INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. ® Suite 600 ® Berkeley, California 94704-1198 @ (510) 643-9153 @ FAX (510) 643-7684

A Fuzzy Based Load Sharing
Mechanism for Distributed
Systems

Herwig Unger*, Thomas Béhme |
TR-98-026
August 1998

Abstract

This report presents a load sharing heuristic for distributed computing on workstation
clusters. The approach is novel in that it combines the use of predicted resource require-
ments of processes (CPU-time, memory requirements, density of the I/O-stream) and a
fuzzy logic controller which makes the placement decision. The heuristic is distributed,
i.e. each node runs a copy of the prediction and load sharing code, and its implementation
is based on PVM. Using a benchmark program (Choleski factorization) experiments were
conducted to compare the proposed heuristic against standard PVM and an older version
of the presented heuristic without the fuzzy logic controller.

*Department of Computer Science, University of Rostock, Rostock, D-18051 Rostock, Germany;
Phone: +49 381 498 3403, Fax: +49 381 498 3366, E-mail: hunger@informatik.uni-rostock.de

tDepartment of Mathematics, Technical University Ilmenau, D-98684 Ilmenau, PF 10 0565, Germany,
Phone: +49 3677 69 3630, Fax: 4+49 3677 69 3206, E-mail: tboehme@theoinf.tu-ilmenau.de

1 Introduction

Message passing systems such as PVM, Express, Linda and P4 offer the opportunity to use
workstation clusters as an inexpensive alternative for distributed computing. However,
to enhance the performance of such systems ”additional system management software” 1s
needed [11]. Animportant step toward this goal is to design algorithms for the distribution
of processes among the nodes of a cluster. During the past decade a lot of work has been
done in this field. (For an overview see [1], [9] and [11].)

The present contribution deals with a load sharing heuristic. In general terms, a load
sharing algorithm works as follows: When a process p arrives for execution, the algorithm
assigns p to a node of the cluster in such a way that the performance is good in some
sense.

In order to enable such an action the load sharing algorithm needs to "know” the actual
load of each node of the cluster. One solution is to poll all nodes of the cluster periodically.
Since the load changes rapidly this has to be done frequently what causes much additional
load and consequently, reduces the system’s performance. Furthermore, it is not hard to
see, that even frequent polling cannot guarantee the accuracy of a placement decision
made without any knowledge about the system’s future behaviour ([5], [8], [14]). A better
solution is, therefore, to use a prediction. The proposed load sharing heuristic uses a
simpler prediction scheme than the one used in [5] which is outlined in section 2.1.

The load of a node depends on several load factors such as the length of the CPU
ready queue, the CPU-times of the processes in the CPU queue, the amount of memory
in use, and the density of the I/O-stream. Since there is no suitable mathematical model
that relates these factors with the performance of the system, most of the load sharing
algorithms in the literature use a single figure to describe the load and distribute the
processes in such a way that about the same load is assigned to each node of the cluster.
The proposed heuristic uses a different approach. Three load factors are combined by
a fuzzy logic controller which picks the node a new process is assigned to. A different
approach which also involves a fuzzy logic controller is described in [6].

A load sharing system, called ALICE !, using the proposed load sharing heuristic
was implemented based on PVM. Here only those processes are subject to the placement
decision that are created by a call of the pvm_spawn-function. An implementation on a
command shell level and for MPI is in preparation.

An experiment has been conducted to compare the proposed load sharing heuristic
against standard PVM 3.3.11 and an older version of the presented heuristic without the
fuzzy logic controller. The results of the experiment are described in section 3.

2 Heuristic

The load sharing system ALICE consists of two parts - the predictor and the fuzzy logic
controller (see fig.1).

! Adaptive Load Balancing System for Inhomogeneous Computing Environments

1

| Application Host 1
: pvIn_spawn
| P
PVM-System
| pvind3
: Fuzzy Operating System é & /proc
Decision @
| Manager @ < |
A _Local
| Y File System
: Hardware <host_proc:-.dat
.
Ethermet
(ALICE-Communication-System / Global Shared Data)

Figure 1: Structure of the Load Sharing System

The predictor is realized by a demon (called the local load prediction demon - llp-
demon) which is incorporated in the operating system of each node. Since the decision
manager must be invoked only if the pvm_spawn-function is called, the pvm_spawn-function
has been substituted by a new function that includes the fuzzy logic controller.

In general the resource requirements of a process depend on the program the process
executes as well as on the owner of the process. Furthermore, due to differences in
the architectures of the processor nodes, one and the same process can have different
resource requirements if it runs on different nodes. Therefore, a process p is identified
by its program and its owner, and predictions of its resource requirements 7(p,¢) (CPU-
time), u(p,?) (memory requirements) and w(p, ¢) (density of the I/O-stream) are computed
separately for each node 2. Using these predictions of resource requirements of processes
predictions of three load indexes of each node 7 are computed:

e NIT(7) - a prediction of the time the processor is idle for the next time
e MEM(:) - a prediction of the amount of memory in use

e /0(i) - a prediction of the remainig I/O-capacity

The load sharing heuristics works as follow. When pvm_spawn is called on some
processor node ¢, an identification of the program and the owner is sent to any other

node. Every node j then returns its load indexes NIT(3), MEM(j) and 10(y) as well as

the predictions of the respective resources requirements 7(p, j), w(p,7) and p(p,7) of p.

111

These data are fed to the fuzzy decision manager which identifies the node p is executed
on.

2.1 Prediction Scheme and llp-deamon

The llp-deamon consists of two parts (see fig.2.).

One part builds and maintains a list of the processes running on the respective node.
In [9] it is shown that only processes that run longer than 1/3-1/2 sec generate a significant
load and therefore, only processes running at least 1/2 sec are included in the list. The
second part of the llp-deamon computes the predictions of the resource requirements of
processes and the load indexes. It does not depend on the used platform what makes it
easy to adapt the heuristic to other platforms.

The predictions of the resource requirements of a process p are weighted means of the
actual resource requirements of the last N executions of this process on the respective
node. In (1) the computation is shown for 7(p,?). w(p,?) and p(p,:) are computed in a
similar way.

t

Tnew(p; Z) - G_ATold(P, Z) + W (1)

The computation is done in a recursive way. Tpew(p,?) and 7,4(p,¢) denote the new and
the old value of 7(p,t), respectively, and ¢ is the CPU-time of the last execution of p
on the node i. The weight e™* serves to limit the influence of the older values on the
prediction, and is subject to an adaptation process.

The size of the memory in use, M EM (1), of the processor node i is estimated by the
sum of the memory requirements of those processes which are currently running on «.
Using the predictions of the CPU-times of the processes running on the node ¢, NIT(z)
is computed subject to the following rules.

(i) At the start of the system NIT(7) is zero.

(ii) When a new process p is started on 1, NIT(z) is updated by adding the prediction
7(p,1) of CPU-time of p.

(iii) NIT(z) is periodically decreased by the difference of the allocated CPU-time of the

processes since the last update.

(iv) If a process terminates earlier or uses the CPU longer than predicted, NIT'(z) is
corrected.

The prediction of the remaining capacity of the I/O-channel is computed similarly.

2.2 Fuzzy Logic Controller

The basic idea of the fuzzy logic controller is the following. In order to determine where
to run a new process p, for each node ¢ a real number [(7) is computed in such a way that
[(2) is the greater the better the process p will fit on the node 7. p is assigned to the node
with the greatest [(¢). The main steps of the computation of [(¢) are outlined below.

v

Jown
@ WoIsAS 8|14 12007 wersAs bune.sdo eue &
Jepuedepso 4 Areiqi]
w&m&%‘c‘c‘_ Lwo “““““““ wiofe|d- doy, palipoN |-
els [eaipolied
Y Y
‘[Sysv.L dNerpooud {
/S955320.4d 8y Jo Sepwered bunsaeiul 4/
sr'seyoed ‘ol ‘wiew ‘awin Buo|
rpr<00id IS ol;v ‘[ogJeulpwo feyo

‘pidur }ionns

% 'S955900.d BAIde | 10}

siepweed [eonsirels ayl joarkepdn
1ep <d04d 1soy> ulerep joarpdn
ep <d0.d 1S0U> Y1im uosiredwo)
uowsp-pd||

A
Y

ﬁ eleq paleys [eqolD / WeSAS uoiesunwwo) - 3011V

Figure 2: Structure of the llp-deamon

1) Fuzzifications NITY(:), MEM(z), [0 (:) and 7/ (p,1), pf (p,1), w/ (p,1) of the load
indexes NIT(:), MEM(:), 10(:) and the resource requirements 7(p,t), u(p,?),

w(p, 1), respectively, are computed.
2) Using a rule base Ry, ..., R, for each rule R; a figure [;(¢) is computed.
3) 1(2) is obtained from l4(2),...,lx(¢) by a defuzzification algorithm.

It is well beyond the scope of this article to give an introduction to fuzzy logic (For
more on fuzzy logic and fuzzy logic controllers the reader is referred to [16].) Nevertheless,
some remarks should be made.

A fuzzy set in some set M is characterized by a function f from M to the closed
interval [0,1]. f is called the membership function and, for an element = of M, f(z) is
considered to be the degree of membership of x in the fuzzy set. In order to define a
fuzzification of a number y, finitely many fuzzy sets (called linguistic terms) are defined
in the set y is taken from. If fi,...,f, are the membership functions of the linguistic
terms, the fuzzification y/ of y (with respect to the linguistic terms fi,...,f,) is the vector
y' = (fi(y), ..., [r(y)). The linguistic terms are usually associated with linguistic labels
such as small, medium, large etc.. Here five linguistic terms very low, low, medium, high
and very high are defined for each input variable. The linguistic terms used for the output
variable [(¢) are very bad, bad, medium, good and excellent.

The rule base consists of rules of the following type

Ri: If NIT(2) is very low and MEM (%) is low and 10(z) is medium and 7(p,t) is high
and p(p, 1) is medium and w(p,) is low, then I(¢) is good

Given the fuzzifications of the input variables for each rule a figure is computed that
describes the degree as to which the specific rule applies to the input. These figures define
a fuzzy set which is then defuzzified using the center of gravity method. For details see
[16].

The knowledge about the controlled system is encoded in the definition of the linguistic
terms and the rules of the rule base. Thus the correctness of the decisions made by the
fuzzy logic controller depends directly on the quality of the knowledge base formed by the
linguistic trems and the rule base. In the present version of our system the knowledge
base is based on experience.

3 Experiments

The above described load sharing heuristic was implemented on a cluster consisting of
three PC’s (i386 and i486) running under LINUX and connected via EtherNet. A dis-
tributed benchmark program performing a Cholesky factorization of a matrix taken from
[13] was run with standard PVM, an older version of the presented load sharing heuris-
tic ([14]) and the proposed heuristic. The CPU-time and memory requirements of the
processes created by the execution of this program are strongly influenced by the calling
parameters.

vi

system factor [sec] | fsolve [sec] | bsolve [sec] | total [sec]
PVM 3.3.11 10.0 14.1 12.0 30.4
old version 10.0 9.1 9.2 24.2
new version 9.8 8.8 8.9 23.8

Table 1: Additional processes with medium memory use and high CPU-load

system factor [sec] | fsolve [sec] | bsolve [sec] | total [sec]
PVM 3.3.11 9.1 7.0 7.1 21.2
old version 9.1 7.3 7.4 19.9
new version 7.0 7.2 5.0 17.1

Table 2: Additional processes with high memory use and low or medium CPU-load

The nodes also run additional processes of different characteristics. The obtained
results are shown in table 1 and table 2. It turned out that, especially if the additional
processes have high memory requirements and low or medium CPU-time, the new load
sharing heuristic achieves significantly better results than the older version without fuzzy
logic.

4 Concluding Remarks

Using ideas from [4], it is planned to to apply a genetic algorithm to adapt the knowledge
base to the specific requirements of the cluster in a subsequent version of the presented
heuristic. Presently, the more sophisticated simulation of our system is in preparation.
Furthermore, it is planned to apply the ideas exhibited in this paper to very large dis-
tributed systems.

Vil

References

[1] M. A. Baker, G. C. Fox, H. W. Yau, ”A Review of Commercial and Research Clus-
ter Management Software”, Technical Report, Syracuse University New York, 1996,
http://www.cs.rice.edu/ lwlutz/NHSEmain0.html.

[2] W. Becker, ”"Dynamische, adaptive Lastbalancierung fiir groBe heterogen konkurri-
erende Anwendungen”, PhD-Thesis, University of Stuttgart, 1995.

(3] K. P. Bubendorfer, ”"Resource Based Policies for Load Distribution”, PhD-Thesis,
University of Wellington, 1996.

[4] O. Cordén, F. Herrera, et al., ”Genetic algorithms ans fuzzy logic in control processes”,
Technical Report #DECSAI-95109, ETS de Ingenieria Informatica, Universidad de
Granada, March, 1995

[5] M. Devarakonda, R. K. Iyer, ”Predictability of process resource usage: A
measurement-based study of UNIX”, IEFE Trans. Software Eng., vol.15, no.12, Dec.
19809.

[6] S. Dierkes, L. Frese, "Load balancing with a fuzzy decision algorithm: Description of
the approach and first simulations”, Technical Report Universitt Dortmund, 1995.

[7] D. H. J. Epema, et al., ”A world-wide flock of Condors: load sharing among worksta-
tion clusters”, TR-95-130, TU Delft, 1995.

8] K. G. Goswami, M. Devarakonda, R.K. Iyer, "Prediction-Based Dynamic Load Shar-
ing Heuristics”. IEEE-Trans. Parallel and Distributed Systems, Vol. 4(6), pp. 638-648,
1993.

[9] M. Harchol-Balter, A. B. Downey, ”Exploiting Process Lifetime Distributions for Dy-
namic Load Balancing”, Technical Report TR-95-021, ICSI, Berkeley, 1995.

[10] G. Hipper, D. Tavangarian, "A new Architecture for Efficient Parallel Computing
in Workstation Clusters”, Int. Conference HPCN Challenges in Telecomp and Tele-
com: Parallel Simulation of Complex Systems and Large-Scale Applications, Delft,

Netherlands, 1996.

[11] J. A. Kaplan, M. L. Nelson, ”A Comparision of Queueing, Cluster and Distributed
Computing Systems”, NASA Technical Memorandum 109025, Langley Research Cen-
ter, 1993.

[12] P. Mehra, ” Automated Learning of Load Balancing Strategies for a Distributed Com-
puter System”, Technical Report, University of Illinois, 1993.

[13] B. K. Schmidt, V. S. Sunderam, ”"Empirical Analysis of Overheads in Cluster Envi-

ronments”, in: Concurrency: Practice and Fzrperience, 1993.

Vil

[14] H. Unger, H. Unger, G. Hipper, ”Stochastics and Learning Methods for Load Bal-
ancing in a Distributed Workstation Cluster System”. in: Proc. of the Int. Conference
of Applied Informatics, Innsbruck, 1997.

[15] G. Wilhelms, "Dynamische adaptive Lastverteilung fiir PVM mittels unscharfer Be-
nutzerprofile”, PhD-Thesis, Univ. Augsburg, 1994.

[16] H.-J. Zimmermann, Fuzzy Set Theory and Its Application, Kluwer Academic Pub-
lisher, Boston, Dordrecht, London, 1991.

X

