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Abstract

Whereas most state-of-the-art speech recognition systems use spectral or cepstral
representations of the speech signal, there have also been some promising attempts
at using articulatory information. These attempts have been motivated by two major
assumptions: first, coarticulation can be modeled more naturally due to the inher-
ently asynchronous nature of articulatory information. Second, it is assumed that
the overall patterns in the speech signal caused by articulatory gestures are more
robust to noise and speaker-dependent acoustic variation than spectral parameters.
A third assumption can be made, viz. that acoustic and articulatory representations
of speech can supply mutually complementary information to a speech recognizer,
in which case the combination of these representations might be beneficial. Previ-
ously, articulatory-based speech recognizers have exclusively been developed for clean
speech; the potential of an articulatory representation of the speech signal for noisy
test conditions, by contrast, has not been explored. Moreover, there have barely been
attempts at systematically combining articulatory information with standard acoustic
recognizers. This paper investigates the second and third of the above assumptions
by reporting speech recognition results on a variety of acoustic test conditions for
individual acoustic and articulatory speech recognizers, as well as for a combined
system. On a continuous numbers recognition task, the acoustic system generally
performs equal to, or slightly better than, the articulatory system, whereas the artic-
ulatory system shows a statistically significant improvement on noisy speech with a
low signal-to-noise ratio. The combined system nearly always performs significantly
better than either of the individual systems.
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1 Introduction

1.1 Motivation

Standard state-of-the-art automatic speech recognition (ASR) systems use a spectral
(e.g. Linear Predictive Coefficients, LPC) or cepstral (e.g. mel-frequency cepstral co-
efficients, MFCC) representation of the acoustic speech signal. However, there have
also been various attempts at employing articulatory parameterizations of speech. An
articulatory, as opposed to an acoustic, representation reflects the temporal evolution
of the articulatory gestures by which the speech signal has been produced. There
are two major reasons why such a representation might prove advantageous in an
ASR system: first, it allows coarticulatory phenomena to be modeled more naturally.
Coarticulation is the modification of the content of a speech segment due to anticipa-
tion or preservation of adjacent segments and is caused by temporal overlaps between
parallel articulatory gestures. A representation which directly reflects these gestural
constellations could offer greater potential for analyzing coarticulatory phenomena
and for recovering the original sequence of speech segments.

Second, articulatory gestures are independent of acoustic variation such as speaker-
dependent spectral differences, background noise, and room reverberation. Different
speakers have different vocal tract lengths and pitch characteristics, causing a shift
in spectral parameters. Noise and reverberation equally distort acoustic representa-
tions. The overall patterns created by articulatory gestures, however, are not affected
to the same extent. Lip rounding, for example, causes a downward shift of all for-
mants across frequency, regardless of vocal tract length or additional noise. If an
articulatory representation can successfully be constructed to reflect these patterns,
it should provide a more robust representation in acoustically unstable environments.

A third assumption can be made, namely that acoustic and articulatory repre-
sentations are complementary sources of information. Phonetic classes which are not
easily separable in acoustic space may be separable in an articulatory feature space
and vice versa. In this case, the different recognition systems will produce differ-
ent errors. Whenever classifiers produce different errors, their successful combination
usually exceeds the classification accuracy rates obtained by any of the individual
classifiers. Thus, a combination of an articulatory with an acoustic recognizer might
improve overall performance.

Previously, only the first assumption has been investigated. To our knowledge,
the use of articulatory information has not systematically been tested on noisy and/or
reverberant speech. In this paper, a variety of acoustic conditions (“clean” speech?,
reverberant speech, and speech overlaid by pink noise at various speech-to-noise ratios
(SNRs)) will be investigated.

Furthermore, very few attempts have been made at combining articulatory and

L“Clean” speech refers to speech without stationary additional (artificially added) noise. However,
occasional background noise can and does occur in the corpus used for the present study even under
“clean” conditions.



acoustic information in a speech recognition system. In this paper, we will look at
several ways of combining acoustic and articulatory classifiers.

1.2 Previous work
Research on articulatory information in ASR falls into four different categories:

1. recognition systems based on heuristically defined articulatory features

2. attempts to utilize actual, physically recorded articulatory data, or parameters
derived thereof

3. articulatory-based acoustic preprocessing

4. approaches using nonlinear vocal tract shape transfer functions.

Systems in the first category [14, 11, 12, 23, 20] make use of a pre-defined set
of features describing articulation, e.g. voiced, voiceless, fricative, nasal etc. These
features are detected from the parameterized acoustic signal by means of neural net-
works, HMMs, or some other statistical classifier. During the subsequent recognition
stages, articulatory features are largely used in the same way as acoustic features,
i.e. they are input to a second, higher-level classifier detecting standard speech seg-
ments like context-dependent phones.

The systems in the second category [27, 34, 37, 38] use articulatory parameters
obtained directly by physical measurements, such as X-ray data. In cases where these
are not available for the test set, classifiers are trained to map the acoustic signal to
these parameters on the training set; during testing, the output parameters from
these classifiers are used instead of direct articulatory measurements.

The third approach [4, 5, 15, 1] seeks to emphasize those properties of the speech
signal which correspond to articulatory and acoustic-phonetic categories by specially
designed preprocessing, such as detection of energy in specific frequency regions which
are considered most informative for the categories in question.

Finally, the fourth approach [13, 29, 30, 31, 32] attempts to infer vocal tract shapes
from the acoustic signal by nonlinear statistical functions, based on speech production
theories like Articulatory Phonology [6] or the Distinctive Regions Model [25].

Each of the above approaches has its strengths and weaknesses. Articulatory fea-
ture sets have the disadvantage of quantizing articulatory information rather than
providing continuous measurements of articulatory parameters. This may not be suf-
ficient to classify inherently continuous speech segments, e.g. vowels. Second, there is
no principled a priori way of devising an optimal feature set. Certain features which
may seem necessary to distinguish between phonetic segments might in practice turn
out to be superfluous. Thus, data-driven reduction of the feature set (e.g. Princi-
pal Components Analysis (PCA) or Linear Discriminant Analysis (LDA)) is usually
required. Finally, the mapping from acoustics to articulation is not biunique: vari-
ous articulatory constellations may produce highly similar acoustic signals [35, 3, 8].
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This entails the problem of reliably estimating articulatory features from the acous-
tic signal as well. On the other hand, high detection rates have been reported for
articulatory features. Typically, frame accuracy rates range between 70% and 95%
(e.g. [14, T]), with place features having the lowest and voicing features having the
highest detection rates.

Articulatory parameters obtained from actual physical measurements describe ar-
ticulation in a more fine-grained manner. However, these measurements are usually
not available during testing and thus have to be estimated from the acoustic signal.
Thus, this approach faces the same difficulties as the articulatory feature method-
ology. Moreover, there are as yet very few articulatory databases that approximate
the size of the corpora typically used in speech recognition. As a consequence, this
approach has so far only been applied to fairly small classification tasks, like vowel
identification [37].

Articulatory preprocessing relies on extracting information specific to certain fre-
quency regions. A major problem of this approach is that some frequency regions may
be missing due to bandpass filtering (as in telephone speech) or may be masked by
noise. The preprocessing strategy will also be affected by speaker-dependent spectral
shifts, thus requiring speaker normalization. As above, this approach has only been
applied to limited tasks like classification of sounds into broad phonetic categories [4].
We are unaware of any application to actual word recognition on a sizeable corpus.

The fourth approach has so far mainly concentrated on developing appropriate
statistical mapping functions for the acoustic-articulatory inversion problem and for
the modeling of articulatory trajectories. No quantitative word recognition experi-
ments have so far been reported.

In this paper we present an articulatory feature-based recognizer which is similar
to the systems in the first category. In Section 2 this system will be described in
detail. Preliminary word recognition results will be reported and compared to results
obtained using a standard acoustic recognizer. Section 3 presents a more detailed error
analysis which reveals that the articulatory and the acoustic systems show different
error patterns. This leads to the investigation of various frame-level combination
methods for classifiers, described in Section 4. Word recognition results using a
combined system are be presented which exceed the performance of either of the
individual systems. Section 5 gives a summary and suggestions for future work.



2 Articulatory Feature Baseline System

The articulatory baseline system described in this section is conservative in the sense
that it makes use of heuristically defined articulatory features. The motivation for
this approach is not to reconstruct as faithfully as possible the articulatory gestures
responsible for the production of the signal. Rather, the goal is to develop a represen-
tation which describes the most essential characteristics of the articulatory process,
which, moreover, can robustly be extracted from the acoustic signal and which can
easily be mapped to a lexical representation. Previous studies have shown that ar-
ticulatory features can be extracted from the speech signal with a high degree of
accuracy. One reason for this is that relative independence between features can be
exploited by using different feature classifiers in parallel. In each of these classifiers,
only a small number of classes need to be distinguished. Moreover, training data
for these classes can be shared across phonemes, as articulatory features typically
occur in more than one phoneme. Frame-level classification rates for each of these
classifiers should therefore be higher than for higher-level units like phonemes. Thus,
although these features are an abstraction from the acoustic signal in a similar way
that phonemes are an abstraction, they constitute a better choice of classification unit
with regard to the number of classes and the amount of training material available.

Furthermore, the use of relatively abstract articulatory units is advantageous in
that no explicit preprocessing strategy or vocal tract shape estimation function is
required. Articulatory classifiers are expected to extract whichever information is
common to the patterns presented to it, regardless of the specific type of acoustic
preprocessing. This should prove beneficial especially in noisy environments.

Finally, articulatory features can easily be mapped to lexical representations be-
cause they provide information which can be directly associated with higher-level
units like phonemes or syllables.

2.1 Feature Set

As a first step, a feature set was chosen to encode all phonemes in the ICSI phoneme
set (see Appendix). Most of the distinctions between these phonemes were preserved,
with the exception of syllabic vs. non-syllabic sonorants (/I/-/el/,/m/-/em/,/n/-
/en/,/r/-/er/), which are mainly distinguished by durational as opposed to articula-
tory characteristics. Furthermore, certain vowel distinctions (/iy/-/ih/, /uw/-/uh/,
/aa/-/ao/) were not preserved. This was done purposefully in order to limit the set
of features as far as possible. The fact that some phonemes are assigned identical
feature representations should result in those phonemes receiving similar classification
scores; the conflicting choice should then be resolved by higher-level lexical search.
The features employed are shown in Table 1. Voicing features describe the state
of the glottis, manner features describe the manner of articulation in the oral-nasal
tract. Place of articulation refers to the place of the constriction in the vocal tract or
to the tongue height during vowel production. Front-back characterizes the position



‘ Feature group ‘ Feature values ‘

voicing +voice, -voice, sil

manner stop, vowel, lateral, nasal, fricative, approximant, sil
place dental, labial, coronal, retroflex, velar, glottal,high, mid low, sil
front-back front, back, nil, sil

rounding +rounded, -rounded, nil, sil

Table 1: Articulatory features for the ICSI phoneset

of the tongue on the horizontal axis, and rounding features describe lip rounding.
In all groups, the “nil” value is assigned to those segments for which this feature is
not relevant. Furthermore, all feature groups additionally include a “silence (sil)”
category.

2.2 System Design

For each of the above feature dimensions, a three-layer Multi-Layer-Perceptron (MLP)
is used as a classifier. The input consists of a set of acoustic feature vectors spanning
the current analysis frame and adjacent context frames. The output layer contains
one output unit for each feature value in the feature group (two for wvoicing, seven
for manner, etc.). Variable hidden layer sizes and context sizes are used (cf. Tables 2
and 3). These were selected empirically with the objective to maximize classification
accuracy while minimizing the number of parameters. The activation function is the
softmax function:

L eap(n)
) = S o)

where K is the number of units in the output layer.

The training labels for each of these networks consists of manually-produced
phoneme transcriptions, which were converted into articulatory feature transcrip-
tions by means of a conversion table (see Appendix). Each phoneme was mapped to
a particular combination of features according to canonical conversion rules. Each
MLP is then trained only on those labels that correspond to the features it encodes.
The acoustic training data corresponds to that of two acoustic recognizers which were
used as reference systems. These are based on RASTA and modulation spectrogram
(MODSPEC) preprocessing, respectively. Further details are provided below.

The feature MLPs generate a posteriori articulatory feature probabilities. In a
second stage, these are concatenated and used as input to another, higher-level ML P
which is trained on phoneme target labels. Thus, each articulatory feature vector,
together with a set of context frames, is mapped to a (56-dimensional) vector of
phoneme output probabilities. These are then passed on to an HMM-based decoder.
The architecture of this system is summarized in Figure 1.



Table 2: Number of hidden units and context frames for articulatory networks

(RASTA-based system)

Table 3: Number of hidden units and context frames for articulatory networks

‘ Network ‘ Context Size ‘ # HUs ‘

voicing 9 frames 50
manner 5 frames 100
place 9 frames 100
front-back 5 frames 100
rounding 5 frames 100
phoneme 9 frames 380

‘ Network ‘ Context Size ‘ # HUs ‘

voicing 9 frames 100
manner 9 frames 100
place 9 frames 100
front-back 9 frames 100
rounding 9 frames 100
phoneme 9 frames 480

(MODSPEC-based system)
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Figure 1: Architecture of the articulatory recognizer



The system as described above uses the full articulatory feature distributions
as input to the higher-level MLP. However, other approaches were tried, such as
a winner-takes-all scheme where only information about the winning output unit in
each articulatory network is passed on to the higher-level MLP. It was found, however,
that using the full distribution yielded significantly better results.

Whereas the individual articulatory feature MLLPs were trained using one training
pass only, the merger MLLP was trained using embedded training. This means that
after each training iteration the reference transcriptions are newly re-aligned with
the acoustic signals to yield an improved set of labels. These labels are then used
for the next training pass. It was found that embedded training did not yield any
improvement to the articulatory feature models.

2.3 Feature Optimization

In contrast to the acoustic baseline systems whose input vectors consist of 18 and 15
coefficients, respectively, the articulatory feature vectors have 28 dimensions. This
requires a larger number of parameters in the phoneme classification network. In
order to render the different systems more comparable with respect to the number of
parameters, the articulatory feature space should be reduced.

Many of the articulatory features are strongly correlated: Table 4 shows the fea-
ture pairs with the highest and lowest correlation values, respectively. Correlation
values are shown as mutual information in bits, where mutual information is defined
as

MI = —0.5logy(1 — p?)

where p is the correlation coefficient.

Strongly correlated feature pairs express redundancy and should thus be reducible
to either of the features. Notice incidentally that the feature correlations make pho-
netic sense: first, the silence feature shows a strong correlation across different fea-
ture groups. Second, features describing acoustically similar sounds (approzimant
and vowel) are correlated. Third, the particular structure of the phone set used is re-
flected by correlations between features such as -round and front (all front vowels are
unrounded in American English) or lack of correlation between e.g. velar and -voice
(there are no voiceless velar fricatives in American English). Finally, the structure
of the recognition vocabulary is reflected as well: although the combination of glottal
and -voice is perfectly possible (in /hh/), this sound does not occur in the canonical
recognition vocabulary.

Various possibilities of data reduction were investigated. First, principal compo-
nents analysis was applied to the output of the articulatory feature networks. The
full set of articulatory feature probabilities was replaced by the first 18 eigenvectors
of the covariance matrix. Embedded training was the applied to the reduced features
vectors. However, the word error rate on the test set decreased by 1% compared to
the original feature set. This seems to be primarily an interaction between the nature
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‘ Feature 1 ‘ Feature 2 ‘ MI ‘
r_nil r_sil 1.885419
v_sil -vol 1.884910
fsil psil 1.849378
fsil m_sil 1.833146
psil m _sil 1.796408
m_sil v_sil 1.769215
r_sil psil 1.707219
f_sil v_sil 1.679835
r_sil m_sil 1.610964
r_sil sl 1.555777
psil v_sil 1.532204
r_sil v_sil 1.522657
r_nil f_nil 1.521892
f_nil fsil 1.479224
v_sil +voi 1.424278
fsil +voi 1.398683

-round front 1.388266
m_sil fric 1.290937
fric -voil 1.260756
r_nil -round 1.255537

-round VO 1.241130
appr VO 1.187133
front VO 1.04891

+round back 1.046741
cor dent 0.039014
stop nas 0.036123
vel VO 0.032440
{ nil glott 0.028730
r_nil +voi 0.027184
vel cor 0.024288
f_nil +voi 0.023703
{_nil nas 0.014373
glott -vol 0.010463
r_sil vel 0.007139

-round vel 0.002917
glott \(¢ 0.000652

Table 4: Largest (top half) and smallest (bottom half) linear mutual information
values between articulatory features
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‘ Feature group ‘ Feature values ‘

manner stop, vowel, lateral, nasal, fricative

place labial, coronal, retroflex, velar, glottal high, mid low
front-back front, back

rounding +rounded, -rounded, nil

Table 5: Reduced set of articulatory features

of the data and the embedded training procedure. When no embedded training was
done, the original performance was matched by the PCA-reduced system.

Generally, embedded training yields better results than a simple training pass;
therefore, it would be desirable to make use of this training procedure. Moreover, a
data reduction method which uses a linear combination of the original feature space
requires all feature dimensions to be generated before the reduction transformation
can be applied. It would be more economical to select the articulatory features in
a way that does not require previous generation of all features and that does not
interact negatively with embedded training.

For this reason, a feature selection algorithm based on information-theoretic cri-
teria [22] was chosen, which is aimed at eliminating both irrelevant and redundant
features. This method successively eliminates features from the original feature set
while minimizing the relative entropy between the original distribution over the out-
put classes and the distribution resulting from the reduced feature set. Since the true
distributions are not available, approximate distributions are computed on the train-
ing set using the concept of conditional independence of features. It is assumed that
two features A and B are conditionally independent given a feature or set of features
C' it B gives no information about A beyond the information already contained in
C'. Conditional independence is determined by considering only a subset of features
in the original feature set, the so-called Markov Blanket. These are the k features
which generate the lowest relative entropy values over the output classes compared to
the distribution using only the feature to be eliminated. The parameter £ has to be
determined empirically. In our case, the best results were achieved with k = 3, for a
reduction of the feature set from 28 to 18 features. Using the reduced set of features
(shown in Table 5), the word error rate on the test set deteriorated only minimally

(0.1%).

Notice that this reduction entails the elimination of an entire feature network,
the voicing network. Moreover, all silence features were removed, which previously
showed a high degree of redundancy (cf. Table 4). Finally, the features dental and
approximant were eliminated, which characterize only few phonemes and can therefore
be considered potentially irrelevant.
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‘ System H Preprocessing ‘ #Coefficients ‘ Deltas ‘ Energy ‘ # HUs ‘

| RASTA 17 yes no 400
IT modspec 15 no no 560

Table 6: Acoustic baseline systems

‘ Network H voice ‘ manner ‘ place ‘ front-back ‘ round ‘ phone ‘

Accuracy || 88.99 | 82.04 | 77.24 81.93 82.85 | 76.1
# classes 2 7 10 4 4 56

Table 7: Frame-level articulatory feature accuracy rates - clean speech

2.4 Results

The articulatory feature system was compared to a number of different baseline sys-
tems using exclusively acoustic features. These are described in Table 6. Two different
types of acoustic preprocessing were used: (a) eight log-RASTA-PLP coefficients, and
deltas of those coefficients, and (b) 15 modulation spectrogram features. The latter
have shown to yield promising results on noisy and reverberant speech [9]. All sys-
tems are hybrid ANN/HMM recognizers and were trained using embedded training.
Baseline system II additionally uses an optimized lexicon which was obtained from
iterative re-alignment of the signals with labels generated from each training pass.

We used the OGI Numbers95 corpus [26] for the present study. This corpus
consists of continuously spoken numbers recorded over the telephone. The training
set for this database consists of 3590 sentences (about three hours), 327 of which
are used as a cross-validation set for MLP training. Tests were carried out on the
development test set, consisting of 1206 sentences (one hour). Six different versions
of the test set were employed:

e the normal, “clean” test set

o the test set digitally reverberated with 0.5 seconds reverberation time

o the test set overlaid by added pink noise at a SNR of 30 dB, 20 dB, 10 dB and
0 dB, respectively

Word recognition was carried out using an HMM-based decoder (y0) and a back-off
bigram language model. Word recognition results are based on first-best decoding.

Table 7 gives the frame-level accuracy rates for articulatory feature detection for
each network. It is obvious that the detection rates correlate with the number of
classes that have to be distinguished, yet each rate is well above average and higher
than the corresponding frame-level phoneme classification accuracy.
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‘ System H WER ‘ INS ‘ SUB ‘ DEL ‘ # parameters (phone network) ‘

baseline [ 8.4 2.0 4.7 1.7 | 83600
AF 8.9 1.5 | 54 2.0 | 82840

Table 8: Word error rates - clean speech

‘ Network H voice ‘ manner ‘ place ‘ front-back ‘ round ‘ phone ‘

Accuracy || 79.78 | 67.10 [60.96 | 71.02 | 70.89 [ 64.6 |

Table 9: Frame-level accuracies for articulatory features - reverberant speech

Word error rates for clean speech are shown in Table 8. The difference between
the word error rates of the baseline system and the articulatory feature (AF) system
is not significant.?

The reverberation experiments were carried out on a digitally reverberated version
of the clean test set using an impulse response measure in an echoic room (0.5 secs
reverberation time). Feature accuracy rates and word error rates are shown in Tables
9 and 10. As can be seen, the difference in word error rate between the articulatory
and the acoustic system is non-significant.

The baseline system for this test set uses 15 modulation spectrogram features,
560 HUs and a softmax output function. It was trained using an embedded training
procedure. The articulatory features were trained using identical preprocessing; the
number of HUs and the context size remained the same. Both the feature accuracy
rates and the word error rates degenerate due to the mismatch between training and
testing conditions.

For the noise experiments, pink noise was added to the clean test set at four differ-
ent speech-to-noise ratios: 0 dB, 10 dB, 20 dB, and 30 dB. Both the acoustic baseline
and the articulatory system are identical to the systems used in the reverberant test
case. The corresponding feature accuracy rates are shown in Table 11; word error
rates are shown in Table 12.

As can be seen from the above results, the performance of the acoustic baselines

2Significance rates reported in this paper are based on a difference of proportions significance
test.

‘ System H WER ‘ INS ‘ SUB ‘ DEL ‘ significance ‘
baseline || 22.1 1.8 | 144 | 5.9
AF 23.7 | 3.1 | 16.0 | 4.7 0.4

Table 10: Word error rates - reverberant speech
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Network

[ 0dB |10 dB |20 dB [ 30 dB |

voicing
manner
place
front-back
rounding
phone

68.68
54.01
48.72
61.08
62.34
43.6

73.49
60.96
57.28
67.78
68.80

56.0

78.38
67.27
63.38
72.58
73.58

65.6

81.62
71.60
67.19
75.55
76.62

70.8

Table 11: Frame-level articulatory feature accuracy rates - noisy speech

‘ System H SNR ‘ WER ‘ INS ‘ SUB ‘ DEL ‘ significance ‘

baseline || 30 dB | 15.5 2.8 | 105 | 2.2

AF 30 dB | 17.4 | 2.4 | 11.6 | 3.4 0.005
baseline || 20 dB | 20.3 4.9 | 12.7 | 2.7

AF 20 dB | 21.7 | 43 | 13.9 | 3.6 0.4
baseline || 10 dB | 31.3 | 10.3 | 17.8 | 3.2

AF 10dB | 30.0 | 6.1 | 183 | 5.7 0.1
baseline || 0 dB 50.8 | 18.0 ] 279 | 4.9

AF 0dB | 436 | 7.1 | 26.3 | 102 | ©0:0001

Table 12: Word error rates - noisy speech

15




and the articulatory recognizer are fairly similar under clean and reverberant condi-
tions. In noisy conditions, the acoustic systems performs better at a low SNR (30
dB) but deteriorates as the SNR decreases. The difference between the word error
rates at 0 dB, 50.8% for the acoustic system vs. 43.6% for the articulatory system, is
highly significant.
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Figure 2: Frame-level accuracy rates, clean speech

3 Error analysis

Although the overall word error rates are very similar, the different systems might
produce different error patterns. In order to identify the strengths and weaknesses
of the acoustic and the articulatory system, frame-level phoneme confusion matrices
were compared. These reveal that the different systems produce different errors at
the frame level. Figures 2 to 4 show graphic displays of the diagonals of the confusion
matrices (solid lines represent the acoustic system, dashed lines the articulatory sys-
tem). It is noticeable that these show characteristic differences for the acoustic and
the articulatory systems, respectively.

With respect to the RASTA-based systems, the articulatory system shows a bet-
ter consonant classification accuracy and a worse vowel classification accuracy than
the acoustic system. The MODSPEC-based systems, however, show a different pat-
tern: here, the acoustic system performs better on consonantal segments whereas the
articulatory system uniformly shows better classification of the vowels /ao,ow,uw,ax/
and silence.

The case where the articulatory system has a distinct advantage over the acoustic
system (noise at 0 dB SNR) deserves a more detailed analysis. A look at the different
phoneme confusion matrices for this test set indicates that the factor that contributes
most to these results seems to be the poor discrimination among voiceless fricatives
and between fricatives and silence in the acoustic system. These classes seem to be
more easily separable on the basis of the articulatory representation.
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Figure 3: Frame-level accuracy rates, reverberant speech
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Figure 4: Frame-level accuracy rates, noisy speech
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Thus, since the different systems seem to provide characteristically different in-
formation it might be beneficial to combine them.

4 Recognizer Combination

Combination of different representations in a speech recognition system may take
place at various levels: at the feature level (input to the lowest classifier), at the
probability estimation level, or during the decoding process. In this section, results
will be reported only on combination at the phone probability level.

4.1 Probability Combination Rules

In the machine learning community, the combination of different classifiers for the
same classification task has recently received much attention. Combinations of classi-
fiers have been employed for various pattern recognition tasks. The methods by which
classifiers are combined include: majority vote [19], class ranking [16], linear combina-
tion of a posteriori probabilities [21], local accuracy estimates [36], Dempster-Shafer
theory [33], mixture of experts [18].

In a hybrid ANN/HMM recognition system, the HMM decoder uses the Bayes

rule

P(O|W)P(W)

PWI0) = =255 1)

to compute the probability P(W]O) of a word sequence W given a sequence of
acoustic observations . Instead of estimating the acoustic likelihoods for HMM
states p(o|q), which, multiplied across states, approximate P(O|W), the neural net-
work classifiers estimate the a posteriori conditional class probability of an observation
given a state, P(q|o). These are then transformed into likelihoods by division by the
class priors [24].

Since the output produced by MLPs can be interpreted as class-conditional a
posteriori probabilities [28], hybrid ANN/HMM recognizers readily lend themselves
to various probability-theoretic combination schemes which are commonly employed
in pattern recognition and machine learning.

The most widely used linear probability combination rules are the sum rule and
the product rule. These are derived as follows (cf. [21]):

Assume that there are N different classifiers {ni,nq,...ny} which are applied to
the same task of distinguishing K possible classes {wy,ws, ...,wk }, using N different
representations of the object to be classified, z1,x,,...,2,. Each classifier yields a
likelihood p,(z,|k) for a pattern z belonging to class k in recognizer n. The joint
probability for a pattern belonging to class & given the N different representations
and recognizers is
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plx1,...xn|wk) (2)

It is computationally infeasible to estimate this joint probability distribution di-
rectly; however, under the assumption that the input representations to the different
classifiers are statistically independent given the classes, the above rule can be sim-
plified to

px1, s anlwr) = [T p(ealwr) (3)

n=1

The Bayes decision rule for the optimal class given a pattern Y and N different
classifiers is

Voow if Pl an) = max Plogen, . zy) (4)

where

p(x1, ..., zn|wr) P(w)
p(z1, ..., xN)

(5)

P,y o) =

and where P(wy) is the a priori probability of class k. Substituting (3) in (5), we
obtain

P(wp) TThzy p(nlwr)
?721 P(wy) HnN:1 p(@n|wr)

If this combination rule is to be expressed in terms of the a posteriori probabilities
the different classifiers, we have to divide the product by the a priori probabilities,

Pl ) =

(6)

assuming that all classes have equal priors in the different representations.

N
Plwilt, oo ) = Wg Plwile,) (7)
Thus, the Bayes decision rule becomes
1 N 1 N
Vou i gy 1 Plled) = mpx o T Plade) ()

The drawback of the product combining rule is that the overall likelihood of a hy-
pothesis becomes zero if one classifier outputs an a posteriori probability close to
zZero.
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| System | FER | WER | INS | DEL | SUB |
| clean 2253 ] 73 |12 ] 1.6 | 4.4 |
| reverb [3025] 203 [ 3.6 | 3.1 | 13.6 |
| 30 dB noise [ 26.71 | 15.0 | 2.6 | 2.1 | 10.3 |
| 20 dB noise [ 32.13 | 184 | 2.8 | 2.8 | 12.7 |
| 10 dB noise [ 40.96 | 27.9 | 6.2 | 4.3 | 174 |
| 0 dBnoise [52.62 ] 41.0 [ 5.9 [ 10.8 | 24.3 |

Table 13: Frame and word error rates (in %) for combined system, product rule
combination

Application of the sum rule rests on the assumption that in certain cases the a
posteriori probabilities generated by the classifiers do not differ greatly from the a
priori probabilities of the classes, such that

Plwglen) = Pler)(1 + k) (9)

where 6, << 1. Equation (7) can thus be rewritten as

W 1:[1 Pwelzn) = P(wy) [[1(1 + 8tn) = Plwr) + Plwy) Z_Il Skn (10)

which leads to

Plwglzy,...,zr) = (1 — R)P(wg) + Z Plwg|z,) (11)

n=1

In various classification experiments, Kittler et al. [21] observed that the sum
rule provided the best results although it makes the most restrictive statistical as-
sumptions. This is explained by the greater robustness of the sum rule to estimation
errors in the individual classifiers. This finding entails predictions about the per-
formance of linear probability combination rules in the current context: due to the
greater error robustness of the sum rule, a sum combination scheme might prove more
advantageous in acoustically deteriorated conditions, such as reverberation and noise.

4.2 Results

Combinations experiments were conducted on all acoustic test set, using both com-
bination schemes. Tables 13 and 14 show the results.
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| System | FER | WER | INS | DEL | SUB |
| clean 2176 | 8.0 |09 ] 23 | 4.7 |
| reverb [31.46] 209 | 1.2 | 53 | 14.4 |
| 30 dB noise | 27.08 | 15.9 | 2.1 | 2.9 | 11.0 |
| 20 dB noise | 31.96 | 20.3 | 2.6 | 4.0 | 13.7 |
| 10 dB noise | 40.38 | 28.7 | 3.7 | 7.1 | 17.9 |
| 0 dBnoise [52.16 | 43.8 [ 9.3 | 8.1 | 265 |

Table 14: Frame and word error rates (in %) for combined system, sum rule combi-
nation

The best linear combination scheme turned out to be the product rule. As far
as frame error rates are concerned, the sum rule shows a slight tendency to produce
better results in noisy (20 dB, 10 dB, and 0 dB SNR) test cases and in the RASTA-
based system; the differences are statistically significant. However, the product rule
consistently achieves an equivalent or lower word error rate than the sum rule. This
shows that the word error rate is not primarily determined by the frame-level clas-
sification accuracy but by how well the probability distribution over the subword
units matches the structure of the recognition lexicon. Presumably, the product rule
produces a phoneme probability distribution which interacts more favorably with the
pronunciation variants, minimum phoneme durations, and transition probabilities
specified in the recognition lexicon. An optimal combination strategy should there-
fore be designed to take these interactions into account to minimize word error rate
directly.
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5 Conclusion

The experiments reported above have shown that articulatory information expressed
in terms of articulatory features can be successfully used in a speech recognition
system. Word recognition results based purely on articulatory features are comparable
to those obtained using acoustic (RASTA-PLP, modulation spectrogram features)
parameters on clean and reverberant speech, as well as on speech with moderate
noise levels. At high noise levels articulatory features seem to provide a distinct
advantage by virtue of being able to better discriminate between voiceless fricatives,
voiceless stops and silence.

The combination of acoustic and articulatory information was investigated com-
paring two combination schemes: product rule and sum rule combination. Although
the sum rule showed significantly better frame-level accuracy in certain test cases,
the product rule consistently produced better word error rates.

Several aspects of the articulatory systems and of the combined system deserve
more thorough investigation:

First, the extraction of articulatory features might be improved if dynamic con-
straints were taken into consideration. Articulatory features usually do not change
on a frame-by-frame basis but vary slowly with time. Instead of making a local
(i.e. frame-based) classification decision, the surrounding context should be integrated
into the decision process. To some extent this is enforced by using a context window
on the acoustic input frames. However, the output from articulatory feature MLPs
should equally be constrained to show continuity over a certain number of frames.
This might be done by adjusting the objective function used for training the feature
MLPs. Generally, the goal during training is to minimize the distance between the
desired and the actual output vectors, using e.g. the mean squared error function

Z_: |f($d) —g(yd)|2

where D is the dimensionality of the data, f(z) is the desired output, and g(z) is
the observed output. To enforce temporal continuity, the distance between successive
vector components should be minimized as well. This term can be added to the
objective function, yielding

T

; [f(za) = g(za)|* + 3 [(g(&(1) — 9(F(t - 1))

t=2

Another important point is the development of a recognition lexicon which is
suitably adapted to the articulatory representation. A simple adaptation method
would be to generated a forced alignment of the training set using the articulatory-
based phoneme models and to use this data to readjust the pronunciation variants,
minimum durations and transition probabilities in the original lexicon.
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In addition to frame-level probability combination, a combination of (partial)
higher-level recognition hypotheses might be advantageous. Partial recognition re-
sults may be combined for example by rescoring the word-lattices obtained from the
different recognizers. Although the results obtained in the experiments described
above are promising, it has to be borne in mind that the recognition task at hand is
rather limited. The articulatory approach will have to be tested on a task involving
a much larger vocabulary. Furthermore, the reverberation and noise test sets were
generated artificially; in order to ascertain the potential of an articulatory represen-
tation for noisy environments, test data from “real-world” noisy situations should be
included.
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6 Appendix

b d
g p
t k
dx | bcl
dcl | gcl
pel | tcl
kel | jh
ch s
sh Z
zh f
th | v
dh | m
em | n
nx | ng
en 1
el T
w |y
hh | hv
iy | ih
eh | ey
ae | aa
aw | ay
ah | ao
oy | ow
uh | uw
er | axr
ax | 1x
h# | q

Table 15: ICSI phone set
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phoneme | voicing manner place front-back | rounding
b “+voice stop labial nil nil

d “+voice stop coronal nil nil
g “+voice stop velar nil nil

P -voice stop labial nil nil

t -voice stop coronal nil nil
k -voice stop velar nil nil
bcl “+voice stop labial nil nil
dcl “+voice stop coronal nil nil
gcl “+voice stop velar nil nil
pcl -voice stop labial nil nil
tcl -voice stop coronal nil nil
kel -voice stop velar nil nil
jh “+voice fricative high nil nil
ch -voice fricative high nil nil

S -voice fricative coronal nil nil
sh -voice fricative high nil nil

7 “+voice fricative coronal nil nil
zh “+voice fricative high nil nil

f -voice fricative labial nil nil

v “+voice fricative labial nil nil
th -voice fricative dental nil nil
dh “+voice fricative dental nil nil
hh -voice fricative glottal nil nil
m “+voice nasal labial nil nil
em “+voice nasal labial nil nil

n “+voice nasal coronal nil nil
en “+voice nasal coronal nil nil
nx +voice | approximant | coronal nil nil
ng “+voice nasal velar nil nil

1 “+voice lateral coronal nil nil

el “+voice lateral coronal nil nil

r +voice | approximant | retroflex nil nil
er +voice | approximant | retroflex nil nil

w +voice | approximant labial nil nil

y +voice | approximant high nil nil
iy “+voice vowel high front -round
ih “+voice vowel high front -round
eh “+voice vowel mid front -round
ey “+voice vowel mid front -round
ae “+voice vowel low front -round
aa “+voice vowel low back -round
aw “+voice vowel low back +round
ay “+voice vowel low front -round
ah “+voice vowel mid nil -round
ao “+voice vowel low back -round
oy “+voice vowel low back “+round
ow “+voice vowel mid back “+round
uh “+voice vowel high back -round
uw “+voice vowel high back -round
axr “+voice vowel mid nil -round
ax “+voice vowel mid nil -round
ix “+voice vowel high nil -round
h# sil sil sil sil sil

q -voice stop glottal nil nil

Table 16: Phoneme-feature conversion table

26




References

[1]

2]

[3]

[4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

AM.A. Ali, J. van der Spiegel and P. Mueller,“An acoustic-phonetic
feature-based system for the automatic recognition of fricative consonants”,

Proceedings ICASSP 98, pp. 961-964

F. Alimoglu and E. Alpaydin, “Combining multiple representations and
classifiers for pen-based handwritten digit recognition”, Proceedings of the
Fourth International Conference on Document Analysis and Recognition

(ICDAR 97), Ulm, Germany, 1997

B.B. Atal, J.J. Chang, M.V. Mathews, and J.W. Tukey, “Inversion of
articulatory-to-acoustic transformation in the vocal tract by a computer-

sorting technique”, Journal of the Acoustical Society of America 63, pp.
1535-1555, 1978

N.N. Bitar and C.Y. Espy-Wilson, “Knowledge-based parameters for HMM
speech recognition”, Proceedings ICASSP-96, pp. 29-32, 1996

N.N. Bitar and C.Y. Espy-Wilson, “The design of acoustic parameters for
speaker-independent speech recognition”, Proceedings Furospeech 97, pp.

1239-1242, 1997

C.P. Browman and L. Goldstein, “Towards an articulatory phonology”,

Phonology Yearbook 3, pp. 219-252

J. Carson-Berndsen and K. Huebener, Phoneme Recognition using Acous-
tic Fvents, Verbmobil Technical Report, Universities of Bielefeld and Ham-
burg, 1994

T. Gay. B. Lindblom, and J. Lubker,“Production of bite-block vowels:
acoustic equivalence by selective compensation”, Journal of the Acousti-

cal Society of America 69, 802-810

S. Greenberg and B. Kingsbury, “The modulation spectrogram: in pursuit
of an invariant representation of speech”, Proceedings [CASSP-97, pp. 1647-
1650, 1997

P. Steingrimsson, B. Markussen, O. Andersen, P. Dalsgaard and W. Barry,
“From Acoustic Signal to Phonetic Features: dynamically constrained self-
organising neural network”, Proceedings [CPhS-95

L. Deng and D. Sun, “A statistical approach to ASR using atomic units
constructed from overlapping articulatory features”, Journal of the Acous-
tical Society of America 95, pp. 2702-2719

27



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[20]

[21]

[22]

23]

[24]

L. Deng and J. Wu, “Hierarchical partitioning of articulatory state space
for articulatory-feature based speech recognition”, Proceedings [CSLP-96,
pp- 2266-2269

L. Deng, “A dynamic, feature-based approach to speech modeling and
recognition”, Proceedings [EFEE Workshop on Speech Understanding and
Recognition, Santa Barbara, December 1997, pp. 107-113, 1997

E. Eide, J.R. Rohlicek, H. Gish and S. Mitter, “A linguistic feature repre-
sentation of the speech waveform”, Proceedings ICASSP 93, pp. 483-486,
1993

A. Varnich Hansen, “Acoustic parameters optimised for recognition of pho-
netic features”, Proceedings Furospeech-97, pp. 397-400

T.K. Ho, J.J. Hu.. and S.N. Srihari, “Decision Combination in Multiple
Classifier Systems”, IEEFE Trans. Pattern Analysis and Machine Intelli-
gence 16, pp. 66-75, 1994

F.V. Jensen, An Introduction to Bayesian Networks, NewYork/Heidelberg:
Springer, 1996

M.I. Jordan, “Hierarchical mixtures of experts and the EM algorithm”,
Neural Computation 6, 181-214, 1994

F. Kimura and M. Shridhar, “Handwritten Numerical Recognition based
on Multiple Algorithms”, Pattern Recognition 24, pp. 969-983, 1991

K. Kirchhoff, “Syllable-level desynchronisation of phonetic features for
speech recognition”, Proceedings ICSLP-96, pp. 2274-2276

J. Kittler, M. Hatef, R.P.W. Duin and J. Matas, “On combining classifiers”,
IEEFE Trans. on Pattern Analysis and Machine Intelligence 20, pp. 226-239,
1998

D. Koller and M. Sahami, “Toward optimal feature selection”, Machine
Learning: Proceedings of the Thirteenth International Conference, Morgan
Kaufmann, 1996

S.A. Liu, “Landmark detection for distinctive feature-based speech recog-
nition”, Journal of the Acoustical Society of America 100, pp. 3417-3430,
1996

N. Morgan and H. Bourlard, “An introduction to hybrid
HMM/Connectionist Continuous Speech Recognition”, [FEE Signal
Processing Magazine, pp. 25-42, 1995

28



[25]

[26]

[27]

[28]

[29]

[30]

31]

32]

33]

[34]

[35]

[36]

M. Myrayati, R. Carré and B. Guérin, “Distinctive regions and modes: a
new theory in speech production”, Speech Communication 7, pp. 257-286,
1988

Center for Spoken Language Understanding, Department of Computer Sci-
ence and Engineering, Oregon Graduate Institute. Numbers corpus, release

1.0, 1995
G. Papcun, J. Hochberg, T.R. Thomas, F. Larouche, J. Zacks and S. Levy,

“Inferring articulation and recognizing gestures from acoustics with a neu-

ral network trained on x-ray microbeam data”, Journal of the Acoustical

Society of America 92, pp. 688-700, 1992

M.D. Richard and R.P. Lippmann, “Neural network classifiers estimate
Bayesian a posteriori probabilities”, Neural Computation 3, pp. 461-483,
1991

H.B. Richard, J.S. Mason, M.J. Hunt and J.S. Bridle, “Deriving articu-
latory representations of speech”, Proceedings Furospeech 95, pp. 761-764,
1995

H.B. Richard, J.S. Mason, M.J. Hunt and J.S. Bridle, “Deriving articula-
tory representations of speech with various excitation modes”, Proceedings

ICSLP-96, pp. 1233-1236, 1996

H.B. Richards and J.S. Mason, “Imposing dynamic constraints on articu-
latory representations”, Proceedings [CSLP-96, pp., 1996

H.B. Richards, J.S. Bridle, J.S. Mason, and M.J. Hunt, “Vocal tract
shape trajectory estimation using MLP analysis-by-synthesis”, Proceedings

ICASSP-97, pp. 1287-1290, 1997

G. Rogova, “Combining the results of several neural network classifiers”,

Neural Networks 7, pp. T77-781, 1994
O. Schmidbauer, F. Casacuberta, M.J. Castro, G. Hegerl, H. Hoge, J.A.

Sanchez and 1. Zlokarnik, “Articulatory representation and speech technol-

ogy”, Language and Speech 36, pp. 331-351, 1993

M.R. Schroeder, “Determination of the geometry of the human vocal tract
by acoustic measurements”, Journal of the Acoustical Society of America

/1, pp. 1002-1010

K. Woods, “Combination of multiple classifiers using local accuracy esti-
mates”, IEEE Trans. on Pattern Analysis and Machine Intelligence 19, pp.
405-410, 1997

29



37]

38]

J. Zacks and T.R. Thomas, “A new neural network for articulatory speech
recognition and its application to vowel identification”, Computer, Speech
and Language 8, 189-209

I. Zlokarnik, J. Hogden, D. Nix. and G. Papcun, Using articulatory mea-
surements in automatic speech recognition and in speech displays for hear-
ing tmpaired. Abstract from ACCOR Workshop on Articulatory Databases,
Munich, May 1995

30



