INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. ® Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

Scheduling with Limited Machine
Availability

Gilnter Schmidt *
TR-98-036

October 1998

Abstract

This paper reviews results related to deterministic scheduling problems where
machines are not continuously available for processing. There might be in-
complete information about the points of time machines change availability.
The complexity of single and multi machine problems is analyzed considering
criteria on completion times and due dates. The review mainly covers in-
tractability results, polynomial optimization and approximation algorithms.
In some places also results from enumerative algorithms and heuristics are
surveyed.

Keywords: scheduling theory, availability constraints, algorithms

*On sabbatical leave from the Department of Information and Technology Management, Uni-
versity of Saarland, P.O. Box 151150, D-66041 Saarbriicken, Germany, email: gs@itm.uni-sb.de.
This work has been partially supported by INTAS grant 96-0820.

1 Introduction

In scheduling theory the basic model assumes that all machines are continuously
available for processing throughout the planning horizon. This assumption might
be justified in some cases but it does not apply if certain maintenance requirements,
breakdowns or other constraints that cause the machines not to be available for
processing have to be considered.

Examples of such constraints can be found in many areas. Limited availabilities
of machines may result from preschedules which exist mainly because most of the
real world resource planning problems are dynamic. This means that the input
data are being frequently updated. A natural approach to cope with a dynamic
environment is to trigger a new planning horizon when the changes in the data
justify it. However, due to many necessities, as process preparation for instance, it
is mandatory to take results of earlier plans as fixed which obviously limits avail-
ability of resources for any subsequent plan. Consider e.g. MRP-II production
planning systems when a rolling horizon approach is used for customer order as-
signment on a tactical level. Here consecutive time periods overlap where planning
decisions taken in earlier periods constrain those for later periods. Because of this
arrangement orders related to earlier periods are also assigned to time intervals of
later periods causing the resources not to be available during these intervals for
orders arriving after the planning decisions have been taken. The same kind of
problem may be repeated on the operational level of production scheduling. Here
processing of some jobs is fixed in terms of starting and finishing times and machine
assignment. When new jobs are released to the shop floor there are already jobs
assigned to time intervals and machines while the new ones have to be processed

within the remaining free processing intervals.

Another application of limited machine availability comes from operating sys-
tems for mono- and multi-processors, where subprograms with higher priority will
interfere with the current program executed. A similar problem arises in multi-
user computer systems where the load changes during the usage. In big massively
parallel systems it is convenient to change the partition of the processors among
different types of users according to their requirements for the machine. Fluctu-
ations related to the processing capacity can be modeled by intervals of different
processor availability. Numerous other examples exist where the investigation of

limited machine availability is of great importance and the practical need to deal
with this type of problem has been proven by a growing demand for commercial
software packages. Since already some time the analysis of these problems have
attracted also many researchers.

In the following we will investigate scheduling problems with limited machine
availability in greater detail. The review focuses on deterministic models with com-
plete and incomplete information about the availability constraints. For stochastic
scheduling problems with limited machine availability and prior distributions of
the problem parameters see [LS95b, LS97]. We will survey results for one machine,
parallel machine and flow shop scheduling problems in terms of intractability and
polynomial time algorithms. In some places also results from enumerative opti-
mization algorithms and heuristics are analyzed. Doing this we will distinguish
between non-preemptive and preemptive scheduling.

2 Problem Definition

A machine system with limited availability is a set of machines (processors) which
does not operate continuously; each machine is ready for processing only in certain
time intervals of availability. Let 7' = {T}[j = 1,...,n} be the set of tasks and
P = {Pj|i =1,...,m} be the set of machines with machine P; only available for
processing within S; given time intervals [B},F/), s = 1,...,5; and Bf“ > Ff
for all s = 1,...,5; 1. B; denotes the start time and F; the finish time of s-
th interval of availability of machine P;. There might be complete or incomplete
information available concerning the intervals. In some cases all B} and F} are
known in advance; in other cases only some of them are known. It might also
happen that there is no prior knowledge about machine availability at all.

Each task T} has a processing requirement of p; time units. In set 7" precedence
constraints among tasks may be defined. T; < T; means that the processing of T;
must be completed before T); can be started. The tasks in set 1" are called dependent
if the order of execution of at least two tasks in T is restricted by this relation.
Then these relations may be modeled by a precedence graph. Otherwise, the tasks
are called independent.

Each machine may work only on one task at a time, and each task may be

performed by only one machine at a time. Machines may be either parallel, i.e.
performing the same functions, or dedicated i.e. being specialized for the execution
of certain tasks. If all processors F; from P have equal task processing speeds,
then we call them identical. In case of dedicated processors there are three models
of processing sets of tasks: flow shop, open shop and job shop. Later we will
investigate flow shops. In such a system we assume that tasks form n subsets
(chains). Each subset is called a job. That is, job J; is divided into m tasks,
Tij, Tyj,..., Tinj, and task Tj; will be performed on processor P;. In addition,
the processing of T;_1; should precede that of T;; for all ¢ = 2,...,m and for all
7 =1,2,...,n. The set of jobs will be denoted by J.
Each task (job) may be characterized by the following parameters:

e an arrival time (or ready time) r;, which is the time at which task T} (job
J;) is ready for processing; if the arrival times are the same for all tasks from
T, then it is assumed that r; = 0 for all T};

e a due date d;, which specifies a time limit by which 7T}(J;) should be com-
pleted; usually, penalty functions are defined in accordance with due dates;

e a deadline dj, which is a ’hard’ real time limit by which T;(J;) must be
completed;

e a weight (priority) w;, which expresses the relative urgency of Tj(J;).

We want to find a feasible schedule (a time-based assignment of machines from
set P to tasks from set 7" meeting all constraints) if one exists, such that all tasks
can be processed within the given intervals of machine availability optimizing some
performance criterion. Such measures considered here are completion time and due
date related and most of them refer to the maximum completion time, the sum of
completion times, and the maximum lateness.

A schedule is called preemptive if each task may be preempted at any time and
restarted later at no cost, perhaps on another machine. If preemption of tasks is
not allowed we will call the schedule non-preemptive.

In the following we base the discussion on the three fields «|f|y classifica-
tion scheme suggested in [BEPSW96], that uses most features of the now classical
scheduling theory notation. We add some entry denoting machine availability and
we omit entries which are not relevant for the problems investigated here.

The first field @ = ajagas describes the machine (processor) environment.
Parameter a; € {0}, P,Q, F} characterizes the machine system used:

e o7 = (): single machine,

e o1 = P: identical machines (parallel machine system with the same speed
factor),

e a1 = (: uniform machines (parallel machine system with different speed
factors),

e a1 = F: dedicated machines (flow shop system).

Parameter ay € {0, k} denotes the number of machines (for parallel machine sys-
tems) or the number of stages (for dedicated machine systems):

e ay = (}: the number of machines (stages) is assumed to be variable,
e a9 = k: the number of machines (stages) is equal to k (k is a positive integer).

In [Sch84] and [LS95a] different patterns of availability are discussed for the case of
parallel machine systems. These are constant, zigzag, decreasing, increasing, and
staircase. Let 0 =1; <13 < ... <t; <... <1, be the points in time where the
availability of a certain machine changes and let m(¢;) be the number of machines
being available during time interval [t;,¢;41) with m(¢;) > 0. It is assumed that the
pattern is not changed infinitely often during any finite time interval. According to
these cases parameter az € {0, NC, NC,,, NCinc, NCgec, NCinczzy NCaecrzy NCse }
denotes the machine availability.

(1) If all machines are continuously available (¢ = 0) then the pattern is called
constant (a3 = 0).

(2) If there are only k or k£ — 1 machines in each interval available then the pattern
is called zigzag (a3 = NC,,).

(3) A pattern is called increasing (decreasing) if for all j from IN, m(t;) >
maxi<y<j—1 {m(tu)} (m(t;) < minjcy<j_1 {m(ty)}), ie. the number of
machines available in interval [t;_1,1;) is not more (less) than this number in
interval [tj,tj_H) (as € {NCiney NCgec})-

4

(4) A pattern is called increasing (decreasing) zigzag if for all j from IN | m(t;) >
maxi <y<j—1 {m(t) =1} (m(t;) < minicucj—1 {m(tu) +13) (@3 € {NCinczz,
NCdeczz})-

(5) A pattern is called staircase if for all intervals the availability of machine P,
implies the availability of machine P,_; (a3 = NC,.). A staircase pattern
is shown in the lower part of Figure 1; grayed areas represent intervals of
non-availability. Note that patterns (1)-(4) are special cases of (5).

(6) A pattern is called arbitrary if none of the conditions (1)-(5) applies (a3 =
NC). Such a pattern is shown in the upper part of Figure 1; patterns defined
in (1)-(5) are special cases of the one in (6).

Machine systems with arbitrary patterns of availability can always be translated
to a composite machine system forming a staircase pattern [Sch84]. A composite
machine is an artificial machine consisting of at most m original machines. The
transformation process works in the following way. An arbitrary pattern is sep-
arated in as many time intervals as there are distinct points in time where the
availability of at least one machine changes. Now in every interval periods of non-
availability are moved from machines with smaller index to machines with greater
index. If there are m(t;) machines available in some interval [t;,¢; + 1) then af-
ter the transformation machines P, ..., Py, will be available in [t;,2; + 1) and
Pryt;)+15 -+ Pm will not be available, where 0 < m(t;) < m. Doing this for eve-
ry interval we generate composite machines. Each of them consists of at most m
original machines with respect to the planning horizon .

An example for such a transformation considering m = 4 machines is given in
Figure 1. Non-availability is represented by the grayed areas. Composite machines
which do not have intervals of availability can be omitted from the problem de-
scription. Then the number of composite machines in each interval is the maximum
number of machines simultaneously available. The time complexity of the trans-
formation is O(gm) where ¢ is the number of points in time, where the availability
of an original machine is changing. If this number is polynomial in 7 or m machine
scheduling problems with arbitrary patterns of non-availability can be transformed
in polynomial time to a staircase pattern. This transformation is useful as, first,
availability at time ¢ is given by the number of available composite machines and,
second, some results are obtained assuming this hypothesis.

Figure 1: Rearrangement of arbitrary patterns

The second field § = f, ..., B3 describes task (job) and resource characteristics.
We will only refer here to parameters (1, B3, (4, and [s.
Parameter 31 € {0,t — pmin, pmin} indicates the possibilities of preemption:

e (31 = (): no preemption is allowed,

e (1 = t— pmin: tasks may be preempted, but each task must be processed
by only one machine,

e (31 = pmin: tasks may be arbitrarily preempted.

In [LLP97] the notion of resumability and non-resumability of tasks is intro-
duced. Resumability corresponds to the case where task preemption is allowed;
non-resumability defines the case where preemption is not allowed. Here we as-
sume that not only task (81 = ¢t — pmin) but also arbitrary (task and machine)
preemptions are possible (31 = pmtn). If there is only one machine dedicated to
each task then task preemptions and arbitrary preemptions become equivalent. For
single machine and flow shop problems this difference has not to be considered. Of
course the rearrangement of an arbitrary pattern to a staircase pattern is only used
when arbitrary preemption is allowed. In what follows the number of preemptions
may be a criterion to appreciate the value of an algorithm. When the algorithm
applies to staircase patterns, the number of preemptions for an arbitrary pattern
is increased by at most mgq.

Parameter (835 € {0,prec,tree, forest,chains} reflects the precedence con-
straints and denotes respectively independent tasks, arbitrary precedence con-
straints, precedence constraints forming a tree, a set of trees, or a set of chains.

Parameter 34 € {0,r;} describes ready times:

e (34 = (: all ready times are zero,

e (4 = rj: ready times differ per task (job).

Parameter s € {0,d)} describes deadlines:

e (B¢ = 0: no deadlines are assumed (however, due dates may be defined if a
due date involving criterion is used to evaluate schedules),

e (s = d: deadlines are imposed on the performance of a task (job) set.

The third field, -y, denotes an optimality criterion (performance measure),
ie. v € {Cnaw> 2 Cjy X w;iCj, Lipag, > Uj, > w;U;, 0}, where Cppqp refers to
minimizing the makespan (maz{C;}), >>C; to the sum of completion times,
> w;C}j to the sum of weighted completion times, L;,q; to the maximum lateness
(max{C;—d,}), > U; to the sum (or number) of late jobs (C; > d;), > w;U; to the

7

weighted sum of late jobs, and () means testing for feasibility whenever scheduling
to meet deadlines is considered.

In order to solve these problems different kind of algorithms will be applied. In-
formation about machine availabilities might be complete or incomplete. In an on-
line setting machine availabilities are not known in advance. Unexpected machine
breakdowns are a typical example of events that arise online. Sometimes schedulers
have partial knowledge of the availabilities, i.e, they have some lookahead. They
might know of the next time interval where a machine requires maintenance or they
might know when a broken machine will be available again. In an off-line setting
we assume complete information, i.e. all machine availabilities are known prior to
schedule generation. From these possibilities we can differ between different types
of algorithms.

e An algorithm is on-line if it proceeds sequentially and at each time ¢ it only
needs to know the number of processors available at ¢, the number of ready
tasks at ¢, their remaining processing time and their deadlines or due dates.

e An algorithm is nearly on-line if it needs in addition at time ¢ the time of
the next event, that is either a new task becomes ready for processing or the
number of available machines change ([San95], extended from [LLLR79]).

e An algorithm is off-line if all problem data has to be known in advance. That
is, at time 0 it needs all informations concerning machine availabilities and
task characteristics.

If the machine non-availabilities are due to unexpected breakdowns on-line al-
gorithms are needed. If the times of machine availability changes are known a little
time in advance nearly on-line algorithms will suffice. Otherwise off-line algorithms
will do. Note that it is often assumed in the on-line scheduling literature (see for
instance [CVW94]) that even processing times of tasks are not known before the
processing begins. This setting is not investigated here. Most of the results which
are reviewed later relate to off-line algorithms. In some places we also survey on-line
and nearly on-line algorithms.

We investigate the problems according to their computational tractability and
use the concepts of complexity as defined in [GJ79]. We analyze the time complexity
of algorithms by O(g(k)) where ¢ is some function and k& is the input length of a

problem instance. We will also report on approximation algorithms in case the
scheduling problem cannot be solved to optimality for some reason. For off-line
settings we will distinguish between relative and absolute errors of an algorithm.
The relative error Ry is defined as Ry (I) = Cr(1)/Copt(I) — 1, where Cpyyy is
the performance of algorithm H applied to some problem instance I and Copi(I) is
the value of the corresponding optimal solution. The absolute error Ay is defined
as Ag(r) = Cr) — Copt(I). In case we investigate on-line settings we refer to
a competitive analysis. Following [ST85] we call an on-line scheduling algorithm
H to be c-competitive if, for all problem instances I, Cg(y) < c- Cgf F(I) where
C'oopf F(I) is the value of the corresponding optimal off-line solution.

Many of the problems considered later are solved applying simple priority rules
which can be executed in O(nlogn) time. The rules order the tasks in some way
and then iteratively assign them to the most lightly loaded machine. The following
rules are the most prominent.

e Shortest Processing Time (SPT) rule. With this rule the tasks are ordered
according to non-decreasing processing times.

e Longest Processing Time (LPT) rule. The tasks are ordered according to
non-increasing processing times.

e Earliest Due Date (EDD) rule. Applying this rule all tasks are ordered ac-
cording to non-decreasing due dates.

3 One Machine Problems

One machine problems are of fundamental character. They can be interpreted
as building blocks for more complex problems. Such formulations may be used
to represent bottleneck machines or an aggregation of a machine system. For
one machine scheduling problems the only availability pattern which has to be
investigated is a special case of zigzag with k£ = 1.

Let us consider first problems where preemption of tasks (jobs) is not allowed.
If there is only a single interval of non-availability with B; > 0 and F; < }_; p; and
> Cj is the objective (1, NC|| 3 C;) Adiri et al. [ABFR89] show that the problem
is NP-complete. The Shortest Processing Time (SPT) rule leads to a tight relative

error of Rgpr < 2/7 for this problem [LL92]. It is easy to see that also problem
1, NC||Craz is NP-complete [Lee96].

If preemption is allowed the scheduling problem becomes easier. For
1, NC|pmin|Ciuqz, it is obvious that every schedule is optimal which starts at time
zero and has no unforced idle time, that is, the machine never remains idle while
some task is ready for processing. It is trivial to construct such a schedule which
is optimal for off-line and on-line settings. Preemption is never useful except when
some task cannot be finished before an interval of non-availability occurs. This
property is still true for completion time based criteria if there is no precedence
constraint and no release date, as is assumed in the rest of this section.

While the sum of completion times (1, NC|pmtn|}_ C;) is minimized by the
SPT rule the problem of minimizing the weighted sum (1, NC|pmitn|) w;Cj)
is NP-complete [Lee96]. Note that without availability constraints Smith’s rule
[Smi56] solves the problem. Maximum lateness is minimized by the Earliest
Due Date (EDD) rule [Lee96]. If the number of late tasks has to be minimized
(1, NC|pmtn| Y U;) the EDD rule of Moore and Hodgson’s algorithm [Moo68] can
be modified to solve this problem also in O(nlogn) time [Lee96]. Note that if we
add release times or weights for the jobs the problem is NP-complete already for a
continuously available machine ([LRKB77] or [Kar72]).

4 Parallel Machine Problems

In this section we cover off-line and on-line formulations of parallel machine schedul-
ing problems with availability constraints. Most results which are presented refer
to off-line problems; results for on-line settings are explicitly mentioned.

4.1 Minimizing the Sum of Completion Times

In case of continuous availability of the machines (P|| Y- C;) the problem can be
solved applying the SPT rule. If machines have only different beginning times B;
(this corresponds to an increasing pattern of availability) the problem can also be
solved by the SPT rule [KM88, Lim91]. If m = 2 and there is only one finish
time F¥ on one machine which is smaller than infinity (this corresponds to a zigzag

10

pattern of availability) the problem becomes NP-complete [LL93]. In the same
paper Lee and Liman show that the SPT rule with the following modification leads
to a tight relative error of Rgpr < 1/2 for P2,NC,,|| > C; where machine P; is
continuously available and machine P, has one finish time which is smaller than
infinity.
Step 1: Assign the shortest task to P;.
Step 2: Assign the remaining tasks in SPT order alternately to both
machines until some time when no other task can be assigned
to P, without violating F5.
Step 3: Assign the remaining tasks to Pj.

P2 2 p=p,=€
P, 1 3 4 p;=p,=10
£ 10+& 20+ &
2 C;=30+4¢, optimumis20 +5& [LL93]
P2 p, =10
Pl ! 2 3 P.=Ps
=10+¢&

10 20+ & 30+2 &

2C;=60+3¢, optimumis 40 +3¢&
Figure 2: Examples for the modified SPT rule

Figure 2 illustrates how that bound can be reached asymptotically (when e
tends toward 0). The modified SPT rule leads to a large idle time for machine
P;. For fixed m the SPT rule is asymptotic optimal if there is not more than one
interval of non-availability for each machine [Mos94].

11

4.2 Minimizing the Makespan

Let us first investigate non-preemptive scheduling. Ullman [UNl75] was the first
to study the problem P, NC||Cpyq5- It is NP-complete in the strong sense for m
arbitrary (3-partition is a special case) even if the machines are continuously avail-
able. If machines have different beginning times B; (P, N Cipc||Cmaz) the Longest
Processing Time (LPT) rule leads to a relative error of Rr,pr < 1/2—1/(2m) or of
Ryrppr < 1/3 if the rule is appropriately modified [Lee91]. Both bounds are tight.
The modification uses dummy tasks to simulate the different machine starting times
B;. For each machine P; a task T; with processing time p; = B; is inserted. The
dummy tasks are merged into the original task set and then all tasks are scheduled
according to the LPT rule under an additional restriction that only one dummy
task is assigned to each machine. After finishing the schedule all dummy tasks are
moved to the head of the machines followed by the remaining tasks assigned to
each P;. The modified LPT rule runs in O((n + m) log(n + m) + (n 4+ m)m) time.
In [LHYL97] Lee’s bound of 1/3 reached by MLPT is improved to 1/4. Note that
the LPT algorithm leads to a relative error of Rrpr < 1/3 — 1/(3m) for continu-
ously available machines [Gra69]. Kellerer [Kel98] presents a dual approximation
algorithm using a bin packing approach leading to a tight bound of 1/4, too.

Now let us investigate results for preemptive scheduling. If all machines are
only available in one and the same time interval [B,F) and tasks are indepen-
dent the problem is of type P|pmitn|Cpey. Following McNaughton [McN5Y] it can
be shown that there exists a feasible machine preemptive schedule if and only if
max;{p;} < (F—B)and }_; pj < m(F —B). There exists an O(n) algorithm which
generates at most m — 1 preemptions to construct this schedule. If all machines are
available in an arbitrary number S = Y, S; of time intervals [B}, F?),s = 1,...,S;
and the machine system forms a staircase pattern Schmidt [Sch84] generalizes Mc-
Naughton’s condition and shows a feasible preemptive schedule exists if and only
if the following m conditions are met:

VE=1—>m —1, Z;?:lpj
E?:lpj

with p1 > po > --- > p, and PCy > PCy > --- > PC,,, where PCj; is the
total processing capacity of machine P;. Such a schedule can be constructed in

Y, PC; P (k)

<

O(n 4+ mlogm) time after the processing capacities PC; are computed, with at

12

most S — 1 preemptions in case of a staircase pattern (remember that any arbitrary
pattern of availability can be converted into a staircase one at the price of additional
preemptions). Note that in the case of the same availability interval [B, F') for all
machines McNaughton’s conditions are obtained from P(1) and P(m) alone. This
remains true for zigzag patterns as then P(2),...,P(m — 1) are always verified
if P(1) is true (there is one availability interval for all machines but F,;). In
[Sch88] the problem is generalized taking into account different task release times
or deadlines. Then it can be solved in O(nmlogm).

The corresponding optimization problem (P, N Cs.|pmitn|Ci,qz) is solved by an
algorithm that first computes the lower bounds LB;,..., LB,, obtained from the
conditions above (see Figure 3). Cy,4, cannot be smaller than LBy, k =1 — m—1,
obtained from P(k). The sum of availabilities of machines P, ..., Py during time
interval [0, LBy) may not be smaller than the sum of processing times of tasks
T1,...,Tx. The sum of all machine availabilities during time interval [0, LB;,)
must also be larger than or equal to the sum of processing times of all tasks. In
the example of Figure 3, Cy,4; = LB3. The number of preemptions is § — 2.

T, 1 2 3 4 5
b; 12 7 7 2 1
LB; 12 11 383 149/12 38/3

Figure 3: Minimizing the makespan on a staircase pattern
When precedence constraints are added, Liu and Sanlaville [LS95a]

13

show that problems with chains and arbitrary patterns of non-availability
(P, NC|pmtn, chains|Cpqz) can be solved in polynomial time applying the Longest
Remaining Path (LRP) first rule and the processor sharing procedure of [MC70]. In
the same paper it is also shown that the LRP rule could be used to solve problems
with decreasing (increasing) zigzag patterns and tasks forming an outforest (infor-
est) (P, NCgecrz|pmin, out — forest|Cpaz 0r P, NCincyz|pmin,in — forest|Cpaz)-
In case of only two machines and arbitrary (which means zigzag for m = 2) pat-
terns of non-availability (P2, NC|pmin,prec|Cyq,) this rule also solves problems
with arbitrary task precedence constraints with time complexity and number of
preemptions of O(n?). These results are deduced from these for Unit Execution
Time scheduling by list algorithms [DW85]. The LRP algorithm is nearly on-line,
as are all priority algorithms which extend list algorithms to preemption [Law82].
Indeed these algorithms first build a schedule admitting processor sharing. These
schedules execute tasks of the same priority at the same speed. This property is
respected when McNaughton’s rule is applied. If a machine availability changes
unexpectedly, the property does not hold any more (see results discussed later in
this section).

Applying the LRP rule results in a time complexity of O(nlogn + nm)
and a number of preemptions of O((n + m)? — nm) which both can be im-
proved. Therefore in [BDFKS98] an algorithm is given which solves problem
P, NC|pmitn, chains|Cpey with N < n chains in O(N + mlogm) time genera-
ting a number of preemptions which is not greater than the number of intervals
of availability of all machines. If all machines are only available in one processing
interval and all intervals are ordered in a staircase pattern the algorithm generates
feasible schedules with at most m — 1 preemptions. This result is based on the
observation that preemptive scheduling of chains for minimizing schedule length
can be solved by applying an algorithm for the independent tasks problem. Having
more than two machines in the case of arbitrary precedence constraints or an ar-
bitrary number of machines in the case of a tree precedence structure makes the
problem NP-complete [BDFKS98].

If we give up the assumption that all intervals of non-availability are known in
advance on-line or nearly on-line algorithms are required for the problem solution.
In order to deal with unexpected machine breakdowns on-line algorithms have to be
applied. This problem is studied by Kalyanasundaram and Pruhs [KP94, KP97].

14

In [KP94] the competitive ratios of on-line algorithms are analyzed for various
numbers of faulty machines. The authors assume that if a machine breaks down, the
task currently being processed has to be resumed later from the beginning. Also two
specific types of breakdowns are considered. In a permanent breakdown a machine
does not recover again; in a transient breakdown the machine is available again
right after the breakdown. In [KP97] it is examined to which extent redundancy
can help in on-line scheduling with faulty machines.

In [AS98] it is shown that no on-line algorithm can construct optimal makespan
schedules if machines change availability at arbitrary time instances. It is also
impossible for such an algorithm to guarantee that the solution is within a constant
competitive ratio c if there may be time intervals where no machine is available. To
see this we use the following argument. Let H be any on-line algorithm. Initially,
at time ¢t = 0 only one machine is available. We consider n jobs Ji,...,J,, each
of which has a processing time of 1 time unit. At time ¢ = 0, algorithm H starts
processing one job Jj,. Let t' be the first time instance such that H first preempts
Jj, or H finishes processing Jj,. At that time ¢’ all machines become available.
H’s makespan is at least ¢’ + 1 because none of the jobs J;, j # jo, has been
processed so far. An optimal off-line algorithm will divide the interval from 0 to ¢/
evenly among the n jobs so that its makespan is COEF = #' 41 — (#/n). To see
that a constant ¢ cannot be guaranteed we modify the problem instance so that no
machine is available during the interval (CQEF ¢- COEF]. The algorithm H cannot
finish before ¢ - CYEF because it has jobs left at time COEF.

Albers and Schmidt also report that things look better if the algorithm is al-
lowed to be nearly on-line. In such a case we assume that the algorithm always
knows the next point in time when the set of available machines changes. Now
optimal schedules can be constructed. The algorithm presented has a running time
of O(gn+S), where g is the number of time instances where the set of available ma-
chines changes and S is the total number of intervals where machines are available.
If at any time at least one machine is available an on-line algorithm can construct
schedules which differ by an absolute error A from an optimal schedule for any
A > 0. This implies that not knowing machine availabilities does not really hurt

the performance of an algorithm if arbitrary preemption is allowed.

15

4.3 Dealing with Due Date Involving Criteria

In [Hor74] it is shown that P|pmtn,r;,d;| can be solved in O(n® min{n?,
logn + 10g Prmaz}) time. The same flow-based approach can be coupled with a
bisection search to minimize maximum lateness L., (see [LLLRT79], where the
method is also extended to uniform machines). A slightly modified version of the
algorithm still applies to the corresponding problem where the machines are not
continuously available. If the number of changes of machine availabilities dur-
ing any time interval is linear in the length of the interval this approach can be
implemented in O(n3p2,,,(logn + 10g pmaz)) [San95]. These algorithms need the
knowledge of all the data at time 0 and are hence off-line. When no release dates
are given but due dates have to be considered maximum lateness can be minimized
(P, NC|pmtn|Lyeg) using the approach suggested by [Sch88] in O(nm logn) time.
The method needs just to know all possible events before the next due date.

If there are not only due dates but also release dates to be considered
(P, NC|rj,pmtn|Ly,q,) Sanlaville [San95] suggests a nearly on-line priority algo-
rithm with an absolute error of A < (m — 1/m)pmqs if the availability of the
machines follows a constant pattern and of A < py,q. if machine availability refers
to an increasing zigzag pattern. The priority is calculated according to the Small-
est Laxity First (SLF) rule, where laxity (or slack time) is the difference between
the task’s due date and its remaining processing time. The SLF algorithm runs in
O(n?pmae) and it is optimal in the case of a zigzag pattern and no release dates.

Liu and Sanlaville [LS95a] show that results on C),,; minimization for in-
forest precedence graphs and increasing zigzag patterns ((P, N Cipc,,|pmin,in —
forest|Cpuaz) can be extended to Ly,qz, using SLF rule on the modified due dates.
Figure 4 shows an optimal SLF schedule for an in-tree. The modified due date
is given by d; = min((dj,d;(j) + ps(j)) where Ty(;y is the successor of T; when
it exists. In the same way, minimizing L., on two machines with availability
constraints is achieved using SLF with a different modification scheme. If there
are due dates, release dates and chain precedence constraints to be considered
(P,NC|rj,chains, pmtn|Lye;) the problem can be solved using a binary search
procedure in combination with a linear programming formulation [BDFKS98].

Lawler and Martel [LM89] solved the weighted number of late jobs problem on
two uniform machines, i.e. Q2|pmin|} w;U;. The originality of their paper comes
from the fact that they show a stronger result, as the speeds of the processors may

16

1 2 2.75

0 3 5 8 10
2.66 3.66 5.66

Figure 4: Minimizing L., on an increasing zigzag pattern

change continuously (and even be 0) during the execution. Hence it includes as a
special case availability constraints on two uniform machines. They use dynamic
programming to propose pseudo-polynomial algorithms (O(3" wjn?), or O(n*pmaz)
to minimize the number of late jobs). Nothing however is said about the effort

needed to compute processing capacity in one interval.

If there are more than two uniform machines to be considered and the prob-
lem is to minimize maximum lateness for jobs which have different release dates

17

(Q, NC|r;,pmtn|Lyqs) the problem can be solved in polynomial time by a com-
bined strategy of binary search and network flow [BDFKS98]. In the same paper
the problem is generalized taking unrelated machines, i.e. machine speeds cannot
be represented by constant factors, into account. This problem can also be solved
in polynomial time applying a combination of binary search and the two-phase
method given in [BEPSW96].

4.4 Flow Shop Problems

The flow shop scheduling problem for two machines with a constant pattern of
availability minimizing Cpqaz (F2||Caz) can be solved in polynomial time by John-
son’s rule [Joh54]. Lee [Lee97] has shown that this problem becomes already NP-
complete if there is a single interval of non-availability on one machine only. He also
gives an approximation algorithm which has a relative error of 1/2 if this interval
is on machine one or of 1/3 if the interval of non availability is on machine two.
Note that the classical flow shop is symmetrical, but the non-availability interval
breaks the symmetry. The approximation algorithms are based on a combination
of Johnson’s rule and a modification of the ratio rule given in [MP93]. Lee also
proposes a dynamic programming algorithm for the case with one interval only.

In [KBFS97] it is shown that the existence of approximation algorithms for flow
shop scheduling problems with limited machine availability is more of an exception.
It is proved that no polynomial time heuristic with a finite worst case bound can
exist for F'2, NC,, |t —pmtn|Cy,q, when at least two intervals of non-availability are
allowed to occur. Furthermore it is shown that makespan minimization becomes
NP-hard in the strong sense if arbitrary number of intervals occur on one machine
only. On the other hand there always exists an optimal schedule where the per-
mutation of jobs scheduled between any two consecutive intervals obeys Johnson’s
order. However the question which jobs to assign between which intervals remains
intractable.

Due to these negative results a branch and bound algorithm is developed
in [KBFS97] to solve F2, NC|pmitn|Cp,a;. The approach uses Johnson’s order
property of jobs scheduled between two consecutive intervals. This property helps
to reduce the number of solutions to be enumerated. The results based on exper-
iments with the branch and bound algorithm show that it is easier to deal with

18

intervals of non-availability on the second machine than with these on the first one.
This can be explained by the following assymetry. Any interval of non-availability
on the first machine may reduce inventory of jobs waiting in the intermediate
buffer between the machines, this, in turn, may result in idleness of the second
machine. On the other hand, no interval of non-availability on the second machine
might result in idle time of the first machine. The branch and bound algorithms
of [KBFS97] outperforms the dynamic programming algorithm proposed by Lee
[Lee97]. Nevertheless only 1354 instances out of 2100 could be solved to optimality
within a time limit of 1000 seconds.

In order to speed up the solution process a parallel implementation of the branch
and bound algorithm is presented in [BFKS97]. Computations have been performed
on 1,2.3,... and 8 processors, respectively. The experiment has been based on
instances for which computational times of the sequential version of the algorithm
were long. The maximum speed up gained was between 1.2 and 4.8 in comparison
to the sequential version for 8 processors being involved in the computation.

Based on these results in [BBFKS98] constructive and improvement heuristics
are designed for F2, NC|pmin|Cj,q,. They are empirically evaluated using the test
data from [KBFS97]. For these instances the optimal solution was not found by
the branch and bound algorithm lower bounds were calculated according to the
following problem relaxations.

e Let J, be a job with shortest processing time on machine P;. Assume that
all the other job processing times on P are zero. A permutation of the n
jobs having J, in the first position gives the lower bound LB;.

e Let Jy be a job with shortest processing time on machine P». Assume that
all the other job processing times on P, are zero. A permutation of the n
jobs having Jy in the last position gives the lower bound LB,.

e The optimal solution for the problem where the machines are continuously
available gives the lower bound LBjs.

Clearly, the minimum makespan cannot be shorter than the maximum of the
three lower bounds. From the experiments it turned out that 2063 instances out
of 2100 could be solved to optimality applying a combination of constructive and
improvement heuristics. The time limit to achieve this result was set to 30 seconds

19

for each instance. At least 2055 out of 2100 instances could be solved combin-
ing constructive methods only. The average computation time for this experiment
was 3.58 seconds per instance. Problem instances which could not be solved to
optimality with both kinds of combinations of heuristic algorithms had a worst rel-
ative performance of 3.03 percent and a mean relative performance of 0.197 percent
above the lower bound. Most of the heuristics performed better when the number
of jobs was increased. If the intervals of non-availability occurred on machine one
the performance of the heuristics was worse than in the case the intervals occurred
on machine two only. This matches with the observations in [KBFS97]. The results
in [BBFKS98| suggest that heuristic algorithms are very good options for solving
flow shop scheduling problems with limited machine availability.

5 Conclusions

We reviewed results on scheduling problems with limited machine availability. The
number of results shows that scheduling with availability constraints attracts more
and more researchers, as the importance of the applications is recognized. The
results presented here are of various kinds. For very few cases there exist optimal
on-line algorithms. More cases can be solved by nearly on-line algorithms but the
majority of cases can only solved to optimality by off-line algorithms. For off-line
settings either classical algorithms could be generalized to solve the problem in
polynomial time, or it could be shown that the problem becomes NP-complete due
to the availability constraints.

In particular, when preemption is not authorized it will logically entail NP-
Completeness of the problem. Moreover on-line and nearly on-line optimization
algorithms do not exist in this case. If one is interested in off-line optimal solutions
for non-preemptive problems enumerative algorithms have to be applied; if not
approximation algorithms are a good choice. Performance bounds may often be
obtained, but their quality will depend on the kind of availability patterns consid-
ered. If worst case bounds cannot be found heuristics which can only be evaluated
empirically have to be applied. Most of the positive results only hold for single ma-
chine and parallel machine systems. Flow shop, open shop and job shop systems
mainly require enumerative and heuristic algorithms. Investigating shop systems

20

are a challenging field for further research.

We try to summarize most of the results reviewed in this paper in Tables 1
and 2. Table 1 differs for a given problem type between performance criteria en-
tailing NP-completeness and those for which a polynomial algorithm exists. Table
2 distinguishes between problem types which can be solved to optimality (¢ = 1)
in polynomial time by on-line and by nearly on-line algorithms. This table covers
only preemptive scheduling problems because it is easy to show that if preemption
is not allowed optimality cannot be reached by this type of algorithms.

problem polynomial criteria NP — complete criteria
1,NC > Cj, Cmax
1, NC|pmin > Cj, Cmax, Lmax, > w;Cy,
> Uj Y- w;Uj(constant availability)
P, NC > C; > C;
(dif ferent beginning times) (dif ferent finish times)
P2, NC|pmtn, prec Cmaxs Lmax
P,NC,,|pmin,tree Cmax, Lmax(in — tree) Chax (for NC)
P, NC|pmtn, chains Cmax, Lmax
P,NC|pmin,r; Cmax, Lmax
Q, NC|pmin,r; Cmax, Lmax
F2, NC|pmtn Crmax (single non — availability
interval)

Table 1: Results for off-line settings

If availability constraints come from unexpected breakdowns, fully on-line al-
gorithms are needed. But many results of optimality concern at best nearly on-line
algorithms (in case of preemptive scheduling). It is an open question to look for
competitive ratios for fully on-line algorithms and specific availability patterns.

21

problem on — line algorithm nearly on — line algorithm
1,NC|pmtn ZCj, Cmax, Lmax, EUJ

P2, NC|pmitn, prec Cmax> Lmax
P,NC,,|pmin,tree Cmax; Lmax(intree)

P, NC|pmtn|chains Cmax, Lmax
P,NC|pmtn,r; Chax

Table 2: Results for on-line and nearly on-line settings

References

ABFR89 Adiri,I., Bruno,J., Frostig,E., Rinnooy Kan,A.H.G., Single machine flow-time schedul-
ing with a single breakdown, Acta Informatica 26, 1989, pp 679696

AS98 Albers,S., Schmidt,G., Scheduling with unexpected machine breakdowns, Technical Report
MPI-1-98-1-021, Maz Planck Institut fir Informatik, Saarbricken, 1998

BBFKS98 Blazewicz,J., Breit,J., Formanowicz,P., Kubiak,W., Schmidt,G., Heuristics for two
machine flow shops with limited machine availability, Discussion Paper B-9802, Fachbereich
Wirtschaftswissenschaft, University of Saarland, 1998

BEPSW96 Blazewicz,J., Ecker K., Pesch,E.; Schmidt,G., Weglarz,J., Scheduling Computer and
Manufacturing Processes, Springer, Berlin, 1996

BDFKS98 Blazewicz,J., Drozdowski,M., Formanowicz,P., Kubiak,W., Schmidt,G., Scheduling
preemtable tasks on parallel processors with limited availability, unpublished manuscript,
1998

BFKS97 Blazewicz,J., Formanowicz,P., Kubiak,W., Schmidt,G., A note on a parallel branch
and bound algorithm for the flow shop problem with limited machine availability, Working
Paper, Poznan Supercomputing and Networking Center, 1997

CVW94 Chen, B., Van Vliet, A., Woeginger, G.J., A lower bound for randomized on-line schedul-
ing algorithms, Inf. Proc. Letters, 51, 1994, pp 219-222

DWB85a Dolev,D., Warmuth,M.K., Scheduling flat graphs, STAM J. on Comput. 14, 1985, pp
638-657

DW85b Dolev,D., Warmuth,M.K., Profile scheduling of opposing forests and level orders, STAM
J. Alg. Disc. Meth. 6, 1985, pp 665687

GJ79 Garey,M.R., Johnson,D.S., Computers and Intractability, Freeman, San Francisco, 1979

22

Gra69 Graham,R.L., Bounds on multiprocessing timing anomalies, STAM J. Appl. Math. 17,
1969, pp 263-269

Hor74 Horn,W.A., Some simple scheduling algorithms, Naval Res. Logist. Quart. 21, 1974, pp
177-185

Joh54 Johnson,S.M., Optimal two- and three-stage production schedules with setup times in-
cluded, Naval Res. Logist. Quart. 1, 1954, pp 61-68

KP94 Kalyanasundaram,B., Pruhs K. P., Fault-tolerant scheduling, in: Proceedings of the 26th
Annual ACM Symposium on the Theory of Computing, 1994, pp 115-124

KP94 Kalyanasundaram,B.; Pruhs,K. P., Fault-tolerant real-time scheduling, in: Proceedings 5th
Annual European Symposium on Algorithms (ESA), Springer Lecture Notes in Computer
Science, 1997

Kar72 Karp,R.,M., Reducibility among combinatorial problems, in: R.E.Miller, J.W.Thatcher
(eds.), Complezity of Computer Communications, Plenum Press, New York, 1972, pp 85—
103

KMB88 Kaspi,M., Montreuil,B., On the scheduling of identical parallel processes with arbitrary
initial processor available time, Research Report 88-12, School of Industrial Engineering,
Purdue University, 1988

Kel98 Kellerer,H., Algorithms for multiprocessor scheduling with machine release time, IIE
Transactions, to appear

KBFS97 Kubiak.W., Blazewicz,J., Formanowicz,P., Schmidt,G., A branch and bound algorithm
for two machine flow shops with limited machine availability, Research Report RA-001/97,
Poznan University of Technology, Institute of Computing Science, 1997

LLLR79 Labetoulle,J., Lawler,E.L., Lenstra,J.K., Rinnooy Kan,A.H.G., Preemptive scheduling
of uniform machines subject to due dates, Technical Paper BW 99/79, CWI, Amsterdam,
1979

Law82 Lawler,E.L., Preemptive scheduling of precedence constrained jobs on parallel machines,
in: Dempster et al. (eds.), Deterministic and Stochastic Scheduling, Reidel, 1982, pp 101-
123

LMB89 Lawler,E.L., Martel,C.U., Preemptive scheduling of two uniform machines to minimize
the number of late jobs, Opns. Res. 37, 1989, pp 314-318

Lee91 Lee,C.-Y., Parallel machine scheduling with non-simultaneous machine available time,
Disc. Appl. Maths. 30, 1991, pp 53-61

Lee96 Lee,C.-Y., Machine scheduling with an availability constraint, Journal of Global Optimiza-
tion, Special Issue on Optimization of Scheduling Applications, 9, 1996, pp 363-384

Lee97 Lee,C.-Y., Minimizing the makespan in the two-machine flowshop scheduling problem with
an availability constraint, Operations Research Letters, 20, 1997, pp 129-139

23

LL92 Lee,C.-Y., Liman,S.D., Single machine flow-time scheduling with scheduled maintenance,
Acta Informatica 29, 1992, pp 375-382

LL93 Lee,C.-Y., Liman,S.D., Capacitated two-parallel machine scheduling to minimize sum of
job completion times, Disc. Appl. Maths. 41, 1993, pp 211-222

LLP97 Lee,C.-Y., Lei,L., Pinedo,M., Current trends in deterministic scheduling, Annals of Oper.
Res. 70, 1997, pp 1-42

LRKBT77 Lenstra,J.K., Rinnooy Kan,A.H.G., Brucker,P., Complexity of processor scheduling
problems, Ann. Discrete Math. 1,1977, pp 343-362

Lim91 Liman,S., Scheduling with Capacities and Due-Dates, Ph.D. Thesis, University of Florida,
1991

LHYL97 Lin,G., He,Y., Yao,Y., Lu,H., Exact bounds of the modified LPT algorithm applying
to parallel machines scheduling with nonsimultaneous machine available times, Appl. Math.
J. Chinese Univ. B 12(1), 1997, pp 109-116

LS95a Liu,Z., Sanlaville,E., Preemptive scheduling with variable profile, precedence constraints
and due dates, Disc. Appl. Maths. 58, 1995, pp 253-280

LS95b Liu,Z., Sanlaville,E., Profile scheduling of list algorithms, in: Chretienne,P. et al. (eds.),
Scheduling Theory and its Applications, Wiley, 1995, pp 91-110

LS97 Liu,Z., Sanlaville,E., Stochastic scheduling with variable profile and precedence constraints,
SIAM J. Comput. 26, 1997, pp 173-187

MC70 Muntz,R., Coffman,E.G., Preemptive scheduling of real- time tasks on multiprocessor
systems, J. Assoc. Comput. Mach. 17, 1970, pp 324-338

MecN59 McNaughton,R., Scheduling with deadlines and loss functions, Mgmt Sci. 6, 1959, pp
1-12

Moo68 Moore,J.M., An n job one machine sequencing algorithm for minimizing the number of
late jobs, Mgmt. Sci. 15, 1968, pp 102-109

Mos94 Mosheiov,G., Minimizing the sum of job completion times on capacitated parallel ma-
chines, Mathl. Comput. Modelling 20, 1994, pp 91-99

MP93 Morton,T.E., Pentico,D.W., Heuristic Scheduling Systems, Wiley, New York, 1993

San95 Sanlaville,E., Nearly on line scheduling of preemptive independent tasks, Disc. Appl.
Maths. 57, pp 229-241

Sch84 Schmidt,G., Scheduling on semi-identical processors, Z. Opns Res. A28, 1984, pp 153-162

Sch88 Schmidt,G., Scheduling independent tasks with deadlines on semi-identical processors, J.
Operat. Res. Soc. 39, 1988, pp 271-277

24

Smib56 Smith,W.E.; Various optimizers for single-stage production, Naval Res. Logist. Quart. 3,
1956, pp 59-66

ST85 Sleator,D.D., Tarjan,R.E., Amortized efficiency of list update and paging rules. Comm. of
the ACM 28 1985, pp 202-208

Ull75 Ullman,J.D., NP-complete scheduling problems, J. Comput. Syst. Sci. 10, 1975, pp
384-393

25

