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Abstract

The double-rooted complete binary tree is a complete binary tree where the root is
replaced by an edge. It is folklore that the double-rooted complete binary tree is a
spanning tree of the hypercube of the same size. Unfortunately, the usual construction
of an embedding of a double-rooted complete binary tree into the hypercube does
not provide any hint how this embedding can be extended if each leaf spawns two
new leaves. In this paper, we present simple dynamic embeddings of double-rooted
complete binary trees into hypercubes which do not suffer from this disadvantage. We
also present edge-disjoint embeddings of large binary trees with optimal load and unit
dilation. Furthermore, all these embeddings can be efficiently implemented on the
hypercube itself such that the embedding of each new level of leaves can be computed
in constant time. Since complete binary trees are similar to double-rooted complete
binary trees, our results can be immediately transfered to complete binary trees.
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1 Introduction

Hypercubes are a very popular model for parallel computation because of their reg-
ularity and their relatively small number of interprocessor connections. Another
important property of an interconnection network is its ability to efficiently simulate
the communication of parallel algorithms. Thus, it is desirable to find suitable em-
beddings of graphs representing the communication structure of parallel algorithms
into hypercubes representing the interconnection network of a parallel computer.

Most embeddings are constructed as static embeddings which means that the whole
information about the structure of the guest graph is known in advance. Since the
guest graph represents the communication structure of a parallel algorithm, the guest
graph may vary during the execution of the algorithm. Thus, it is important to
investigate dynamic embeddings of graphs.

Static embeddings are usually much easier to construct than dynamic embeddings.
Moreover, it might be impossible to construct dynamic embeddings deterministically
with high quality. For arbitrary binary trees, it has been proven that dynamic embed-
dings cannot be constructed with high quality if neither randomization nor migration,
i.e., remapping of tree vertices, is allowed [7].

Often complete binary trees represent the communication structure of parallel al-
gorithms, e.g., divide-and-conquer or branch-and-bound algorithms. Embeddings of
complete binary trees have been investigated by numerous researchers. Unfortu-
nately, the complete binary tree is not a subgraph of the hypercube of nearly the
same size [1, 10]. But using the fact that the double-rooted complete binary tree is
a spanning tree of the hypercube of the same size, optimal embeddings of complete
binary trees into hypercubes have been discovered [1, 2, 3, 5, 8, 9, 11, 12, 13]. The
major drawback of these algorithms is that they are constructed as static embeddings
and that they do not provide any hints how these embeddings can be extended if the
tree grows by a complete level. Only in an unpublished paper, dynamic embeddings
of complete binary trees into hypercubes have been investigated in [4].

In this paper, we focus on dynamic embeddings of double-rooted complete binary
trees into hypercubes implying dynamic embeddings of complete binary trees into
hypercubes. Our construction improves and simplifies the results in [4]. We assume
that at each step the double-rooted complete binary tree can grow or shrink by a
complete level of its leaves. Therefore, the size of the double-rooted complete binary
tree will be doubled or halved. If dynamic embeddings into optimal hypercubes are
considered, then for each new level one half of the old leaves must be remapped to
obtain a unit dilation embedding. This is optimal in the sense that we cannot achieve
unit dilation and unit load, if less vertices are remapped.

We also consider embeddings of large binary trees. Here, it is important to obtain



embeddings with small congestion, since occasionally it is necessary to pass messages
along all tree edges. A first suboptimal approach is given in [3], where embeddings
with optimal load but non-optimal congestion has been constructed. The first optimal
embedding is given in [9] with respect to load, dilation, and congestion. Nevertheless,
both algorithms suffer from their static design.

We present a dynamic edge-disjoint embedding such that the vertices of the same level
are distributed evenly among the hypercube vertices and the load is optimal. Con-
sidering embeddings into d-dimensional hypercubes, it will be shown that a double-
rooted complete binary tree of height at most d+|log(%®)] can be embedded with
unit dilation, unit congestion, and optimal load, where siblings are mapped to different
hypercube vertices. Moreover, we show that all these embeddings can be computed on
the hypercube itself spending only constant time for each new level. Thus, we present
for the first time a dynamic algorithm for optimal embedding complete binary trees
into hypercubes of arbitrary size.

The remainder of this paper is organized as follows. In the next section, we will
give the basic definitions and notations. A brief overview of the known results of
embeddings of complete binary trees into hypercubes will be given in the third section.
We then will show that the embedding of a double-rooted complete binary tree into
its optimal hypercube can be constructed level by level spending only constant time
for each new level. Embeddings with load greater than one and unit congestion are
presented in the fifth section. Extensions to sibling-separating embeddings will be
discussed in the sixth section. Finally, we give some concluding remarks.

2 Basic Definitions and Notations

An embedding of a graph G=(Vg, Eg) into a graph H=(Vy, Fy) is a pair of map-
pings ©:Vg—Vy and ¢¥:Eg—P(H). Here, P(G) denotes the set of paths in the graph
G=(V, F). The mapping ¢ maps each edge {v,w}€FEg to a path peP(H) connect-
ing p(v) and p(w). The graph G is called guest graph and the graph H host graph.
We call an embedding one-to-one if the mapping ¢ is 1-1. The ratio |Vy|/|Vg| is
called the expansion of the embedding. The dilation of an edge e€ E is the length of
the path ¢ (e). Here, the length of a path p is the number of its edges. The dilation
of an embedding is the maximal dilation of an edge in G. The number of vertices of
a guest graph which are mapped onto a vertex v in the host graph, is called the load
of the vertex v. The load of an embedding is the maximal load of a vertex in the host
graph. The congestion of an edge '€ Ey is the number of paths in {¢(e) |e€Eg}
that contain e’. The congestion of an embedding is the maximal congestion over all
edges in H.

A hypercube of dimension d is a graph with 2¢ vertices, labeled 1-1 with the strings
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in {0,1}¢. Two vertices are connected iff their labels differ in exactly one position.
An edge belongs to dimension i, if the labels of the vertices incident to that edge
differ in position 7. Here, the bit positions are numbered from 1 to d in left-to-right
order. Let v be a label of a hypercube vertex, we denote by v* the label which differ in
position 7 from v. The smallest hypercube into which a graph can be embedded with
unit load is called its optimal hypercube. For a graph G=(V, E), the dimension of
the optimal hypercube is [log(|V'|)]. Thus, an embedding of a graph into its optimal
hypercube has expansion less than two.

As usual a tree is a connected acyclic graph with a distinguished vertex, called the
root. A vertex of degree 1 is called a leaf of the tree if it is not the root. A vertex is
called an internal vertex if it is not a leaf. A vertex w is called a child of a vertex v if
w is adjacent to v and w does not belong to the simple path from the root to v. The
vertex v is also called a parent of w. The level of a vertex v in a tree is the number
of vertices on the simple path from the root to v. Hence, the level of the root is 1.
The height of a tree T' is the maximum level of a vertex in 7. In the following, we
consider ordered trees, i.e., we distinguish between left and right vertices. A vertex
is called a left (resp., right) vertex if it is the left (resp., right) child of its parent.

A complete binary tree T of height h is a tree such that each internal vertex has
exactly two children, and such that all leaves have the same level. A double-rooted

Figure 1: A Double-Rooted Complete Binary Tree of Height 5

complete binary tree of height h (or briefly a DRCBT) is a complete binary tree of
height h where the root is replaced by a path of length 1 (cf. Figure 1). We will refer
to both of these vertices as roots which both are assumed to have level 1. A double-
rooted complete binary tree of height h can also be viewed as two complete binary
trees of height h—1 whose roots are connected by a path of length 3. In the following,
we will call this path the root path. Clearly, a double-rooted complete binary tree of
height h has exactly 2" vertices.



3 Previous Work

Unfortunately, the complete binary tree is not a subgraph of its optimal hyper-
cube [1, 10]. We recall that both the complete binary tree and the hypercube are
bipartite graphs. Given a bipartite graph G=(A, B, E) of size n, we call G balanced
if |A|, |B|<2M&™1=1 Obviously, the hypercube is a balanced bipartite graph, where
the set of vertices can be partitioned as required into the sets of vertices whose labels
have an odd or an even number of 1’s, respectively.

Lemma 1 A graph G is a subgraph of its optimal hypercube only if G is a balanced
bipartite graph.

Thus, only balanced trees can be embedded with a unit dilation and unit load into
their optimal hypercubes. The complete binary tree of height greater than 2 is not
balanced which can be seen as follows. Let T=(A, B, E') be a complete binary tree of
height h>3 and, therefore, of size 2" —1. Without loss of generality, we assume that the
leaves of T" are contained in A. Hence, we obtain |A|>2h~142h=3>0h-1—g[log(2"~1)]-1
implying that 7" is not balanced.

Theorem 2 ([5, 1, 10]) A complete binary tree cannot be embedded into its optimal
hypercube with unit dilation and unit load.

An optimal embedding of complete binary trees into their optimal hypercubes was
first discovered by Havel and Liebl [5] and was also exhibited by Bhatt and Ipsen [1]
as well as by Saad and Schultz [10]. We will give here a short proof of this well known
fact using the double-rooted complete binary tree.

In what follows, we will show that the double-rooted complete binary tree is a sub-
graph of its optimal hypercube. This will be proved by induction on the height of
the double-rooted complete binary tree. Indeed, we proof a little bit stronger state-
ment. Additionally, we require that the root path traverses hypercube edges of three
different dimensions. For h=3 the claim is true, as can be seen from Figure 2.

Assume that the claim holds for a double-rooted complete binary tree of height .
An h+1-dimensional hypercube can be viewed as two copies of h-dimensional hyper-
cubes. By induction hypothesis, each of the h-dimensional hypercubes contains a
double-rooted complete binary tree of height h as a subgraph. We assume that the
root, path of the first double-rooted complete binary tree traverse hypercube edges in
the following order of dimensions: %, 7, and k. Without loss of generality, the root
path of the second double-rooted complete binary tree traverse hypercube edges in
the following order of dimensions: j, k, and 7 (cf. Figure 3(a)). Now, we can combine
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Figure 2: Embedding a DRCBT of Height 3 into Its Optimal Hypercube

these two double-rooted complete binary trees of height A to a new double-rooted
complete binary tree of height h+1 as can be seen in Figure 3(b). Moreover, we can
conclude from Figure 3 that the root path of the new double-rooted complete binary

tree of height h+1 traverses hypercube edges of three different dimensions, namely 7,
h+1, and k.

Theorem 3 ([5, 1, 10]) A double-rooted complete binary tree of height h can be
embedded with unit dilation and unit load into its optimal hypercube.

Since a double-rooted complete binary tree of height A+1 was constructed from a
complete binary tree of height h by replacing the root with a path of length 1, we
have also proved the following corollary which is optimal because of Theorem 2.

Corollary 4 A complete binary tree of height h can be embedded into its optimal
hypercube with unit load and dilation 2, where all but one edges have unit dilation.

As mentioned earlier, a double-rooted complete binary tree of height h+1 consists of
two complete binary trees of height A whose roots are connected by a path of length

a) b)

Figure 3: Embedding a DRCBT into Its Optimal Hypercube



3. Thus, Theorem 3 implies the following corollaries which are also optimal because
of Theorem 2.

Corollary 5 A complete binary tree of height h can be embedded with unit dilation
and unit load into an h~+1-dimensional hypercube.

Corollary 6 A complete binary tree of height h can be embedded with unit dilation
and load 2 into its optimal hypercube.

4 Optimal Dynamic One-To-One Embeddings

In this section, we present two simple level by level algorithms which construct the
embedding of a double-rooted complete binary tree into its optimal hypercube given
in the previous section. The first algorithm embeds the double-rooted complete binary
tree level by level into its optimal hypercube, i.e., the first £ levels are embedded in an
{-dimensional subcube. The major drawback of this algorithm is that for each new
level some leaves must be remapped. This will be avoided in the second algorithm.
But in each step we then need a hypercube which is twice as large as necessary except
when the final level is reached, where we get an embedding into its optimal hypercube.
In this section, we consider one-to-one embeddings.

Unfortunately, the construction of the embedding mentioned in the previous section
combines two embeddings of two double-rooted complete binary trees to a new em-
bedding of a double-rooted complete binary tree of increased height. As mentioned
earlier, we assume that the trees grow at the leaves and not at the root. We now
present a simple algorithm which extends an embedding of a double-rooted complete
binary tree of height h into an embedding of double-rooted complete binary tree of
height h+1 such that only one half of the leaves have to be remapped. This is optimal
which can be seen as follows. As the tree grows by one level, each leaf spawns two
new leaves, but the dimension of the hypercube increases only by one. Hence, it is
impossible to embed these new leaves with unit dilation without a remapping of any
internal vertex. Since each leaf spans two new leaves, at least one quarter of tree
vertices must be remapped to obtain an embedding with unit dilation.

Theorem 7 The double-rooted complete binary tree of height h can be dynamically
embedded into its optimal hypercube with unit dilation, unit load, and unit conges-
tion such that for each new level of leaves only one half of the old leaves have to be
remapped. The computation time for each new level is constant.



Corollary 8 The complete binary tree of height h can be dynamically embedded into
its optimal hypercube with dilation 2, unit load, and unit congestion such that for each
new level of leaves only one half of the old leaves have to be remapped. Moreover, all
but one tree edges have unit dilation. The computation time for each new level is
constant.

Note that these theorems are optimal. We will give here a simple construction and
a proof of this embedding. To prove the theorem, we will prove a stronger claim on
the embedding.

A one-to-one embedding of the double-rooted complete binary tree of height h into
its optimal hypercube with unit dilation can be constructed such that there ezists a
partition of the vertices of the double-rooted complete binary tree into 2"~2 groups of
four vertices each fulfilling the following conditions:

i) exactly two of the four vertices are leaves of the double-rooted complete binary
tree, more precisely, a left and a right leaf;

i1) one of the other two internal vertices is the parent of the right leaf;

iii) the four vertices are mapped to a 2-dimensional subcube, where the leaf and its
parent fulfilling condition ii) are mapped to adjacent hypercube vertices as well
as both leaves.

Obviously, the double-rooted complete binary tree of height 2 can be embedded into
the 2-dimensional hypercube satisfying the three conditions above. This can also be
seen from the left part of Figure 4, where the white vertices are the leaves and the gray
and black vertex are the roots. As induction hypothesis, the black vertex in Figure 4
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Figure 4: A DRCBT Spawning New Leaves in Its Optimal Hypercube

is the parent of its leaf as required in condition #); the gray vertex is another internal
vertex of the double-rooted complete binary tree.
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To obtain the embedding of the double-rooted complete binary tree of height h+1
into the h+1-dimensional hypercube the old mapping is extended as follows. As
mentioned earlier, we have to remap one half of the leaves. All other vertices of the
double-rooted complete binary tree of height h keep their hypercube vertices in the
hypercube. Since we know that one leaf is adjacent in the hypercube to its parent,
we remap this leaf such that it is again adjacent to its parent in the hypercube along
the new dimension h+1 (cf. Figure 4). Now each leaf can spawn two new children
such that they are adjacent to their parents in the optimal hypercube as can be seen
from Figure 4, where the newly spawned leaves are drawn as squares. It can easily be
verified that the required three conditions are satisfied by splitting the 3-dimensional
subcube into an upper and lower 2-dimensional subcube as indicated in Figure 4.

From the proof of the embedding we get the following construction. Each leaf v stores
the following subcube information o(v)=(i1,42), where i; and iy are the hypercube
dimensions according to condition i) and ¢; is the hypercube dimension connecting
the two leaves. Note that the two leaves contained in the same subcube according
to condition #4) have the same subcube information. In what follows, we denote by
locy,(v) the label of the hypercube vertex v in an h-dimensional subcube.

First, we consider as induction basis a double-rooted complete binary tree of height 2.
Let 71 and 79 be the roots of the double-rooted complete binary tree and let z and y
be their children, respectively. Then we get the following mapping for a double-rooted
complete binary tree of height 2:

10C2(7’1) = 00

IOCQ(TQ) = 10
loco(z) = 01 olz) = (1,2)
loco(y) = 11 oly) = (1,2)

The labels of the hypercube vertices to which the new leaves of the double-rooted
complete binary tree of height h+1 are mapped can be computed from the labels of
the hypercube vertices to which the vertices of the double-rooted complete binary
tree of height h are mapped in constant time as follows. We assume that the subcube
information o for the vertices z,y are o(x)=0(y)=(41,42). Note that z is a left leaf
and y is a right leaf. Let x4, x,, ¢, and y, be the newly spawned left and right vertices
of = and y, respectively.

locpi1(v) = locy(v) - 0 for all internal vertices v
locpir(z) = locy(z) - 0

lOCh_H (IE@) = (IOCh(ﬂ?) B2 0 0(%1) = (il, h + 1)
locpyii(z,) = locy(z) - 1 o(z,) = (h+1,4)
lochsr(y) = (loca(y))™ -1

lochi1(ye) = ((loca(y))™)™ -1 o(ye) = (h+14)
locpi1(yr) = locy(y) - 1 o(y,) = (i1,h+1)



If the height of the double-rooted complete binary tree is known in advance or if
we can determine when the final level is reached, we can clearly compute the final
hypercube vertex of each newly spawned leaf. We will denote by A the maximal
level, i.e., the height of the double-rooted complete binary tree. Thus, in this case
a remapping is not necessary although in the intermediate steps a hypercube of one
dimension larger is used than actually needed. This extension of the mapping is

i2

Figure 5: A DRCBT Spawning New Leaves at Level £ in a Larger Hypercube

illustrated in Figure 5. Actually, also the embedding of the left children of the new
leaves are illustrated in this figure which will be useful in a later discussion. From
this illustration, the following construction can immediately be obtained. Note that
always £—1€(i1,1i2)=0(z)=0(y) holds.

locy(ze) = (locy(z))™ o(xzg) = (i1,4)
locy(z,) = (loch(x))fmn{”l’h} o(z,) = (¢,4)
locp(ye) = (loca(y))™. o(ye) = (6i)
loc(yr) = (locy(y))™n e+ o(yr) = (in,€)

Theorem 9 The double-rooted complete binary tree of height h can be embedded dy-
namically into its optimal hypercube with unit dilation, unit load, and unit congestion
without remapping of any vertex. The computation time for each new level is constant.

Corollary 10 The complete binary tree of height h can be embedded dynamically into
its optimal hypercube with dilation 2, unit load, and unit congestion without remapping

of any vertex. Moreover, all but one tree edges have unit dilation. The computation
time for each new level is constant.

5 Optimal Dynamic Edge-Disjoint Embeddings

If we consider level by level computations on double-rooted complete binary trees
or on complete binary trees, it might be useful to construct embeddings such that
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Figure 6: Two Embeddings of a DRCBT of Height 6 into a 5-dimensional Hyper-
cube [9]

only vertices of any fixed level are mapped to different hypercube vertices. Thus, we
are interested in a load 2 embedding such that adjacent tree vertices are mapped to
adjacent hypercube vertices or to the same hypercube vertex.

A first simple approach to obtain a dynamic embedding of the double-rooted complete
binary tree of height h+1 into an A-dimensional hypercube with unit dilation and
load 2 is to embed the double-rooted complete binary tree of height h into an h-
dimensional hypercube dynamically. If a leaf v at level h spawns itself two new leaves
ve and v, we map v, to the hypercube vertex labeled locy,(v) and v, to the hypercube
vertex labeled (locy(v))®2, where o (v)=(i1,%2)-

Theorem 11 A double-rooted complete binary tree of height h+1 can be dynamically
embedded into an h-dimensional hypercube with unit dilation, load 2 and congestion 2.
Vertices of the same level are mapped to different hypercube vertices. The computation
time for each new level is constant.

With respect to the congestion, we can do even better. An embedding of a double-
rooted complete binary tree of height 6 into a 5-dimensional hypercube with unit
dilation, unit congestion, and load 2 was discovered by Ravindran and Gibbons [9],
which is illustrated in Figure 6. Actually, Figure 6 shows two different but quite
similar embeddings, where the second one will be needed later. The root path is
indicated by black nodes while the parents of the leaves are drawn white. Note that
the root path traverses three different dimensions as our four vertices in the induction
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step of our embedding in the previous section. For convenience, the edges incident to
the leaves are drawn as dotted arcs. Using this construction, we can find a dynamic
embedding for a double-rooted complete binary tree of height at least 6 into a hyper-
cube with unit congestion. Thus, we obtain an embedding with unit dilation, unit
congestion and load 2, if we modify our embedding in the last four levels as indicated
in Figure 6. Obviously, the embedding of these lower levels can be computed in
constant time for each new level.

Theorem 12 A double-rooted complete binary tree of height h+1>6 can be dynam-
tcally embedded into an h-dimensional hypercube with unit dilation, unit congestion,
and load 2. Vertices of the same level are mapped to different hypercube vertices. The
computation time for each new level is constant.

Clearly, this theorem is optimal. As mentioned in the paper of Ravindran and Gib-
bons [9], the last theorem do not hold for trees of height less than 6. The theorem
above can be easily extended to embeddings with higher load as follows. Note that the
embedding of a double-rooted complete binary tree of height A+1 into an h-dimen-
sional hypercube has congestion 1 and every hypercube vertex is an image of exactly
one leaf. Hence, these embedding can be extended for arbitrary load, if we map the
children of high levels to same hypercube vertex as their parents.

Theorem 13 A double-rooted complete binary tree of height h>6 can be dynamically
embedded into a d-dimensional hypercube with unit dilation, unit congestion, and
load 2"=?. Vertices of a fived level £<d+1 are mapped to different hypercube vertices;
vertices of a fized level £>d+1 are distributed evenly among all hypercube vertices.
The computation time for each new level is constant.

Corollary 14 A complete binary tree of height h>6 can be dynamically embedded into
a d-dimensional hypercube with dilation 2, unit congestion, and load 2"=?. Vertices of
a fized level £<d+1 are mapped to different hypercube vertices; vertices of a fized level
£>d+1 are distributed evenly among all hypercube vertices. Moreover, all but one tree
edges have unit dilation. The computation time for each new level is constant.

6 Dynamic Edge-Disjoint Sibling-Separating Embeddings

The embedding stated in Theorem 13 can be extended such that siblings are mapped
to different hypercube vertices maintaining unit congestion. Furthermore, tree ver-
tices from a subtree rooted at level d are mapped to different hypercube nodes. There-
fore, this embedding allows efficient simulations of tree-algorithms on more irregularly
structured binary trees than before.
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In what follows, we will show that each 10-dimensional subcube formed by consecutive
dimensions contains a spanning 2-regular subgraph which avoids already used edges.
Such a spanning 2-regular subgraph allows the following embedding strategy. For an
already mapped tree vertex, we map its left child to the same hypercube node and
its right child to the hypercube node given by the successor in the spanning 2-regular
subgraph interpreted as a set of directed cycles. First we state two basic technical
facts which we will use later. As usual, a matching in a graph is a subset of edges such
that each vertex in the graph is incident to at most one matched edge. A matching
is called perfect if each graph vertex is incident to a matched edge.

Lemma 15 Let H=(V, E) be a 3-dimensional hypercube and MCE a matching.
Then H'=(V, E\M) contains a perfect matching.

Proof: If M is a perfect matching then H' is a 2-regular bipartite graph. Due to
Hall’s Theorem its edge set can be partitioned into two prefect matchings. Otherwise
|M|<3 and there exists a dimension ¢€[1:3] such that M contains at most one edge
of dimension i. Let M’ be the set of edges of dimension 7 in H. If MNM'=(), we are
done. Otherwise consider a 2-dimensional subcube (v1, ve, v3,v4) of H containing the
edge {v1,vo}eMNM'. Clearly, M'"\{{v1, va}, {vs, va}}U{{va, v3}, {vs, v1}} is a perfect
Matching in H'. ]

Lemma 16 Let H=(V, E) be a 4-dimensional hypercube and MCE a matching.
Then H'=(V, E\M) contains a spanning 2-reqular subgraph.

Proof: If M is a perfect matching then H' is a 3-regular bipartite graph. Due to Hall’s
Theorem its edge set can be partitioned into three prefect matchings. Clearly, two
of these perfect matchings form a 2-regular subgraph of H'. Otherwise, |M|<8 and
without loss of generality we assume that M contains at most one edge of dimension 4.
Now we split H into two 3-dimensional subcubes H; and H, by removing all edges
of dimension 4. Let E4 denote the set of edges belonging to dimension 4. Because of
Lemma 15 H; and Hs contain perfect matchings M; and Ms, respectively, such that
M and M':=M,UMj; are disjoint. Clearly, M'UFE, form a 2-regular subgraph of H.
If MNE,=(, we are done. Otherwise, by the previous assumption MNE;={m} for
some edge (v,v*)=meEF,. Since v and v* have degree 4, there exists a dimension i
such that (v,v%, v%%, v?) forms a cycle in H and (v,v?), (v?, v"*)¢ M'. Now it can be
easily seen that C=M'U(E4\{(v, v*), (v, v*)HU{(v, v*)(v*, v"*)} is a spanning 2-reg-
ular subgraph such that C' and M are disjoint. [

Since the construction of the highest numbered four levels of the tree as shown in
Figure 6 is somehow irregular compared with the embedding of the lower numbered
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levels, we will not reuse edges of dimension greater than d—4. In the sequel, we denote
by H(z,y) the k-dimensional subcube given by {2€{0, 1}¢ | Jwe{0, 1}*:zwy==2}. We
will call Hy(e,y) a primary k-dimensional subcube if ye10*.

First, we consider an Hio(z,y) which is contained in an Hy (g, 2) for 2#£0%. Note
that in Figure 6 all 3-dimensional subcubes except the upper left ones belong to such
an Hy 5(e,z). Our embedding maps to these three subcubes given in Figure 6 tree
vertices from level d—1, d, and d+1 using dimensions at least d—3 and one low dimen-
sion i<d—3. Thus, for each ue{0,1}° the already used edges in an H,(z,uy) form a
matching. By Lemma 16, we can conclude that each H,(z,uy) contains a spanning
2-regular subgraph and, hence, also each Hyy(z,y) contained in an Hy 5(e, 2).

It remains to show that each Hiy(z,y) contained in Hy 5(e,0?) contains a spanning
2-regular subgraph. By construction the dimensions used in the embedding given in
Figure 6 are greater than d—4 with the exception of one reused low dimension :<d—4.
This low dimension ¢ is drawn in Figure 6 either as a straight horizontal or straight
vertical line. By choosing the appropriate embedding given in Figure 6, we can ensure
that the low dimension in the upper left 3-dimensional subcubes are not used. Thus,
it is sufficient to consider only the embedding of the double-rooted complete binary
tree up to level d—3. Now we are ready to compile some basic facts of the embedding
stated in Theorem 12 up to level d—3. The following two lemmas follow immediately
from a closer inspection of Figure 5

Lemma 17 For k<d—3, a primary k-dimensional subcube gets tree vertices from
levels k, k+1, and k+2.

Lemma 18 The set of dimensions across the neighbors of a tree vertex at level £ are
mapped is either {i,0—1,0+2}, {i, 0,042}, {i,0+1, 042}, or {{,£+1,¢+2}, for some
1<l—1.

Lemma 19 Fach S=H,(x,y) contains a spanning 2-reqular subgraph if S is con-
tained in a primary k-dimensional subcube for k>|z|+6.

Proof: Since Hy(z,y) is contained in a primary k-dimensional subcube, it follows
from Lemma 17 that such an Hy(z,y) gets tree vertices form level at least |z|+6. By
Lemma 18, each node in Hy(z,y) is incident to at most one edge which is an image
of a tree edge. Thus, the already used edges form a matching and the claim follows
immediately from Lemma 16. [

Lemma 19 immediately implies that also each Hyg(x,y) contained in a primary sub-
cube has a spanning 2-regular subgraph. It remains to show that for each ye€0*
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Hio(z,y) contains a spanning 2-regular subgraph. For ue{0,1}°\{0,1}20%, again
Lemma 19 implies that H,(z,uy) contains a spanning 2-regular subgraph. In the fol-
lowing, let Spo=Hy(x, u00y), So1=H4(z,u01y), and Si1o=H,(z,u10y) for ue(0+1)202.
In what follows, we will show that SyUSp;US1o contains a spanning 2-regular sub-
graph. By Lemma 17, our embeddings maps to Syy only tree vertices from level at
most |z|+7 while Syp; and Sio gets tree vertices from level at least |z|+9. Hence,
the edges between Sy and Sp;USy are not images of tree edges. Lemma 18 again
implies that the used edges in Sp; and Sig form a matching and thus by Lemma 15
we can find a perfect matching My, and My of unused edges in Sp; and Sy, respec-
tively. Therefore, My UM;q together with the edges between Sy, So1, and Sip form
a spanning 2-regular subgraph in SpoUSpUS1p. Altogether we have proved that each
Hiy(z,y) contains a spanning 2-regular subgraph avoiding already used edges.

It remains to compute the height of the double-rooted complete binary tree which can
be embedded in this manner. The vertices of the double-rooted complete binary tree
at level d+1+/ are distributed evenly among the hypercube vertices, i.e., each hyper-
cube vertex is an image of exactly 2¢ tree vertices at level d+1+4¢. Since the required
number of dimension is 10 times the load, we need 10-2¢ different dimensions for each
new embedded level. Thus, the height of the tree which can be embedded in this man-
ner is bounded by d+2+k, where k is the maximal value satisfying 3°5_, 10-2¢ < d—4.
This implies that k=[log(%:%)] and that the height of the double-rooted complete
binary tree is bounded by d+|log(%%)].

Theorem 20 For d>5, a double-rooted complete binary tree of height d+ Llog(%)J
can be dynamically embedded into a d-dimensional hypercube with unit dilation, unit
congestion, and optimal load. Vertices of a fized level {<d+1 are mapped to different
hypercube vertices; vertices of a fized level £>d+1 are distributed evenly among all
hypercube vertices. Also each pair of siblings is mapped to two different hypercube
vertices. The computation time for each new level is constant.

Corollary 21 For d>5, a complete binary tree of height d+ [log(d“LT6)J can be dy-
namically embedded into a d-dimensional hypercube with dilation 2, unit congestion,
and optimal load. Vertices of a fized level {<d+1 are mapped to different hypercube
vertices; vertices of a fixed level £>d+1 are distributed evenly among all hypercube
vertices. Also each pair of siblings is mapped to two different hypercube vertices. The
computation time for each new level is constant.

A more detailed and sophisticated analysis shows that each 8-dimensional subcube
formed by consecutive dimensions contains a spanning 2-regular subgraph which
avoids already used edges. It can also been shown that six consecutive dimension
are necessary for this approach.
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7 Conclusion

We have presented some simple algorithms for dynamic embeddings of complete bi-
nary trees into hypercubes with optimal dilation, load, expansion, and congestion.
The computations needed to embed a new level of leaves are very simple and can
be computed in constant time. Our embeddings improve the known embeddings of
complete binary trees into hypercubes.

It remains to be investigated whether arbitrary binary trees can be embedded dynam-
ically into hypercubes. As mentioned earlier, we can expect dynamic embeddings with
high quality only if we allow randomization or migration [7]. Allowing randomiza-
tion, a dynamic embedding of arbitrary binary trees into their optimal hypercubes
with dilation 8, and with high probability constant load and constant congestion are
constructed [7]. On the other hand, we have found a dynamic embedding of arbitrary
binary trees into optimal hypercubes with unit load, constant dilation and constant
congestion if migration of vertices is allowed [6].
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