FLVQ, for increasing training epochs the learning rate of the winner unit tends to increase (see Section
10.2).

4: Resonance neighborhood consists of neurons directly connected to the winner.

5. Resonance neighborhood consists of neurons belonging to the same map as the winner.

6. generation of disjointed maps.

7. SOM maps different input patterns into spatially segregated areas of the output lattice, i.e., these segregated areas are
not topologically disjointed.

8. SOM performs TPM iff the dimension of the input space is not larger than the dimension of the output lattice.

35



References

[1] A. Baraldi and F. Parmiggiani, “Fuzzy clustering: critical analysis of the contextual
mechanisms employed by three neural network models,” in SPIE Proc. on Applications
of Fuzzy Logic Technology 111, B. Bosacchi, J. Bezdek, Eds., SPIE vol. 2761, pp. 261-270,
1996.

[2] Anonymous referee, IEEE Trans. on Neural Networks, 1997.

[3] S. Mitra and S. K. Pal, “Self-organizing neural network as a fuzzy classifier,” IEEE
Trans. on Systems, Man, and Cybernetics, vol. 24, no. 3, pp. 385-399, 1994.

[4] T. Kohonen,“The self-organizing map,” Proceedings of the IEEE vol. 78, no. 9, pp.
1464-1480, 1990.

[5] T. Kohonen, Self-organizing Maps. 2nd Edition, Springer Verlag, Berlin, 1997.

[6] J. C. Bezdek and N. R. Pal, “T'wo soft relative of learning vector quantization,” Neural
Networks, vol. 8, no. 5, pp. 729-743, 1995.

[7] E. C. Tsao, J. C. Bezdek and N. R. Pal.,“Fuzzy Kohonen clustering network,” Pattern
Recognition, vol. 27, no. 5, pp. 757-764, 1994.

[8] P. K. Simpson, “Fuzzy Min-Max neural network-Part 2: Clustering,” IEEE Trans. on
Fuzzy Systems, vol. 1, no. 1, pp. 32-45, 1993.

[9] T. M. Martinetz, S. G. Berkovich and K. J. Schulten,“ Neural-gas network for vec-
tor quantization and its application to time-series prediction,” IEEE Trans. on Neural
Networks, vol. 4, no. 4, pp. 558-569, 1993.

[10] H. Ritter, T. M. Martinetz, and K. J. Schulten, Neural computation and self-organizing
maps. Reading, MA: Addison-Wesley, 1992.

[11] M. Porat and Y. Zeevi, “The generalized Gabor scheme of image representation in
biological and machine vision,” IEEFE Trans. Pattern Anal. Machine Intell., vol. 10, no.
4, pp. 452-467, July 1988.

[12] K. Rose, F. Guerewitz, and G. Fox, “Statistical mechanics and phase transitions in
clustering,” Physical Rev. Letters, vol. 65, no. 8, pp. 945-948, 1990.

[13] K. Rose, F. Guerewitz, and G. Fox, “A deterministic approach to clustering,” Pattern
Recognition Letters, vol. 11, no. 11, pp. 589-594, 1990.

[14] S. P. Luttrell, “Derivation of a class of training algorithms,” IEEE Trans. on Neural
Networks, vol. 1, pp. 229-232, 1990.

[15] S. P. Luttrell, “A Bayesian analysis of self-organizing maps”, Neural Computation, vol.
6, pp. 767-794, 1994.

[16] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Englewood Cliffs, New
Jersey: Prentice Hall, 1988.

36



[17] H. Kumazava, M. Kasahara, and T. Namekawa, “A construction of vector quantisers
for noisy channels,” Elect. Eng. Jpn., vol. 67B, pp. 39-47, 1984.

[18] M. Fontana, N. A., Borghese, and S. Ferrari, “Image reconstruction using improved
Neural-Gas,” in Proc. Italian Workshop on Neural Networks ’95, M. Marinaro and R.
Tagliaferri Eds. Singapore: World Scientific, pp. 260-265, 1995.

[19] G. Carpenter, S. Grossberg and D.B. Rosen, “Fuzzy ART: fast stable learning and
categorization of analog patterns by an adaptive resonance system,” Neural Networks,
vol. 4, pp. 759-771, 1991.

[20] G. Carpenter, S. Grossberg, N. Maukuzon, J. Reynolds and D. B. Rosen, “Fuzzy
ARTMAP: A neural network architecture for incremental supervised learning of analog
multidimensional maps,” IEEE Trans. on Neural Networks, vol. 3, no. 5, pp. 698-713,
1992.

[21] G. A. Carpenter and S. Grossberg, “A massively parallel architecture for a self-
organizing neural pattern recognition machine,” Computer Vision, Graphics, and Image
Processing, vol. 37, pp- 54-115, 1987.

[22] G. A. Carpenter and S. Grossberg, “ART?2: Self-organization of stable category recog-
nition codes for analog input patterns,” Applied Optics, vol. 26, no. 23, pp. 4919-4930,
1987.

[23] C. Hung and S. Lin, “Adaptive Hamming Net: a fast-learning ART 1 model without
searching,” Neural Networks, vol. 8, no. 4, pp. 605-618, 1995.

[24] A. Baraldi and E. Alpaydin, “Simplified ART: A new class of ART algorithms,” Inter-
national Computer Science Institute, Berkeley, CA, TR-98-004.

[25] A. Baraldi and F. Parmiggiani, “Fuzzy combination of the Kohonen and ART neural
network models to detect statistical regularities in a random sequence of multi-valued
input patterns,” in Proc. Int. Conf. on Neural Networks ’97, Houston, TX, vol. 1, pp.
281-286, 1997.

[26] B. Fritzke, “A growing neural gas network learns topologies,” in Advances in Neural
Information Processing Systems 7, G. Tesauro, D. S. Touretzky, and T. K. Leen, Eds.
Cambridge, MA: MIT Press, pp. 625-632, 1995.

[27] B. Fritzke, “Some competitive learning methods”, Draft document, http : //www.
neuroin formatik.ruhr —uni—bochum.de/ini/V DM/ research/gsn/DemoGN G, 1998.

[28] A. Baraldi and F. Parmiggiani, “A fuzzy neural network model capable of generat-
ing/removing neurons and synaptic links dynamically,” in Proc. of the II Italian Work-
shop on Fuzzy Logic, Bari, Italy, March 1997, P. Blonda, M. Castellano and A. Petrosino,
Eds. Singapore: World Scientific, 1998.

[29] A. Baraldi and F. Parmiggiani, “Novel neural network model combining radial basis
function, competitive Hebbian learning rule, and fuzzy simplified adaptive resonance

37



theory”, in Proc. SPIE’s Optical Science, Engineering and Instrumentation ’97: Appli-
cations of Fuzzy Logic Technology 1V, San Diego, CA, vol. 3165, pp. 98-112, 1997.

[30] Y. Pao, Adaptive pattern recognition and neural networks. Reading, MA: Addison-
Wesley, 1989.

[31] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete
data via the EM algorithm,” J. Royal Statist. Soc. Ser. B, vol. 39, pp. 1-38, 1977.

[32] E. Alpaydin, “Soft vector quantization and the EM algorithm,” Neural Networks, 1998,
in press.

[33] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford, UK: Clarendon Press,
1995.

[34] C. M. Bishop, M. Svensen, and C. Williams, “GTM: a principled alternative to the
self-organizing map,” in Proc. Int. Conf. on Artificial Neural Networks, ICANN’96.
Springer-Verlag, pp. 164-170, 1996.

[35] V. Cherkassky and F. Mulier, Learning From Data: Concepts, Theory, and Methods.
New York: Wiley, 1998.

[36] V. Vapnik, The Nature of Statistical Learning Theory. New York: Springer-Verlag,
1995.

[37] C.Burges, “A tutorial on Support Vector Machines for pattern recognition,” submitted
to Data Mining and Knowledge Discovery, 1998.

[38] M. J. Jordan and R. A. Jacobs, “Hierarchical mixture of experts and the EM algo-
rithm,” Neural Computation, vol. 6, pp. 181-214, 1994.

[39] M. J. Jordan and C. M. Bishop, “An introduction to graphical models and machine
learning,” draft document, 1998.

[40] M. Bianchini and M. Gori, “Optimal learning in artificial neural networks: a review of
theoretical results,” Neurocomputing, vol. 13, no. 2-4, pp. 313-346, 1996.

[41] M. Bianchini, P. Frasconi, M. Gori, “Learning without local minima in radial basis
function networks,” IEEE Trans. Neural Networks, vo. 6, no. 3, pp. 749-756, 1995.

[42] T. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

[43] J. Buhmann, “Learning and data clustering,” in Handbook of Brain Theory and Neural
Networks, M. Arbib, Ed. Bradford Books / MIT Press, 1995.

[44] R. Serra and G. Zanarini, Complez systems and cognitive processes. Berlin, Germany:
Springer-Verlag 1990.

[45] R. Llinas and P. Churchland, The Mind-Brained Continuum. Cambridge, MA: MIT
Press, 1996.

38



[46] B. Happel and J. Murre, “Design and evolution of modular neural network architec-
ture,” Neural Networks, vol. 7, no. 6/7, pp. 985-1004, 1994.

[47] M. L. Minsky and S. A. Papert, Perceptrons - Ezpanded Edition. Cambridge, MA: MIT
Press, 1988.

[48] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning internal representations
by error propagation,” in Parallel Distributed Processing, D. E. Rumelhart and J. L.
McClelland, Eds. Cambridge MA: MIT Press, 1986.

[49] T. M. Martinetz and K. J. Schulten, “Topology representing networks,” Neural Net-
works, vol. 7, no. 3, pp. 507-522, 1994.

[50] D. Parisi, “La scienza cognitiva tra intelligenza artificiale e vita artificiale,” in Neu-
roscienze e Scienze dell’Artificiale: dal Neurone all’Intelligenza E. Biondi et al., Eds.
Bologna, Italy: Patron, pp. 321-341, 1991.

[61] Y. Zheng and J. F. Greenleaf, “The effect of concave and convex weight adjustments
on self-organizing maps,” IEEE Trans. on Neural Networks, vol. 7, no. 1, pp. 87-96,
1996.

[52] J. J. Hopfield, “Neural networks and physical systems with emergent collective com-
putational abilities,” Proc. National Academy of Sciences, vol. 74, pp. 2554-2558, 1982.

[63] T. Masters, Signal and Image Processing With Neural Networks. A c++ Sourcebook.
New York: Wiley, 1994.

[54] N. B. Karayiannis and P. Pai, “Fuzzy algorithms for learning vector quantization,”
IEEFE Trans. on Neural Networks, vol. 7, no. 5, pp. 1196-1211, 1996.

[55] N. B. Karayiannis, and M. Ravuri, “An integrated approach to fuzzy learning vector
quantization and fuzzy c-means clustering”, in Intelligent Engineering Systems Through
Artificial Neural Networks, C. H. Dagli et al., Eds., vol. 5, New Yoork, NY: ASME
Press, pp.247-252,1995.

[66] N. B. Karayiannis, J. C. Bezdek, “An integrated approach to fuzzy learning vector
quantization and fuzzy c-means clustering”, IEEE Trans. on Fuzzy Systems, vol. 5, no.
4, pp. 622-628, 1997.

[67] N. B. Karayiannis, “ Learning vector quantization: A review,” Int. Journal of Smart
Engineering System Design, vol. 1, pp. 33-58, 1997.

[58] J. C. Bezdek, and N. R. Pal,“ Generalized clustering networks and Kohonen’s self-
organizing scheme,” IEEFE Trans. on Neural Networks, vol. 4, no. 4, pp. 549-557, 1993.

[59] N. B. Karayiannis, J. C. Bezdek, N. R. Pal, R. J. Hathaway and P. Pai, “Repair to
GLVQ: A new family of competitive learning schemes, IEEFE Trans. on Neural Networks,
vol. 7, no. 5, pp. 1062-1071, 1996.

[60] A. Baraldi, P. Blonda, F. Parmiggiani, G. Pasquariello and G. Satalino, “Model tran-
sitions in descending FLVQ,” IEEE Trans. on Neural Networks, vol. 9, no. 5, 1998.

39



[61] R. Krishnapuram and J. M. Keller, “A possibilistic approach to clustering,” IEEE
Trans. on Fuzzy Systems, vol. 1, no. 2, pp. 98-110, 1993.

[62] R. N. Davé and R. Krishnapuram, “Robust clustering method: a unified view,” IEEE
Transactions on Fuzzy Systems, vol. 5, no. 2, pp. 270-293, 1997.

[63] M. Barni, V. Cappellini, and A. Mecocci, “Comments on a possibilistic approach to
clustering,” IEEE Trans. Fuzzy Systems, vol. 4, no. 3, pp. 393-396, 1996.

[64] F. Ancona, S. Ridella, S., Rovetta, and R. Zunino, “On the importance of sorting in
Neural Gas training of vector quantizers,” in Proc. International Conference on Neural
Networks ’97, Houston, TX, June 1997, vol. 3, pp. 1804-1808, 1997.

[65] E. Erwin, K., Obermayer, and K. Schulten, “Self-organizing maps: ordering, conver-
gence properties and energy functions,” Biol. Cybernetics, vol. 67, pp. 47-55, 1992.

[66] J. R. Williamson, “Gaussian ARTMAP: a neural network for fast incremental learning
of noisy multidimensional maps,” Neural Networks, vol. 9, no. 5, pp. 881-897, 1996.

[67] J. R. Williamson, “A constructive, incremental-learning network for mixture model ing
and classification,” Neural Computation, vol. 9, pp. 1517-1543, 1997.

[68] ftp://ftp.sas.com/pub/neural/FAQ.

[69] F.Y. Shih, J. Moh and F. Chang, “ A new ART-based neural architecture for pattern
classification and image enhancement without prior knowledge,” Pattern Recognition,
vol. 25, no. 5, pp. 533-542, 1992.

[70] J. Huang, M. Georgiopoulos and G. L. Heileman, “Fuzzy ART properties,” Neural
Networks, vol. 8, no. 2, pp. 203-213, 1995.

[71] S. Geman, E. Bienenstock and R. Dourstat, “Neural networks and the bias/variance
dilemma,” Neural Computation, vol. 4, no. 1, pp. 1-58, 1992.

[72] P. Blonda, G. Satalino, A. Baraldi and A. Bognani, “Neuro-fuzzy analysis of remote
sensed antarctic data,” in Proc. of the II Italian Workshop on Fuzzy Logic, Bari, Italy,
March 1997, P. Blonda, M. Castellano, A. Petrosino, Eds. Singapore: World Scientific,
1998.

[73] B. Fritzke, “Growing cell structures - A self-organizing network for unsupervised and
supervised learning,” Neural Networks, vol. 7, no. 9, pp. 1441-1460, 1994.

[74] S. Kim and and S. Mitra, “Integrated Adaptive Fuzzy Clustering (IAFC) algorithm,”
in Proc. of the Second IEEE International Conference on Fuzzy Systems, vol. 2, pp.
1264-1268, 1993.

[75] B. Fritzke. Personal communication, 1997.

[76] B. Fritzke., “The LBG-U method for vector quantization - An improvement over LBG
inspired from neural networks,” Neural Processing Letters, vol. 5, no. 1, 1997.

40



