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Abstract

In the first part of this work some important issues regarding the use of data-
driven learning systems are discussed. Next, a special category of learning systems
known as artificial Neural Networks (NNs) is presented. Our attention is focused on
a specific class of NNs, termed Radial Basis Function (RBF) networks, which are
widely employed in classification and function regression tasks. A constructive RBF
network, termed Hierarchical RBF (HRBF) model, is proposed. An application where
the HRBF model is applied to reconstruct a continuous 3-D surface from range data
samples is presented.
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1 Learning from data

Modern science describes physical, biological and social systems in terms of first-principle
models (e.g., Newton’s laws of mechanics) to be verified on the basis of experimental data
[1]. However, in many applications the underlying first principles are unknown or the
systems under study are too complex to be described analytically. In the absence of first
principles, experimental data can be used to derive unknown (input, output) dependencies
between a system’s variables. In recent years the use of low-cost sensors and computers
has increased the availability and usability of large experimental data sets. Thus, there has
been a shift from classical modelling, based on first principles, to the development of models
from data [1]. The latter approach is known as data-driven learning [1], or learning-by-
examples [2]. In humans, this type of learning mechanism is involved, for example, with the
simplest cognitive processes in infants and with commonsense reasoning and spontaneous
generalization in adults [2].

All data-driven learning systems are based on the following concepts: i) information
extracted from a finite set of observed examples, termed training data set, can be used to
answer questions either about unobserved samples belonging to a so-called test set, or about
unknown properties hidden in the training data; and ii) the goal of the learning process is
to minimize a risk functional (theoretically computed over an infinite data set, see Section
2.1) by adapting system parameters on the basis of the finite training set.

Training data belong to two main categories: i) labeled data, consisting of known (in-
put, output) vector pairs sampled from an unknown (input, output) mapping between two
multidimensional spaces; and ii) unlabeled data consisting of observed input samples exclu-
sively. In the first case, the training set is termed supervised because the value of the desired
output vector is specified for each input vector. In the latter case, the training set is termed
unsupervised. A supervised training set is described as a set of multidimensional vector
pairs, (Xp,yn), h = 1,..., M, where M is the finite size of the training set, input sample
Xp € R™, output sample y, € R™, and n; and ng, belonging to ZT, are the dimensionality
of the input and output space respectively.

Data-driven learning tasks include the following:

1. Predictive learning tasks. Whereas deductive learning provides special cases (e.g., out-
put values) from general models, the goal of predictive learning, also called inductive
learning or specific-to-general type of inference, is to provide good generalization (i.e.,
a good model) from a finite set of particular labeled cases (supervised training exam-
ples) [1]. In detail, on the basis of the supervised training set, a predictive learning
system selects the approximating function that minimizes a cost function for unob-
served (future) samples from a wide class of candidated functions [1]. Two classes of
predictive learning tasks are:

(a) Function regression, where the task is to estimate an unknown continuous func-
tion, capable of giving good predictions for unobserved data, from eventually
noisy supervised training samples. When training examples are not affected by
noise, regression problems are called function interpolation problems [1]. When
the mapping between two multidimensional spaces is viewed as a function de-
fined over the multidimensional input space R™, then the problem of function



regression becomes equivalent to finding a surface providing the best fit to the
training data points in the multidimensional output space R™, according to an
optimization criterion.

(b) Classification (pattern recognition), where the task is to assign new inputs to
one of a finite number of discrete output values, equivalent to output classes or
categories, on the basis of the supervised training set.

2. Probability density function estimation from unsupervised training samples.

3. Clustering/vector requantization from unsupervised training samples, where clusters
are intended as “natural” structures or statistical regularities capable of characterizing
the unsupervised training set.

In the first part of this work some important issues regarding the use of data-driven
learning systems are discussed. Next, a particular category of learning systems known as
artificial Neural Networks (NNs) is presented. Our attention is focused on a specific class
of NNs, termed Radial Basis Function (RBF) networks, which are widely employed in clas-
sification and function regression tasks. A constructive RBF network, termed Hierarchical
RBF (HRBF) model, is presented. An application where the HRBF model is applied to
reconstruct a continuous 3-D surface from range data samples is proposed [3].

2 Issues in learning from data

This section briefly discusses some important issues regarding the use of data-driven learning
systems.

2.1 Actual risk and empirical risk

In Section 1, an inductive learning machine is described as an adaptive system whose goal is
to select, from a set of candidated functions, the estimated function that best approximates
the experimental responses of the system under study on the basis of a training set of
observed examples. Let us identify as f (w,x) the class of function estimators supported
by the learning machine, where w identifies the vector of adjustable parameters to be
determined on the basis of the training data. Under the hypothesis that observed (input,
output) samples are independent and identically distributed (i.i.d), the supervised training
data set can be described by the joint probability density function

p(x,y) = p(x)p(x]y)- (1)

For any measured pair (xp,yn), b = 1,...M, the quality of the approximating function

f(w,x) is measured by the loss or discrepancy function L(yp,f(w,xy)). The expected
value of the loss function is called actual (or true or expected or prediction) risk functional

Rut (W) = / L(y, (w,x))p(x, y)dxdy. 2)

Learning is the process of estimating, based only on the training data, the vector of pa-
rameters w such that the estimated function f(w,x) minimizes the actual risk functional



R,ct(w). The problem is that since p(x,y) is unknown, then R,.(w) is also unknown.
This is tantamount to saying that the finite number of training samples implies that any
estimate of the (unknown) actual risk function is inaccurate (biased), i.e., any predictive
learning problem is ill-posed. The straightforward approach is to minimize the empirical
risk or sample error computed over the finite samples belonging to the supervised training
set as a substitute for unknown expected risk. The empirical risk is

M
Romp(w) = % S Liyn, E(w, xn)). 3)
h=1

Unfortunately, empirical risk minimization based on a finite training set does not guarantee
a small actual risk. This is evident when we consider that the solution that minimizes R,
is not unique as there is an infinite number of continuous functions that can interpolate
M data points exactly. In other words, the predictive learning problem is ill-posed in the
absence of any assumption about the nature of the function to be estimated. The key
observation is that meaningful estimation on the basis of a finite data set is possible only
for sufficiently smooth target functions. This is tantamount to saying that any inductive
learning process is based on an inductive principle or inference method, which is a framework
for selecting a unique solution from a wide class of candidated functions using finite data.
An inductive principle combines the evidence provided by the training data with smoothness
constraints considered as a priori assumptions (i.e., background knowledge independent of
the training data) about the learning process at hand. Note that the inductive principle
and the optimization procedure required by any learning system feature two different and
complementary roles: while the inductive principle identifies the class of cost functions to
be minimized, the optimization procedure specifies how to estimate parameters to minimize
the given cost function.

To improve the performance of learning systems in minimizing the actual risk on the
basis of a limited amount of data, quantitative bounds and equations relating the actual
risk to the empirical risk, model complexity and the number of training examples have been
investigated in recent years [1], [4].

2.2 Inductive principles

The complexity of a learning system increases with the number of independent and ad-
justable parameters, also termed degrees of freedom, to be adapted during the learning
process. According to the qualitative principle of Occam’s razor, a sound basis for general-
izing beyond a given set of examples is to prefer the simplest hypothesis that fits observed
data [4], [6]. This principle states that to be effective, the cost function minimized by an
inductive learning system should provide a trade-off between how well the model fits the
training data and model complezity. This also means that model complexity must be con-
trolled by a priori (background) knowledge, i.e., subjective knowledge available before any
evidence (e.g., empirical risk) provided by the training data is observed.

Different inductive principles provide cost functions considered as different quantitative
formulations of Occam’s qualitative principle. For example, when the supervised training
data are affected by noise, exact interpolation functions tend to become highly oscillatory.
Since they are unlikely to provide good predictions for new examples, highly oscillatory



functions are considered neither useful nor desirable in function regression. To restrict
possible solutions, one common assumption is to add a penalty (regularization) term based
on a priori knowledge to the empirical risk to be minimized. Then, according to the
penalization (regularization) inductive principle, we have

Rpen(W) = Remp(W) + /\w[f'(w,x)], (4)

where A > 0 is a regularization parameter that controls the strength of the a prior: knowl-
edge included in the form of the penalty functional w[f(w,x)]. To avoid the risk of over-
fitting training data, the penalty term should be chosen as a non-decreasing function of
model complexity in such a way that minimization of Eq. (4) is equivalent to minimizing
actual risk (2). In this case minimization of Eq. (4) provides a trade-off between fitting
training data to minimize the empirical risk, and fitting background knowledge to minimize
model complexity. This is tantamount to saying that the choice of A and w[f(w,x)] is a
problem of model selection, i.e., a task in which a model of optimal complexity is chosen for
the given finite data set [1]. For example, in function regression tasks, the regularization
term may penalize candidated functions that are not smooth, i.e., those presenting large
oscillations, by computing [6]

2f(w,x)
w[f(w,x)] :/<%) dx. (5)

Under the classical Bayesian approach, both A and w[f(w,x)] are chosen on the basis of a
priori knowledge exclusively, which is to say that by definition the observed data are not used
for model selection. As correct specification of priors is difficult to accomplish in practice,
predictive learning systems become more robust and flexible if the regularization parameter
A is chosen on the basis of the training set (for example, by means of cross-validation [1],
[5]) for a given type of user-defined penalty functional wl[f(w,x)].

Several statistical techniques, besides the regularization inductive principle, have pro-
posed different bounds and equations relating actual risk to empirical risk, model complexity
and the number of training examples within the framework of predictive learning. For ex-
ample, it has been shown that in the limit of an infinite data set, a cost function computed
as the sum-of-squared differences between target and estimated outputs is proportional to
the sum of a bias term with a variance term [6], [8], i.e.,

Roet(w) o< [bias(w)]? + variance(w). (6)

In Eq. (6) the bias term measures the extent to which the average (over an infinite data set)
of the approximating function differs from the target function. For example, an approxi-
mating function that is closely fitted to training data (e.g., that exactly interpolates them)
will tend to have a small bias. Conversely, in Eq. (6) the variance term measures the extent
to which the approximating function is sensitive to the particular choice of the data set
[6], [7]. For example, an approximating function that is closely fitted to training data will
tend to have a large variance. Thus, minimization of Eq. (6) provides a natural trade-off
between minimizing both bias and variance: by smoothing the approximating function we
can decrease the variance, but if the smoothing is taken too far then the bias becomes large.
This quantitative principle is called the bias-variance trade-off [8].
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Additional quantitative properties of predictive learning systems have been proposed by
statistical learning theory, also known as the Vapnik-Chervonenkis (VC) theory, in the last
25 years [9]. For example, in the case of two-class (binary) pattern recognition problems,
the bound

Raci(W) < Remp(w) + ¢ 37 (7

holds if parameter h is finite. This parameter, known as the V(' dimension, is a charac-
teristic of the set of approximating functions supported by the learning system and is a
measure of model complexity [1], [10]. In Eq. (7), function ¢[1%], called the VC confidence
term or confidence interval, decreases monotonically with size M of the training set and
monotonically increases with h. Eq. (7) means that if M is large, then the value of the
confidence term becomes small and the empirical risk can be safely employed as an estimate
of the true risk. Vice versa, when M is small, Eq. (7) shows that to minimize the actual
risk the combination of the empirical risk with the confidence term ought to be minimized,
i.e., the VC-dimension h should also be minimized [9], [10].

For function regression problems VC theory provides the following bound, which is useful
for model selection [1]

h 4

— <0.8 for >min{—,1}, 8
7 S n= NiTi (8)
where (1 —n) € [0,1] is called the confidence level. Eq. (8) provides an upper limit for
model complexity for a given sample size and confidence level or, equivalently, a lower limit
for the sample size for a given model complexity and confidence level.

2.3 Semiparametric models

To model training data, parametric data-driven learning algorithms employ specific func-
tional forms selected by the application developer on a a priori basis (i.e., before examining
the data). One typical example of a parametric learning system is the normally-distributed
density function estimator. Parametric learning systems employ simple learning procedures,
but lack robustness.

Non-parametric learning systems, such as kernel-based methods for density function
estimation, are not restricted to specific functional forms. Like parametric learning systems,
they employ simple learning procedures, but their complexity increases with the size of the
training set.

Learning systems where the problem is to estimate both optimal model complexity and
model parameters are called semiparametric [1], [6]. Unlike parametric learning algorithms,
semiparametric systems are not restricted to specific functional forms. Moreover, the com-
plexity of semiparametric systems must increase with the complexity of the problem being
solved rather than with the size of the training set as for non-parametric systems. The
disadvantage of semiparametric learning systems is that they are computationally intensive
compared to the simple procedures required by both parametric and non-parametric systems
[6]. One typical example of a semiparametric learning system is the mixture distribution
model for density function estimation [6].

A special case of semiparametric systems is the class of constructive procedures, also
called growing algorithms, where model complexity increases dynamically and the choice



among candidated solutions is based on their performance over the entire collection of
training examples [1], [4].

2.4 Curse of dimensionality

In previous sections it has been shown why, in predictive learning, meaningful function es-
timation is possible only for sufficiently smooth target functions. A smoothness constraint
essentially defines possible function behaviors in local neighborhoods of the input space [1].
It is obvious that the accuracy of function estimation depends on having enough training
samples within the local neighborhood specified by a smoothness constraint in the input
space. Unfortunately, the number of samples yielding the same density increases exponen-
tially with the dimensionality of the input space [1], [6]. This effect is known as the “curse
of dimensionality.”

As an example of the “curse of dimensionality,” consider that any function estimator
increases its number of adjustable parameters with the dimensionality of input space. As a
consequence, the size of training data required to compute a reliable estimate of adaptive
parameters may become huge in practical problems. A specific relationship between sample
size and model complexity is shown in Eq. (8). A heuristic rule between sample size and
model complexity requires sample size to be at least 10 times the number of free parameters
in the model [16].

2.5 Classification of methods for regression

One possible way to classify methods for estimating continuous-valued functions from noisy
samples is to develop a taxonomy based on dictionary representation versus kernel repre-
sentation [1].

In dictionary representation, a set of parameterized candidated functions is expressed
as a weighted combination of basis functions

C
§(x,w,v) =) wig;(x,v;), (9)
j=1
where g;(x,v;) is called Basis Function (BF) and vectors w = [wy,...,w¢] and v =

[V1, ..., vc] consist of adaptive parameters. The set of BFs, g;(x,v;), j =1,...,C, is called
a dictionary, and the number C of dictionary entries (BFs) is often considered a regulariza-
tion (complexity) parameter. The goal of a predictive learning system that employs Eq. (9)
for function regression is to adjust degrees of freedom w, v and C on the basis of a (finite)
supervised training set in such a way that the approximating function, selected from the
set of candidated functions, provides minimum prediction risk (2). In other words, Eq. (9)
is a function estimator designed to perform well over the entire instance (input) space, i.e.,
model selection with a dictionary representation is global because parameters are adjusted by
a learning procedure on the basis of the entire training set, and "permanent” because, after
completion of the learning phase, training examples can be dismissed. If basis functions
are fixed, parameterization (9) becomes linear with respect to parameters w which can be
estimated from the training set by means of linear least squares methods [1], [6].



In kernel representation, a continuous-valued function estimator is expressed as a distance-
weighted combination of observed output values

M
¥(x) =D ynkn(d(x,xn)), (10)
h=1

where (input, output) pairs (Xp,yn), b = 1, ..., M, are the observed examples that make up
the supervised training set. Unlike Eq. (9), whose computational complexity increases with
regularization parameter C, note that the computational complexity of Eq. (10) increases
with the size of the training set. In Eq. (10) weighting function kx(d(x,xn)), called kernel
function, is monotonically non-increasing with distance d(x,xp). For example, distance
d(x,xp) can be computed according to the L, norm (Minkowsi metric) which, in a general
multidimensional case, is

dfa,b) = (3 lag = b7} )

where a and b are two points belonging to the input space whose dimensionality is n; > 1.
If p =2, Eq. (11) provides the Euclidean distance. Kernel function k(d(a, b)) usually (but
not always) satisfies the following properties [1]

k(d(a,b)) > 0. Nonnegative. (12a)
k(d(a,b)) = k(d(b,a)). Radially symmetric. (120)
k(d(a,a)) = max. Takes on its maximum when a = b. (12¢)
lim;_, o k(t) = 0. Localized function [6]. (12d)

Kernel methods are examples of instance- or memory-based learning strategies because they
are based on storing all training data [4], [11]. The basic idea behind kernel representation is
that when a new query instance is presented, the target value is estimated only on the basis
of training examples near the query point, as training examples are individually weighted
by their distance from the query point. This also means that unlike Eq. (9), which is
designed to perform well over the entire instance space, instance-based learning approaches
actually construct a different approximation to the target function for each distinct query
instance [4]. For the sake of simplicity, let us consider a mapping between two 1-D spaces,
ie, xp €E R, yp» € R, h = 1,..., M. When unobserved function values are estimated by
fitting the nearby training points well, with less concern for distant training points, the cost
function to be minimized on the basis of the supervised training set becomes

M

Cla) = D>_(9(q) —yn)?k(d(g, 1)), (13)

h=1
where ¢ is a query input point (unobserved example) and k(d(q, z)] is a distance-weighting
function constrained by Eq. (12). The best estimate ¢(q) is the one that minimizes C(q)
such that

0C(q) _ <=, _
i)~ hgl(y(Q) — yn)k(d(q, 1)) = 0,

therefore,

o Yl ynk(d(g; zh))
Y W) "
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According to Eq. (14), if k(d(q,zr)) — oo when d(q,z) — 0, i.e., when ¢ — zj, then
7(q) — yn, i.e., exact interpolation of the supervised training data is pursued. If data are
noisy, exact interpolation is not desirable, and Eq. (14) should employ a weighting scheme
based on finite values of the kernel function to guarantee smooth interpolation between
training points [11]. For example, let us consider the case in which Eq. (14) employs a

Gaussian weighting function
 (d(a.zp))?

k(d(g,zn)) =€ Zw . (15)
In this case, if d(q,zp) — 0, i.e., if ¢ — zp, then k(d(g,z,)) — 1 and, as a consequence,
9(q) # yn. This means that when Eq. (14) employs a Gaussian weighting function then no
exact interpolation is pursued because not every observed input value is mapped exactly
onto its corresponding target value.

It is important to stress that a clear distinction between dictionary and kernel methods
as proposed in [1] is rather obscure in the rest of the literature where the term ”kernel
function” is often employed to identify localized basis functions in dictionary methods and
density function estimators.

2.6 Orthogonal basis functions

An interesting case where the computation of the weights of a dictionary representation (9)
is significantly simplified occurs when the function estimator employs a set of orthonormal
basis functions. Basis functions g;(x), j = 1,...,C, are orthonormal if

/gi(x)gj(x)da: =14, Vi,je{l,C}, (16)

where §; ; is the Kronecker delta, such that d;,; = 1 iff ¢ = j and §; ; = 0 otherwise. If
an orthonormal basis is employed in Eq. (9), and equally-spaced samples are collected in
the supervised training set, then minimization of the sum-of-squares error with respect to
weight wy, 7 € {1,C}, yields [1]

oR(w) _ 0 [y() — TiLs wig(x

ow; ow;

? dx ¢
)] = —2/ ly(X) - Zngj(X)] gi(x)dz =

C
-2 [ yo0mi(x)do + 2 w; [ gi(x)gix)ds = -2 [ y(x)gix)do + 2w; = 0,

Wi — / v(x)gi(x)dz. (17)

Eq. (17) shows that in signal processing, where the goal is to find a compact and accurate
representation of a known signal, analysis of the weights employed in the linear combi-
nation (9) becomes simple when: i) a fixed set of orthonormal basis is employed; and ii)
equally-spaced samples are collected. When these conditions are satisfied the signal-specific
weighting coefficients wj, j = 1,..., C, define uniquely signal y(x)) [12], [13]. However, our
interest is focused on estimating an unknown continuous-valued signal from noisy samples.



When the target function is unknown, Eq. (17) cannot be employed directly but must be
estimated from the training set of equally-spaced (input, output) examples, i.e.,

1 M
Wi=— > yngi(Xn)- (18)
M h=1

Examples of an orthonormal basis include Fourier series, where a stationary signal is syn-
thesized (reconstructed) as a combination of sinusoidal waveforms, Hermite polynomials
employed in polynomial transforms [14], and wavelets which are employed, for example, in
1-D and 2-D signal compression [15].

3 Introduction to neural networks

Artificial Neural Networks (NNs) are parametrized and distributed systems capable of learn-
ing from data. In this context the term distributed means that NNs consist of a multeplicity
of simple and mutually interconnected processing elements. Owing to these properties NNs
are also termed complex systems [2]. The role of NNs is to determine (input, output) de-
pendencies that are unknown, or too complex to be described analytically, on the basis of
a finite training set of examples.

Since NNs are based on data-driven learning mechanisms, they do not derive their or-
ganization from an external design, i.e., the background knowledge involved in NNs does
not regard their connectionist architecture as a whole, but only their individual processing
elements. Instead, the organization of NNs naturally emerges from elementary interactions
of the processing elements while the data set of observed examples is presented to the net-
work. An important consequence of this observation is that, in the connectionist approach,
data-driven learning cannot be studied independently of the physical support of the cognitive
system. This is in contrast with the study of syntactic (symbolic) high-level information
processing systems based on learning-by-rule mechanisms [2]. In these systems a set of deci-
sion rules representing application-domain specific background knowledge (i.e., independent
of training data) may be explicitly taught to the system by an external supervisor. Unlike
the connectionist approach, the symbolic approach implies that high-level cognitive systems
can be studied independently of the structure and functioning of their physical support.

3.1 Advantages and drawbacks of neural networks

Many of the important issues concerning the application of NNs can be introduced by
considering the simpler case of polynomial estimators [6]. Let us consider a set of M
(input, output) data pairs (xn,yn), h = 1,..., M, where xpn = (Zp1,...,Thn;) € R™ and
yn € R. The problem is to fit a Pth-order polynomial to the given set of multidimensional
data points so that a given risk function is minimized. In our example, the Pth-order
polynomial has the form

y(x) = wo + E wi, Ti, + 2 E Wiy iy Tiy Tiy + oo + E E E Wiy iy, ipLiy Tig--Lip-
11=1 11=112=1 11=1170=1 ip=1

(19)



Eq. (19) is an example of a linear model, i.e., a learning system supporting candidated
functions that depend linearly on the free parameter vector w, although they may not
depend linearly on input variables x [6]. In the Pth-order polynomial the number of degrees
of freedom grows as n!”, which represents a dramatic growth in the complexity of the model
as the dimensionality of the input space, n;, increases. This implies that the number of
data points, M, required to well-determine the adaptive parameters of a linear model also
increases dramatically with the number n; of input variables.

The problem of scaling with dimensionality is efficiently solved by non-linear NNs where
non-linear functions of adjustable parameters approximate general (non-linear) mappings
between multidimensional spaces. The key idea of non-linear NN is to estimate an approxi-
mating function as a superposition of non-linear ‘hidden functions’ of adjustable parameters
that are adapted to the data during the training process, so that the number of such hidden
functions increases with the complexity of the mapping rather than with the dimensionality
of the input space [6]. As a consequence, the number of free parameters in non-linear NN
models typically increases linearly, or quadratically, with the number of input variables n;
[6].

To provide efficient scaling between model complexity and dimensionality of the input
space, non-linear NN models exploit two common properties of real data. First, input
variables tend to be correlated in some way, i.e., data points tend to be located in some
specific regions of the input space and/or in some sub-spaces featuring a so-called true or
intrinsic dimensionality which is usually much lower than n;. Second, in many real problems
output variables vary smoothly as the input variables change by small quantities. Thus,
non-linear NN models usually enforce smoothness constraints on their candidated solutions.

The main drawback of non-linear NNs is that their optimization is computationally
intensive and technically difficult because of the presence of multiple local minima in the
error function.

The two major classes of non-linear NN models, Multi-Layer Perceptrons (MLPs) and
Radial Basis Function (RBF) networks, are further discussed in the next sections.

3.2 Comparison between MLPs and RBF networks

MILPs and RBF networks are feed-forward networks employed in predictive learning tasks.
Their approximating function is

C

y(x,w,v) = Zngj(x,Vj) + wo, (20)
j=1

where g;(x,vj) is a BF (see Eq. (9)) also termed activation function, vectors w and v
consist of adaptive parameters, and wg is a bias term.

Although MLPs and RBF networks play similar roles, their architectural properties as
well as their supervised learning techniques are quite different.

In MLPs [6]:

1. The feed-forward network architecture consists of up to three layers of processing
units, termed input, hidden and output layer respectively. Hidden layers are all the
layers between the input and output layer.
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2. BFs are non-linear functions of the scalar product between input vector x and weight

vector v;
n;

gj(x, Vj) =8 (’Uj}() + Z :Cd’l)j’d> = S(X ° Vj), (21)
d=1

where symbol ”e” identifies the dot product and s(-) is a non-linear ‘s-shaped’ (squash-

ing) function that maps the interval (—oo, c0) onto range (0,1) (e.g., logistic function)

or (-1,1) (e.g., hyperbolic tangent). For example, the logistic sigmoid function is

_ 1
T l4et?

s(t) s(t) € (0,1),Vt € (—00,00). (22)

3. As a consequence of Egs. (21) and (22), activation values of every hidden unit are
significant in large portions of the input domain, i.e., many hidden units typically
have significant activations for a given input. This is tantamount to saying that many
hidden units will typically contribute to the determination of the network output value
for a given input pattern.

4. All parameters of an MLP network are adjusted according to a single-stage global
training strategy, termed error back-propagation learning algorithm, which is based
on the supervised training set [16].1

In RBF networks [6], [17], [18]:

1. The feed-forward network architecture is made up of only two layers. The first hidden
layer consists of C' processing units while the second output layer linearly combines
the activations provided by the hidden layer to form the outputs.

2. BFs are RBFs, i.e., radially symmetric functions (see Eq. (12b)) centered on param-
eter vector vji:

gj(x’vj) = gj(d(x’ vj))> (23)

where d(x, v;) is the distance between input pattern x and prototype or template vector
v;. In the input space, prototype vector v; identifies the center of the receptive field
of processing unit j. The receptive field of a processing unit is defined as the subset
of the input domain where the processing unit features activation values greater than
a small threshold 0 < € << 1. An RBF whose output tends to zero when distance
d(x,vj) goes to infinity is termed localized RBF [6]. A popular localized RBF is the
Gaussian Radial Basis Function (GRBF)

2

[x—vjl
n 202
gi(d(x,vj)) =e i, (24)
where o, j = 1,...,C, are scale parameters determining the size of the receptive

fields of the network’s GRBFs, and |x — v;j| is the Euclidean distance. Thus, GRBFs

!This optimization algorithm is called back-propagation because the output error is ” back-propagated”
through the network all the way down to the free parameters of the input layer [16]. It is their simple and
easily implementable learning strategy that makes conventional MLPs the most popular NN model [34].
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are equivalent to small patches (Gaussian data windows) covering the input space.
Among localized RBF types, GRBFs are preferred for two main reasons: a) they have
a number of useful analytical properties, e.g., a Gaussian function is factorizable; as
a consequence, their implementation in parallel hardware is straightforward, which
makes GRBF's particularly attractive for real-time network implementations [19]; and
b) they are claimed to constitute a processing module common in the human nervous
system [20]. Whenever GRBFs are adopted, Eq. (9) becomes

C
Y, w,v,0) = > wigi(x;vj, 05), (25)
=1
where the adjustable parameters are termed as follows: i) structural parameters of the
hidden layer are number C' of GRBFs, position (prototype vector) v; and standard
deviation (spread parameter) o;, j = 1, ...,C, of the GRBFs; and ii) output weights of
the output layer are parameters wj, j = 1,...,C.

3. When hidden units employ a localized RBF type, e.g., GRBF, then only a few hidden
units typically have significant activations for a given input vector.

4. Free parameters are typically trained according to a two-stage hybrid learning proce-
dure combining an unsupervised first stage with a supervised second stage. The first
stage is termed unsupervised or data-driven because it assigns hidden unit parameters
on the basis of the density of the input vectors exclusively, i.e., without relating to
the (input, output) vector pairs of the supervised training set. The second stage is
termed supervised or error-driven because it determines the output weights of the
output layer on the basis of the supervised training set.

5. To provide a smooth interpolation function in which the number of RBF's is determined
by the complexity of the mapping to be approximated rather than by the size of the
training data set, RBF networks employ a number C of basis functions that must be
less than number M of training samples [6], [17]. This is tantamount to stating that
C is considered a regularization parameter [1].

Both MLPs and RBF networks have been proved to work as universal approximators,
i.e., they are capable of approximating any arbitrary mapping between multidimensional
spaces to any degree of precision if they are provided with a sufficient number C' of process-
ing units [21]. Note that when the distance between two consecutive Gaussians becomes
vanishingly small, in the 1-D case where n; = n, = 1 (for the sake of simplicity), Eq. (25)
can be written as

i) = [ w(@)ge - vio)d = w(z) * g(z50), (26)
R
where symbol ” 7 identifies the convolution product.
3.3 Links between RBF networks and other function approximation tech-
niques

An important property of RBF networks is that they form a unifying link between a number
of different learning systems including:

12



(a) Zero-order Sugeno fuzzy systems (where the ouput of each fuzzy rule is a constant),
which are equivalent to RBF networks under certain mild restrictions [22], [23].

(b) Support Vector Machines (SVMs), whose training always finds a global minimum of a
cost function for a classification task. An SVM is largely characterized by the choice of
a kernel function (i.e., a weighting function). When this kernel function is a Gaussian,
then SVM is called SVM RBFs, where the number of RBF's, their centers and their
interpolation coefficients are all determined automatically by the SVM training and
have a simple geometric interpretation [24]. The traditional view of RBF networks
has been one in which the centers of RBFs are regarded as templates or prototypes.
In line with this view it is reasonable to exploit a clustering heuristic to train the first
layer of RBF networks. In contrast, SVMs consider the centers of the RBFs as those
training examples that are critical for a given predictive task. These critical training
examples are termed support vectors.

(c) Regularization theory, in which a mapping function is determined by minimizing a cost
function designed to penalize mappings that are not smooth [6], [17].

(d) Noise interpolation theory, in which the observable output data is generated by a target
function, which is smooth and noise-free, while the input data is corrupted by additive
Gaussian noise [6], [25];

(e) Kernel regression, in which a noise-affected function is estimated by means of the
Gaussian kernel-based method for density estimation [6].

(f) Distance-weighted regression methods, also termed instance-based [4], or memory-
based learning methods [11] (see Section 2.5). Instance-based methods construct only
a local approximation to the target function that applies in the neighborhood of the
new query instance, and never construct an approximation designed to perform well
over the entire input space [4]. RBF networks employing localized RBFs to construct
approximations that perform well over the entire input space can be considered an
interesting bridge between instance-based and neural network learning algorithms [4].

(g) Bayes optimal classifiers, where the density of the input data is expressed in terms of
a mixture distribution whose components are the basis functions [4], [6].

4 Learning techniques for RBF networks

The traditional view of RBF networks where the centers of RBFs are regarded as tem-
plates has led to the development of hybrid learning schemes whose first stage performs
unsupervised clustering. Advantages and drawbacks of two-stage hybrid learning proce-
dures in comparison with error-driven adaptation strategies for RBF networks are analyzed
hereafter.

4.1 Hybrid learning techniques

Hybrid learning techniques used to train RBF networks can be significantly faster than
error-driven methods used to train MLPs. In the first stage of a hybrid learning procedure,
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parameters of the hidden units are determined using relatively fast, unsupervised methods.
One example of an unsupervised method is the Expectation-Maximization (EM) procedure
for density function estimation. The EM algorithm tries to maximize the likelihood of in-
put vectors, p(x), represented as a mixture distribution of basis functions p(j), j € {1,C},
according to the expansion rule p(x) = Z? p(x]7)p(4), where the number of basis functions
C is user-defined [6], [26]. Other examples of unsupervised methods are the clustering algo-
rithms based on histogram analysis where, from the sequence of input patterns, prototype
vectors are extracted as statistical regularities capable of minimizing a requantization error
(e.g., Hard c-means [27], Fuzzy c-means [28], LBG-U [29]).

Once parameters of the hidden layer have been estimated by the first stage, the second
training stage of the hybrid learning procedure determines the values of the output weights
by minimizing a cost functional on the basis of the supervised training set. When the cost
function is the sum-of-squares error, output weights can be determined by using a pseudo-
inverse solution of a linear problem, which is therefore also fast [6]. Otherwise, a slower
gradient descent approach can be employed.

RBF networks employing a two-stage hybrid learning procedure feature the following
advantages over MLPs:

i) they employ simpler architectures to perform complex mappings;
ii) they can be trained faster;

iii) they may be particularly attractive for applications where input patterns are readily
available but (input, output) sample pairs are difficult to gather;

iv) they are easily interpretable if RBFs are well localized (e.g., a GRBF is well localized
when its adjustable parameter o does not tend to either zero or infinity);

and v) the use of unsupervised learning methods can be quite successful in practice when
the distribution of the input patterns is highly non-uniform and/or its effective di-
mensionality is small, i.e., correlation between input variables is high [1].

Disadvantages of hybrid learning techniques for RBF networks are that:

i) most unsupervised clustering techniques require the user to fix several parameters of the
hidden layer in advance; this is typically the case for the regularization parameter C
(number of RBFs) and/or spread parameters of GRBFs;

and ii) the distribution of RBFs in the input space as computed by the unsupervised tech-
nique does not reflect the local complexity of the classification or regression problem at
hand; e.g., unsupervised methods may form clusters of input vectors that are closely
spaced in the input space but belong to different classes [6], [23], [30], [31].

These disadvantages imply that when the number of RBF's (i.e., the number of adjustable
parameters) is increased either by the user or by a constructive clustering algorithm in prac-
tical applications [32], [33], there is no guarantee of improving the system’s performance on
a test set, i.e, on a set of unobserved labeled examples, because the unsupervised algorithm
may locate the additional RBFs in regions of the input space where they are either useless
or harmful in implementing the desired (input, output) mapping [31].
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To avoid this problem, the density of RBFs must be made independent of input vector
density but dependent on the complexity of the desired (input, output) mapping. Thus,
several error-driven (supervised) learning algorithms for RBF networks, either one- or two-
stage, have been proposed in recent years. In this learning framework the density of RBF's
is computed on the basis of the supervised training set according to a cost function mini-
mization criterion.

4.2 Error-driven learning techniques

In error-driven learning, all adjustable parameters of a predictive learning system are
adapted to minimize a cost function computed on the basis of the training set as a dif-
ference between target outputs and system outputs. While for MLLPs a simple optimization
algorithm based on gradient descent of a sum-of-squares error has been devised to determine
the network weights, it has been proved that when this technique is applied, for example,
to GRBF networks, it is unsuccessful because [34]: i) it does not ensure that GRBFs will
remain localized, i.e., spread parameters may become very large and GRBF responses may
become very broad [18]; and ii) it has practically no effect on the positions (centers) of
GRBFs.

To overcome these limitations Karayiannis has introduced new types of localized RBFs
suitable for gradient descent learning [34]. Drawbacks of this supervised learning approach
are that it does not guarantee convergence to the absolute minimum of the cost function
and that it does not select model complexity (i.e., number C of hidden units must be
user-defined).

A different supervised learning approach is offered by error-driven growing RBF net-
works. In this approach the number of hidden units is allowed to grow until a convergence
criterion is met, and when a new hidden unit is generated, an error-driven insertion criterion
locates the center of the RBF in the input space. According to their insertion criterion,
growing RBF networks can be divided into scatter-partitioning RBF networks [23], [31],
where centers and spread parameters of RBFs are adjustable, and grid-partitioning RBF
networks, where the input space is partitioned into a regular grid of identical patches whose
size is known a priori, i.e., center and spread parameter values of the hidden layer are
neither error- nor data-driven [35].

Unlike constructive grid-partitioning RBF networks, traditional (non-growing) grid-
partitioning schemes, where all structural parameters are set on the basis of a rigid gridding
of the input space, tend to be inefficient and not robust. However, they offer the advantage
of employing the input space gridding mechanism to reduce the number of free parameters
in the network [25].

This advantage is fully exploited in the Hierarchical Radial Basis Functions (HRBF)
network model where an error-driven mechanism identifies useful RBFs at the crossings of
a hierarchy of grid partitions of the input space [35]. In other words, RBFs belonging to
higher grids are dynamically added to the basic (first) layer of the HRBF network only
when required by an error-driven local convergence criterion. Moreover, in the basic layer
of the HRBF network the number of RBFs and the size of the grid is not set heuristically
but is data-driven according to linear filtering theory.

Table 1 shows a brief review of some learning strategies employed by RBF networks.
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Note the wide range of learning solutions that makes the comparison of these predictive
systems extremely difficult. This observation suggests the idea that to make RBF networks
more popular, these networks must be provided with a single-stage simple and easily imple-
mentable error-driven learning algorithm analogous to the error back-propagation algorithm
for MLPs [34].

5 Introduction to Hierarchical Radial Basis Function net-
works

In this section a function estimator called Hierarchical Radial Basis Function (HRBF) net-
work is described. HRBF can be employed to approximate mappings between multidimen-
sional spaces. It applies a growing mechanism, based on linear filtering theory, to achieve a
theoretically sound and computationally fast adaptation of the parameters in both the hid-
den and output layers on the basis of the supervised training set. This section is organized
as follows. Firstly, a simple criterion is driven from linear filtering theory to compute the
position and the spread parameter of hidden units. Next, output weights are determined
according to a locally distance-weighted regression method, and an error-driven procedure
that allocates a hierarchy of GRBFs to selected areas of the input domain is described.
Finally, experimental results on surface reconstruction from 3-D range data are presented
and discussed.

5.1 Inter-Gaussian distance and Gaussian spread according to linear fil-
tering theory

For simplicity’s sake the following analysis is carried out in the case in which both input

and output spaces are continuous and 1-D. In this case the supervised training set consists

of the (input, output) pairs of real values (z,,ys), h = 1, ..., M. Results can be extended to

multidimensional spaces by observing that multidimensional Gaussians are obtained by

factorizing 1-D Gaussians. Note that when 1-D GRBFs featuring the same structural
parameter o are employed, Eq. (25) is simplified as

(& 1 C (@—u; )2 (27)

A:L‘: waa:(xz: ) = —— w-e_ 20_2'

y( ) 2 JgJ( 2 ) U\/%; j )

=1

where symbol 1; is now employed to identify the center of the jth Gaussian basis function.

5.1.1 The Gaussian low-pass filter

Let us consider a target function y(z) whose Fourier Transform (FT) is represented as
F(y(z)) = Y(v). The maximum frequency content of y(z), identified as vprax, is defined
as the frequency above which values of the FT amplitude spectrum |Y (v)| are trivial. An
ideal low-pass filter for signal y(z) is defined as the function h;(z) whose FT amplitude
spectrum, | F(h;(z))| = |H;i(v)|, is equal to 1 for v < vprax, and 0 elsewhere. According to
this definition, frequency vp;4x separates the so-called Pass Band from the Stop Band of
the filter. In real implementations of a low-pass filter the transition between the two bands
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Table 1:

Learning Algorithm Structural Parameters Synaptic
strategy no. of RBFs | {u} | {Spread} weights
[411', [42]' || EGI and ER | D D EGD®
[34]° F EGD® F EGD®
one-stage [24] ES® ES® F E
[35] Es’ Es? F? E
two-stage [31] EGI® EGD’ EGD’ EPI or EGD®
[18] F D H EPI

D: (Input) Data-driven;

E: Error-driven;

ER: Error-driven Removal of localized RBFs;
ES: Error-driven Selection of localized RBF;
EGD: Error Gradient Descent;

EGI: Error-driven Generation/Insertion of localized RBF's;
EPI: Error-driven Pseudo-Inverse solution of a linear problem;

F: Fixed (user-defined);
H: Heuristic criterion;

! Fritzke’s algorithm is termed Supervised Growing Neural Gas (SGNG). Its hidden layer,
termed Growing Neural Gas (GNG), is described in [41]; its output layer is described in

[42].

2 The type of RBFs is feasible for gradient descent learning.
3 Centers of selected RBFs correspond to support vectors belonging to the training data

set.

4 Centers of selected RBFs correspond to grid-crossings of a hierarchy of regular grids
featuring increasing sampling rate. The sampling rate of the regular grid at level one is
eventually computed from the data on the basis of linear filtering theory; for next layers,

the sampling rate doubles the sampling rate value of the lower level.
® Stopping criterion: back-tracking through cross-validation (non-greedy algorithm) [4].
6 (Batch) Gradient Descent of the sum-of-squares error;
" Gradient Descent of the Class-conditional Variance;

8 Stochastic (on-line) Gradient Descent of the sum-of-squares error;
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does not consist of a step edge nor is the filter response within each band flat. Therefore,
a realistic low-pass filter, identified as h(z), features a monotonically decreasing transfer
function that can be described as follows.

Definition 1. The Pass Band of a realistic low-pass filter h(z) is defined as the interval
in which the amplitude spectrum of filter FT, |H(v)|, is bounded in range [d1, 1], i.e.,

[H(v)| € [di,1] when v € [0, veur o], (28)

where Vey—off, called cut-off frequency, is such that |H(veur—off)| = di, where 0 << dy < 1
is a functional parameter. For example, a common choice in digital filtering theory is
d1 = v/2/2, corresponding to a maximum attenuation in the Pass Band equal to 3 db [11].

Definition 2. The Stop Band of a realistic low-pass filter is defined as the interval in
which the amplitude spectrum of filter FT, |H(v)|, is bounded in range [0, ds], i.e.,

|H(v)| € [0,d2] when v € [Vmaz, 00), (29)

where Vpqz, called maximum frequency, is such that |H (vpmaz)| = d2, where 0 < dy << dy
is a functional parameter. A conservative choice, used in this work, is do = 0.01. As a
consequence of definitions 1 and 2, relationship vnar > Vewt—off > Vmax holds true. The
interval between veys—of5 and vy, is termed Transition Band.

Our analysis considers a GRBF written as

z 2
e_(2_a)2_
9(37;0) = Wa (30)
whose FT is )
Flg(z;0)) = G(rio) =e 7 Y. (31)

Eq. (31) shows that the Gaussian function g(z;0) is a low-pass filter whose amplitude
spectrum response |G(v;o)| is a monotone decreasing function of both frequency v and
structural parameter o. If the values of thresholds d; and dy are chosen as recommended
above, the decreasing monotonicity of G(v; o) allows a relating of the values of V¢ and
Vmaz t0 o as follows

o

—n252,2 —In(d —In(v2/2
e cut—off — dl — VCUt—Off = \/ 7:;( 1) — \/ (\/>/ ) — 0108-74’ (320/)
e—W202”r2nam —dy = vy, = \/—ln(dz) _ \/—I;LLSO.OI) — 0.6;331, (32[))

To

On the basis of Eq. (32) we can also write
cht—off == 0-2743Vmam- (33)

5.1.2 Discrete convolution of GRBFs

From the sampling theorem introduced by Shannon and applied to information theory it is
known that when a band-limited signal y(z) (i.e., a signal featuring finite vjs4x) is sampled
at a sampling interval Az < 1/2vpr4x, then the signal can be (perfectly) reconstructed by
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using an ideal low-pass filter (see Section 5.1.1), whose response in the input domain is a
sinc function, according to the following equation [36]

too sm< G J)) +00 oz
v = 3w L - wpsine ("5 (34)
7TA— _

j= oo

where (z;,y;) are the (input, output) observed examples such that z; = z9 + jAz, j €
{—00,+00}, are equally-spaced sampling points, and kernel functions sinc(z —z;/Ax)
form an orthogonal basis. In real problems it is necessary to truncate the series in Eq. (34);
moreover, the ideal low-pass filter is unrealizable and must be approximated adequately.

The HRBF network, starting from Eq. (26), adapts the sampling theorem (34) to non-
ideal function regression tasks as follows. Let us identify with Ay the distance between
two consecutive centers of equally-spaced Gaussians and with vg = 1/Ap their spatial
frequency. In the discrete case of a finite number of equally-spaced Gaussians, Eq. (26)
becomes [35]

_(a- upz

Z

To provide a reasonable approximation of target function y(z), Eq. (35) must employ a
uniform sampling interval Ay and a spread parameter o which are constrained as follows.
The first constraint is driven by the observation that all frequency components of target
function y(z) should be replicated. This means that the cut-off frequency of the Gaussian
filter should be greater than the frequency content of signal y(z), i.e

(35)

Veut—of f > VMAX - (36)

The second observation is that since Eq. (35) is a discrete, finite sum, then its FT amplitude
spectrum is infinite and periodical of period Av = vg, such that replicas of the main
spectrum are equally spaced by an interval equal to vg on the frequency axis. To avoid
overlapping of the spectrum components, the condition

Vimaz < VG /2, (37)

must hold true [35]. By combining Eqgs. (32) and (33) with inequalities (36) and (37), the
following relations are obtained

{ UMAX < Veut—off = 2281 = 0.2743Umq0 < 0.2743vG/2 = 0.1371vg, (38a)

VMAX Veut—off __ 0.6831
0.2743 < ~0.2743 me— . <va/2. (38b)

Eq. (38) can be written as

2-.0. 1 1. 2 1874
0.683 = 366 = 1.3662Au = Omin < 0 < Opmazr = 0.187 .
vg vg VUMAX

(39)

Eq. (39), where o > 1.3662Ap, is more restrictive than the empirical criterion o = Ay,
which is typically employed in Parzen window-based density function estimators [7], [37].
The difference is significant in terms of amount of overlap (oversampling [12]) between two
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consecutive Gaussians, which increases from 68.2% to 73.3%. On the other hand, our result
is consistent with the heuristic criterion employed by Bishop, where the spread parameter
o of hidden units in RBF networks is roughly equal to twice the average spacing between
the centres of unequally spaced GRBF's [6]. Constraint (39), equivalent to constraint (38),
suggests that with a maximum frequency content of target function y(z), varax, the smallest
Gaussian sampling rate, vg is

min?

136620 4x  2UarAx 0.1371
o _ — 7.2903 s Afigs = . 40
VGmin 0.1874 0.2743 YMAX H UMAX (40)

Eq. (40) points out that when GRBF's are employed to reconstruct a target function y(z)
according to Eq. (35), then the frequency of the Gaussian filters must be superior by factor
3.6451 to the sampling frequency of the Shannon theorem. In line with Occam’s razor,
which states that a sound basis for generalizing beyond a given set of examples is to prefer
the simplest hypothesis that fits the data, our analysis suggests choosing vg = vg ie.,
AH = Aﬂma;c-

By analogy with the sampling theorem (34), let us consider the special case in which the
weights employed in Eq. (35) are equal to the observed values of the target function in the
Gaussian centers, i.e., w(y;) = y(i;), § = 1,...,C. In this case the dictionary representation
(35) becomes equivalent to the kernel representation

min ?

. Ay E _le=my)?
i@ = =2 vl (a1)
j=1

where the ideal low-pass filter employed in Eq. (34) has been implemented as a Gaussian
filter. Eq. (41) means that to provide a reasonable approximation of target function y(z),
the uniform sampling interval (now equivalent to the Gaussian distance Ap) and the spread
parameter o must be chosen according to constraint (39). In other words, the sampling
rate required by Eq. (41) to provide a reasonable approximation of the target function is
superior by factor 3.6451 to the sampling frequency of Eq. (34) in which an ideal low-pass
filter is employed. The advantage of Eq. (41) with respect to Eq. (35) is that the former
can be computed easily when observed values of the target function are available for all
equally-spaced Gaussian centers.

5.2 Locally distance-weighted regression for output weights

When the maximum frequency content vj;4x of target function y(z) is known, the Gaus-
sian distance Ay can be computed with Eq. (40). Next, the spread parameter o can be
computed according to Eq. (39). If the input space is a bounded interval [Z,in, Zmaz], the
number of GRBF's required to reconstruct y(z) is C = [(Tmaz — Tmin)/D8] = | (Tmaz —
ZTmin)VMax[0.1371|, where operator [(-)| returns the largest integer not greater than its
real input value. Thus, all parameters in the hidden layer are determined. The next step
consists of computing the output weights employed in Eq. (35). Since size M of the super-
vised training set must satisfy condition M > C (see Section 3.2), then output weights can
be computed by considering Eq. (35) as a linear model (see Section 3.1) which can be solved
by pseudo-inverse techniques [6], [7], or algorithms which are numerically more stable, such
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as the Singular Value Decomposition [38]. A better scheme, one that allows elimination of
outliers, has recently been proposed [39]. However, these techniques are computationally
demanding and may cause numerical and memory allocation problems for large networks.
Thus, to compute the output weights employed in Eq. (35) a specific strategy has been
developed for the HRBF network.

It has been shown that Eq. (41) can replace Eq. (35) when observed values of the target
function are available for all equally-spaced Gaussian centers. In this case, computation of
Eq. (41) is quite simple. However, the hypothesis of equally spaced samples is rarely satisfied
in real problems. When a number M > C of either equally- or unequally-spaced samples
is available, then values of the target function at Gaussian centers can be estimated, for
example, by means of a locally distance-weighted regression model [11]. In the less restrictive
hypothesis of irregular but sufficiently dense sampling, the HRBF network adapts Eq. (41)
as follows

R A c - _@mey)?
9(x) = 5 g (uj)e” 27, (42)
OV T i1

where symbol §*(x;) means that, to reduce computation time, the HRBF network, based
on Eq. (42), estimates target function values at (unobserved) Gaussian centers by adapting
Eq. (14) according to the following locally distance-weighted regression model

_ Yapels;) Ynk(d(@n, p5))
Yanegs;y Bld(@n, pj))

:‘)*(/1’]) .7 = 15"',01 h e {LM}’ (43)
where distance d(zp,p;) is computed with Eq. (11) where p = 2, the kernel function
k(d(zh,p;)) is computed according to Eq. (15), in which parameter o, is set equal to
parameter o already employed in Eq. (42), and set {S;} consists of all training patterns
whose input value belongs to the domain interval centered on p; of amplitude +£3Apu (such
that, according to Eq. (39), interval £3Apu ~ +20, i.e., this domain interval corresponds
to an area of the Gaussian probability density function approximately equal to 96%).

To summarize, on the basis of the combination of Eq. (42) with Eq. (43), the HRBF
network features two important properties: i) it can be applied when the training set consists
of M > C examples regardless of whether they are equally- or unequally-spaced; and ii) it
is capable of filtering out noisy points (outliers) since coefficients §*(u;), j = 1,...,C, are
estimated as a weighted average of the training examples [35]. From the computational
standpoint, the HRBF learning procedure requires carrying out as many local estimates as
the number of GRBFs. Therefore, the computational complexity of the model increases with
complexity C of the mapping rather than with size M of the training set. This scalability
allows the implementation of the algorithm on parallel hardware.

5.3 Building the hierarchy of GRBF

When Eq. (42) employs a value of spread parameter o that satisfies Eq. (39), i.e., o
is chosen as a function of the highest frequency content of the target signal y(z), then
Eq. (42) guarantees reconstruction of the finest details of y(z). Unfortunately, this choice
may cause a waste of resources when the highest frequency content of the target function
is concentrated (localized) in a narrow region of the input space (i.e., when the target
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signal is non-stationary [1]). In this case fewer Gaussians, featuring a larger spread, can be
used to reconstruct the signal in those domain intervals where the scale of y(z) is larger.
The solution proposed in the HRBF architecture is to start the hierarchical model with a
basic layer of GRBFs, termed layer 1, equivalent to a complete grid of C; Gaussians at a
large scale. A hierarchy of processing layers, each layer identified by an integer / > 1 and
featuring C) processing units, is constructively made up by the HRBF error-driven learning
strategy. The scale parameter of Gaussians decreases with level [ in the hierarchy. The grid
of each layer [ > 1 may not be complete, since it consists of GRBFs located at selected
grid-crossing positions. These positions are identified on the basis of the domain intervals
where an average local error (residual), estimated by the lower processing layer, is above a
user-defined threshold e. Layers are added until the average local error is below threshold
€ over the entire input domain (uniform convergence criterion).

Unlike traditional gridding procedures where no constructive mechanism is employed,
the HRBF gridding procedure can be considered error-driven and one-stage. An approach
similar to HRBF has been proposed by Fritzke using Kohonen maps [40]. The main dif-
ference is that Fritzke’s system requires insertion of an entire row or column into the grid,
while HRBF adds units selectively in those localized regions of the input space where the
average local error criterion is not satisfied.

While in the HRBF learning stage the layers are trained sequentially one after the other,
in the reconstruction process the different layers operate in parallel: each layer receives the
same input, namely the position of a sample in the input space, and outputs a value which
is an approximation of the function at the largest scale (first layer), and an approximation
of the residual at higher layers. The actual approximation §(z) of target function y(z) in
point z is obtained by adding up the contributions of all the layers (parallel processing).

5.4 Summary of the HRBF learning procedure

The only user-defined parameter required by HRBF to run is an average local error threshold
€.

For a given supervised training set (zp,yn), b = 1, ..., M, the HRBF learning procedure
can be summarized as follows:

1. For layer 1 (basic layer):

(a) The spacing between two Gaussians, Ay, is computed as Apy > Apimas, where
Apimaz 18 provided by Eq. (40). The choice of Ap; should allow the reconstruc-
tion of at least the grossest details of target function y(z). Given the value of Ay
and the extension of the input space, the number of GRBFs, (', is determined.

(b) A regular and complete grid of (equally spaced) GRBFs is created, each GRBF
featuring the same spread parameter o1 chosen according to Eq. (39).

(c) The interpolation coefficients §*(p51), 7 = 1, ..., C1, are computed according to
Eq. (43) on the basis of the supervised training set.

(d) Estimated target values y1(zy), h = 1,..., M, are computed according to Eq. (42)
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whose interpolation coefficients are set equal to values §*(¢;1), 7 = 1,...,Cl, i.e.,

C (wh—uj,1)2
(x Ay‘l Z 20'12 (44)
y h 0_1\/% lu.]y )
(e) Average local errors 7(u;1), 7 = 1,...,C1, are computed on the basis of the

supervised training set according to the L; metric, i.e.,
> A |yr — Y1(zh > A T1(xh
g = Zmctsp TN Zmetsy Do) o e 1,
|55 1551
(45)
where set {S;} is the same set defined in Eq. (43), |S;| is the cardinality of the
set and 71(xy) is an example-based residual.
(f) Set {Ri}, consisting of identifiers of the GRBFs that satisty inequality 7(u;1) >
€, j=1,...,C1, is generated.

2. For the higher layers, identified by index [ > 1:

(a) At each processing epoch [ > 1, a new, regular and complete grid of Gaussians,
consisting of C; units, is considered. The supervised training set presented to
layer [ consists of (input, output) pairs where target values are the example-based
residuals computed by the lower level, i.e., (zp,7—1(x4)), h = 1,..., M.

(b) The spacing between two Gaussians, Ay, is computed as Ap; = Apy—1/2.
(c) The scale associated with layer [ is computed as o; = 0;-1/2,

(d) Among C; Gaussian units making up a regular and complete grid at level [, only
those units whose receptive field u;; + 3Ap;, j = 1,...,Cy, operlaps (fully or
in part) regions p, ;1 £ 3Ap—1, Vp € {R;_1}, i.e., domain intervals where the
average local error is significant, are preserved; the other units are discarded. A
reduced set of C] < C; GRBFs is therefore obtained for layer [. This reduced
set of GRBFs is identified as {L;}.

(e) On the basis of the supervised training set of residuals (zp,7;—1(zp)), h =
1,..., M, interpolation coefficients for surviving GRBF's of layer [, identified as
7*(15,1), Vi € {Li}, are computed according to Eq. (43) which becomes

P (nja) = Lanes;) Mi-1(zn) K(d(zn, 151))
" Lwne(s;) k(d(zh,pj1)) ’

Vie{L}, he{l,M}. (46)

(f) Estimated target values y7,(xp), h = 1,..., M, are computed according to Eq.
(42), whose interpolation coefficients are set equal to values #*(u;;), V5 € {L;},
ie.,

(ep—pj)?

Ay .
71(zp) @, 47
77 ( Ul o Z NJ, (47)

JE{L:}
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(g) Average local errors 77 (), Vj € {L;}, are computed on the basis of the su-
pervised training set of residuals according to the following expression, which is
derived from Eq. (45):

2 yPa(zn) —yr(zn)| X2 3 Fi(zh
() = mpe(sip 1P-1(zn) —Gr(an)|  Yayeqs;) il )’ Vie (L), he (L)
|51 |51
(48)
(h) Generate set {R;}, consisting of GRBFs satisfying inequality 77(u;;) > €, Vj €
{La}-
(i) If set {R;} is empty, then stop (because a uniform approximation criterion is
satisfied), otherwise iterate the procedure (goto step 2.(a)).

Once the training phase of the HRBF network has reached convergence, a hierarchy of
liot > 1 layers is found. At this stage, all structural parameters and interpolation coefficients
of every layer [ = 1, ..., s, have been computed. In the function reconstruction phase, based
on Egs. (44) and (47), the estimate of the target value for an input point z is computed as

ltot

§(x) = 1 (z) + D yry(x), (49)
=2

5.5 Reconstruction of a 3-D human face with HRBF

In this application a 3-D scan of a real face is employed as input to a learning system
whose goal is the reconstruction of the continuous 3-D face surface. This is usually a
two-step procedure: in the first step a very large set of data points (10,000 <+ 100,000) is
sampled over the face, and in the second step a mathematical model is fitted to these points
[35]. Owing to its computational efficiency and capability in performing smooth surface
reconstruction, the HRBF network is considered suitable for use as the second stage of a
3-D human face reconstruction procedure.

Fig. 1 shows a typical input data set, consisting of M = 12,641 data points, whose range
is: min(X) = -36.4471; max(X) = 97.8207; min(Y) = -103.3898; max(Y) = 88.8846; min(Z)
= 0; max(Z) = 93.1110. Dimension Z is measured in mm. The error of the real-time image
processor (the Elite system [3]) is below 1 mm. To avoid removal of useful information, the
average local error threshold € is set to 0.5. Since frequency vas4x of the target surface
is unknown, then the Gaussian interval Apmq, cannot be derived from Eq. (40). Let us
estimate Afipq, as follows. If samples are equally spaced (i.e., if Eq. (41) holds true), then
the value of Apmqe, can be computed as

Aoz = \/(maw(X) —min(X)) * (maz(Y) —min(Y))/M = \/134.26 -192.27/12,641 = V2.04 = 1.43.
(50)

Based on Eq. (40), vprax becomes vyax = 0.1371/Appma, = 0.1371/1.43 = 0.097.

Then, according to Eq. (39), omin = Omaz = 1.3662 A ptmee = 1.3662 - 1.43 = 1.95. If

we expect to reconstruct the spatial-frequency content of the target signal up to vayrax

by means of a HRBF network consisting of l;,; = 4 layers then, for the basic layer,

Apy = 2= U Ay o= 23,143 = 1144, 0 = 23 -1.95 = 15.60. As a conse-

quence, the range data set is processed by a HRBF network whose first layer consists
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Table 2:

‘ Layer ‘ Ap ‘ o ‘ gauss. eff./tot. ‘ MSE ‘ Mean Error | SE Std. Dev.
1 [11.44 [ 15.60 | 126/(176 =11 x 16) | 49.98 4.23 5.65
2 5.72 | 7.80 | 513/(651 =22 x 32) 9.05 0.23 3.00
3 2.86 | 3.90 1968/(2562 = 44 x 64) 2.70 0.01 1.64
4 1.43 | 1.95 | 5606/(10164 = 88 x 128) | 1.55 -0.009 1.24

of (maz(X) — min(X))/Ap; = 134.26/11.44 = 11 Gaussian units along the x-axis, and
(maz(Y) —min(Y))/Ap1 = 192.27/11.44 = 16 Gaussian units along the y-axis. This basic
layer guarantees a rough description of the face as shown in Fig. 2, where the reconstructed
surface is affected by a significant bias (mean reconstruction error = 5.65), which is typical
of a low-pass filtered signal. Fig. 2 shows the sequence of estimated values of the target
function when outputs of the higher layers are progressively taken into consideration. As
expected, the face becomes more detailed as higher layers are involved in the reconstruction
process. The final reconstruction depicted on the bottom right of Fig. 2 is considered a
good geometrical model of the face surface, where noise points are filtered out while mean-
ingful details are preserved (mean reconstruction error = 1.24). The output of each layer
is depicted in Fig. 3. Parameters of the different layers are summarized in Table 2.
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