INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. e Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

Decoding Algebraic-Geometric
Codes

Beyond the Error-Correction
Bound

M. Amin Shokrollahi and Hal Wasserman
TR-98-019
June 1998

Abstract
We generalize Sudan’s results for Reed-Solomon codes [41] to the class of algebraic-geometric
codes, designing polynomial-time algorithms which decode beyond the error-correction bound
(d —1)/2, where d is the minimum distance of the code.

We introduce [n,k, e, b],-codes, which are linear [n, k],-codes such that any Hamming
sphere of radius e contains at most b codewords. Using the sequence of Garcia-Stichtenoth
function fields [10], we construct sequences of constant-rate [n, k, e, b],-codes for which e/n —
¢ > 1/2 as n grows large, while b and ¢ remain fixed. Equivalently, we specify arbitrarily large
constant-rate codes over a fixed field F, such that a codeword is efficiently, non-uniquely re-
constructible after more than half of its letters have been arbitrarily corrupted. Additionally,
we discover a very simple algorithm for conventional decoding of AG-codes.

Furthermore, we construct codes such that a codeword is uniquely and efficiently recon-
structible after more than half of its letters have been corrupted by noise which is random in
a specified sense. We summarize our results in terms of bounds on asymptotic parameters,
giving a new characterization of decoding beyond the traditional error-correction bound.

i

1 Introduction

A linear error-correcting [n, k],-code C' is a k-dimensional subspace of F'. The elements of C' are
called codewords. If the minimum Hamming distance between any two distinct codewords is d,
then C'is called an [n, k, d],-code. n, k, and d are called the block length, dimension, and minimum
distance of C', respectively.

Following a construction of Goppa [13], one can use algebraic curves over finite fields to design
linear error-correcting codes called algebraic-geometric codes or AG-codes. These codes can be
viewed as a generalization of Reed-Solomon codes, for an AG-codeword is formed by evaluating
at specified rational points a function in the function field of a curve. Given a curve of genus g,
n rational points, and a specified designed distance d* < n — g, one can construct an AG-code of
block length n which is assured to have minimum distance at least d*.

The encoding algorithm for an AG-code is simple once one knows the n rational points and
a basis for the functions to be evaluated. However, corresponding decoding algorithms are more
complicated. Several such algorithms have recently appeared [5, 7, 8,9, 17, 18, 26, 27, 29, 30, 37, 44].
These algorithms generally decode up to |[(d* — 1 — £)/2] errors, where £ is some integer between
zero and the genus of the curve. They perform between O(n?) and O(n?) operations over the base
field T,.

Most of these algorithms fail if the number of errors exceeds the designed error-correction
bound (d* — 1)/2, and all of them fail if the number of errors exceeds the true error-correction
bound (d — 1)/2, where d is the minimum distance of the code.

Beyond the true error-correction bound it is in general not possible to uniquely reconstruct a
codeword from a received word. However, one might hope to reconstruct a small set of candidates
which provably includes the original codeword. This motivates the following definition.

Definition 1. An [n,k,e,b],-code is an [n,k],-code such that the Hamming sphere of radius e
around any y € F;' contains at most b codewords.

For example, note that an [n, k,2e 4 1],-code is an [n, k, e, 1],-code.

The decoding task associated with an [n,k, e, b],-code requires methods quite different from
those customarily employed for error-correction. For Reed-Solomon codes, several researchers inves-
tigated decoding algorithms that could correct more than (d—1)/2 errors. Welch and Berlekamp [46,
2] designed an algorithm that could correct (d—1)/2+1 errors in time O(n?). Dumer [6] developed
an algorithm that could correct d/2 + O(logn) errors in time O(n?). Sidel’nikov [35] gave another
algorithm based on computing zeros of multivariate polynomials.

A different line of thought was pursued by Sudan [40, 41], who, extending results of Ar et al. [1],
investigated alternative decoding algorithms for Reed-Solomon codes. By generalizing a decoding
algorithm of Welch and Berlekamp [46, 2], he derived the surprising result that an [n, k], Reed-
Solomon code is an [n, k, €, b],-code such that e is approximately n — V2kn and b is approximately
V2n/k. Hence e can be close to n while £/n is bounded away from zero and b is small. Moreover,
Sudan designed a corresponding polynomial-time decoding algorithm based on factorization of bi-
variate polynomials. Sudan’s algorithm thus has an unprecedented ability to efficiently reconstruct
meaningful data in spite of very high amounts of noise. Reed-Solomon codes are however of limited
utility, as they require the block length n to be no larger than the field size ¢.

Here we generalize Sudan’s results to the class of AG-codes. Our main result is as follows:

Theorem 2. Let C be an [n,k,d]|,-AG-code built over an algebraic function field K of genus g.
Leta:=k+g—1and B:=[V2an+g—1]. Then C is an [n,k,n— - 1,[\/2n/a]],-code.

We prove this theorem in Section 3. In Sections 3 and 4 we specify a corresponding decoding
algorithm, which runs in time polynomial in n and in the size of the basis functions used for
encoding, where a function’s size is a bound on the complexity of evaluating it at a rational point.
As for Sudan’s method, the crucial tool for our general algorithm is polynomial factorization.
However, while Sudan needs to factor a bivariate polynomial over a finite field, we must investigate
the more general problem of factoring a univariate polynomial over an algebraic function field. Our
algorithm for this task is an adaptation of a well-known procedure for factoring polynomials over
number fields, as described in, e.g., [4, 19, 21].

Applying Theorem 2 to the asymptotically good sequence of Garcia-Stichtenoth function fields [10]
allows us to construct sequences of [n, k, e, b] 2-codes having excellent parameters. This application
is carried out in Section 5.

The bottleneck of our algorithm is the factorization routine. In Section 6 we derive for small
b variants of our general algorithm in which the factorization step has been eliminated. Omne
variant, which corresponds to the case of decoding [n, k, e, 1],-codes (i.e., conventional decoding),
is particularly interesting. It is slightly less powerful than existing AG-decoding algorithms, as it
can correct only up to (d* — 1)/2 — g errors. However, its implementation only requires solving
an n X (n+ 1) system of linear equations. Because of its simplicity, we feel that this algorithm
is of independent interest. Another variant corresponds to the case of decoding [n, k, e, 2],-codes.
We find that the small increase from b = 1 to b = 2 leads to a substantial result, allowing us to
reconstruct after a number of errors which may approach 2n/3. Moreover, the associated decoding
algorithm is again found to be of interest because of its enhanced efficiency.

A natural property of the high-noise decoding algorithms discussed above is that they may not
return a unique solution. We argue that this does not limit the utility of such algorithms, as they
can potentially be combined with other strategies, such as soft decision decoding, to identify the
one true solution. Moreover, we will show in Section 7 that, if a large fraction of the letters of a
codeword are corrupted by noise which is random in a specified sense, it may be possible to uniquely
decode. This inspires us to speak of an [n, k, e, 1]h-code, which is defined to be an [n, k],-code such
that, with probability of failure < p, a codeword may be uniquely reconstructed after up to e of
its letters have been replaced with uniform-random letters. We will demonstrate that there exist
constant-rate [n, k, e, 1]2-AG-codes for which e is surprisingly close to n while p is very small. We
also specify a corresponding decoding algorithm, which does not require polynomial factorization
and hence is particularly efficient.

In Section 8 we consider our argument that, after we have employed non-unique decoding,
heuristics may be used to identify the one true solution. We demonstrate that, if an AG-code
is employed in conjunction with cryptographic signatures, then we can specify codes which are
in effect uniquely decodable after a large fraction of a codeword’s letters have been adversarially
corrupted.

In Section 9 we investigate asymptotic properties of [n, k, e, b],-codes. We define analogues of
the function «, [23, Def. 5.1.2] for our new classes of [n, k, e, b],-codes and [n, k, e, 1]b-codes, and
derive lower bounds for these functions by creating asymptotically good sequences of AG-codes.

One of the crucial time-parameters of our decoding algorithms is the size of the basis functions
used for encoding. In Section 10 we show that for codes based on several classes of function fields,

this parameter is in fact polynomial in the block length n. Section 10 also includes a novel basis
computation for the Garcia-Stichtenoth function field F3.
Finally, Section 11 gives conclusions and poses open problems.

2 AG-Codes

Throughout this paper we will use the terminology of algebraic function fields, for which we refer
the reader to [39]. Let K /F, be an algebraic function field of one variable with field of constants F,,
genus g, and distinct prime divisors of degree one @, Py,..., P,. Let a be a non-negative integer
less than n. L(a@)) denotes the linear space of a@, i.e., the set of all f € K which have no poles
except a pole at @) of order at most . By the Riemann-Roch Theorem, L(a@) is a vector space
over [F, of dimension > a — g + 1.

The AG-code C' = C(aQ; Py,..., P,)is defined to be the image of the evaluation map L(aQ) —
F,;* mapping a function f to the vector (f(F1),..., f(P,)). An application of the Riemann-Roch
Theorem proves that C is an [n,a — g + 1,d],-code, where d > n — a. The quantity d* :=n — a
is called the designed distance of C'. For further information on AG-codes, we refer the reader
to [13, 14, 32, 39, 42].

The encoding algorithm for an AG-code requires us to know a specific basis of L(a@Q). Such
bases can be constructed in polynomial time in some cases, e.g., when the code is built over a plane
algebraic curve with only ordinary singularities [15, 16].

The following lemma [29, Prop. 3] shows that it suffices to know a special basis of L((2¢g+1)@Q).

Lemma 3. There exist ¢1,..., 0442 in L((29+1)Q) which have distinct pole orders at) and thus
form a basis of L((29+1)Q). Moreover, for any j > 2g+ 1 there is a basis of L(jQ) which consists
of suitable power products of the ;.

ProoOF. A gap at () is a positive integer s such that L(s@Q) = L((s—1)@). By the Riemann-Roch
Theorem, there are exactly g gaps at ¢, and for any gap s we have 0 < s < 2g. As a result,
functions ¢1,. .., @ 42 as specified exist and form a basis of L((2g + 1)Q).

For the proof of the second part we use induction on j. The induction start j = 2¢g + 1 has
already been proved, hence we may concentrate on the induction step. Let j > 2¢g+ 1. The number
of positive integers k < j such that either k£ or j — k is a gap is at most 2¢g. Hence, as the number
of positive integers less than 7 is j — 1 > 2g, there must exist k£ such that £ and j — k£ are both
non-gaps. The induction hypothesis now applies to prove the lemma. O

Making use of this lemma, we will assume hereafter that we have determined functions ¢, ...,
©n—g+41 such that, for each j < n, L(jQ) has basis ¢1,. .., ¢, for some £.

For the rest of this paper we fix the function field K /F,, the divisor a@), and the evaluation
points Pp,..., P,, and assume that we know the functions ¢1,...,¢n_g41.

3 Decoding AG-Codes Beyond the Error-Correction Bound

We will now prove Theorem 2 by specifying a decoding algorithm. We continue to employ the
notation of the previous section. Let us first recall the statement of the theorem.

Theorem 2. Let C be an [n,k,d],-AG-code built over an algebraic function field K of genus g.
Leta:=k+g—1and B:=[V2an+g—1]. Then C is an[n,k,n— - 1,[\/2n/a]],-code.

Proor. Let h € L(aQ) and let z = (A(Py),...,h(P,)) be the image of h under the evaluation
map. Suppose that y = (y1,...,y,) € F} is such that = and y agree in at least 3 4 1 coordinate

places. We will prove that the following algorithm (a generalization of Sudan’s [41]) computes a
list of at most [\/2n/a] codewords one of which must be z:

1. (INTERPOLATION STEP) Let s := |(8 — ¢ + 1)/a]. Find a nonzero polynomial G(T') :=
uT° 4+ wu T +ug € K[T], where u; € L((8—ja)@Q), such that G(P;, y;) := Y 5_0 u;(Pi)y]
is zero for i = 1,...,n.

2. (FactorizatioN STEP) Find all roots p of G(T') in K. For each such p compute z, :=
(p(Pr),...,p(P,)). If z, is not defined or if the distance between z, and y is larger than
n— 3 —1, discard z,.

Note that z must be among the solutions z,. Indeed, G'(h) € L(Q), and G(h) has zeros at all
P; such that y; = h(F;). By assumption there are at least 3 + 1 such P;. Hence G(h) has more
zeros than poles, so must be zero.

Also observe that the number of codewords returned by the algorithm is at most the degree of
G in T, which is at most s < [\/2n/a|. Thus it remains only to show that a nonzero polynomial
GG with the properties specified in step (1) must exist.

To prove this, we proceed as follows. For each j, let u; = ;191 + -+ -+ u; ¢, wWith unknown
coefficients u;; € F,. The conditions G(F;,y;) = 0 give a system of n homogeneous linear equations
for the unknown coefficients. Hence a nonzero GG with the properties specified in step (1) must
exist if the number of unknowns is greater than n. But the number of unknowns is at least
YioB-g+l—ja)y=(s+1)(-g+1)—as(s+1)/2> (6 —-g+1)?/(20), and so is greater
than n by the choice of 5. O

This completes our proof of Theorem 2. In the next section we will show that the specified
decoding algorithm is in fact polynomial time. Furthermore, in Sections 6 and 7 we will present
simplified algorithms which do not require polynomial factoring.

4 Polynomial-Time Algorithms

To complete our main algorithm, we must find the roots in K of a polynomial G € K[T], where K
is a finite extension of rational function field L := F,(X). We will do so by designing an efficient
algorithm for factoring G completely. Our algorithm will be subject to two assumptions. First,
we assume that K is a separable extension of L. Second, we assume that we know a primitive
element w of the extension K DO L, as well as the minimal polynomial f € L[Y] of w over L. These
assumptions seem reasonable and, as we will demonstrate in Section 5, can be generalized to work
conveniently with a tower of separable extensions. This example should serve as a prototype for
how to proceed in the case of a general separable extension.

We now continue with our solution, which adapts a well-known procedure for factoring univari-
ate polynomials over number fields [4, 19, 21].

To each k € K there corresponds a unique g, € L[Y] of degree less than deg(f) such that
k = gx(w). The size of A € L is the sum of the degrees of its numerator and denominator when it
is written as a rational function in lowest terms. The size of g := 3.7, Y* € L[Y] is the sum of the
sizes of the ;. The size of k € K is the size of g,. The size of G := ki T" € K|[T] is the sum of
the sizes of the x;.

Remark 4. Arithmetic operations on elements of K of size at most S can be performed in time
polynomial in degree [K: L], size(f), and S. It follows that sums, products, and ged’s of polynomials
over K of degree at most d and size at most S can be calculated in time polynomial in [K: L], size(f),

S, and d.

Let Kk € K. The norm of k over L, denoted by N(k), is defined to be [], o(¢.(w)), where o runs
over a complete set of representatives of the Galois group of the Galois closure of K modulo the
fixed group of K. Alternatively, N(k) = ades(f) . Res(f, gx), where a is the leading coefficient of ¢,
and Res(f,¢.) is the resultant of f and g, [4, p. 332]. Note that N(k) is an element of L.

Similarly, for G := 3" &, T* € K[T], N(G) € L[T]is defined to be [], 0((), where & runs over the
same set as above. If we associate the coefficients x; € K of G with the corresponding polynomials
gx; € L[Y], then we can regard G equivalently as a univariate polynomial G(T") € K[T] and as a
bivariate polynomial G(Y,T) € L[Y,T]. If G(T) is monic, then the norm of GG equals the resultant

Resy (f(Y),G(Y,T)). In the general case, write G as {(GG)(7, where {((7) is the leading coefficient
of G(T') and G(T') is monic. Since the norm is multiplicative, N(G) = N({(G)) - N(G). Note that
deg(N(G)) = [K: L] - deg(G). Representing resultants as determinants, we obtain the following

result.

Lemma 5. Given G € K[T] we can compute N(G) in time polynomial in [K: L], size(f), size(G),
and deg(G).

The following lemma shows that factorization in K[T] can be reduced to factorization in L[T].
Its proof can be found in [4, Lem. 3.6.3].

Lemma 6. Suppose that G € K[T] and its norm N € L[T] are squarefree. Let N = Ny---N, be
the factorization of N into irreducible elements of L[T]. Let G; be the polynomial ged of N; and G
over K. Then G = Gy ---G is the factorization of G into irreducible elements of K[T].

It is easy to make G squarefree by dividing out the gcd of G and its derivative. The following
lemma assures that we can transform G so that its norm is also squarefree.

Lemma 7. The number of A\ € L such that the norm of G(T — Aw) is not squarefree is polynomial
in [K: L] and deg(G).

Proor. For each o appearing in the definition of N(G) (there are [K: L] such o’s), let (G5,)
be the roots of o(G). By [4, Lem. 3.6.2], N(G(T — Aw)) is not squarefree iff there exist o, 7,1, J
such that A = (8,,; — B:,;)/(T(w) — o(w)). Hence the number of such A is polynomial in [K: L] and
deg(G). O

Theorem 8. Let K/F, be an algebraic function field of genus g, let L := F,(X) be the rational
subfield of K, and assume that K is generated over L by the element w with minimal polynomial
f. Let Q,Py,..., P, be distinct prime divisors of degree one of K[F,, and assume that we have
determined basis functions @1,...,¢n_g+1 as specified in Section 2. Let C = C(aQ; Py,..., P,)
for some a < n, and recall that C is an [n, k, e, b],-code for values of e and b as given in Theorem 2.
Then, for any given y € T, the b or fewer codewords in the Hamming sphere of radius e around y
can be found by a deterministic algorithm which performs a number of F,-operations polynomial in

n, q, [K: L], size(f), and S := 3", size(y;).

Proor. Evaluating ¢; at a point P; takes time polynomial in 5. Hence the interpolation of
G € K|[T] in the algorithm of Section 3 can be completed in time polynomial in n and 5. We
can assure that GG is reduced to squarefree form by dividing out ged(G, G”), where G” is the formal
derivative of G(T'). Next, by Lemma 7, we can find A € L such that the norm N of G := G(T — \w)
is squarefree. By Remark 4 and Lemma 5, these steps can be carried out efficiently.

Next we compute ¢ € L such that N = gN, where N € L[T] has coefficients which are
polynomials in X having ged 1. We may regard N equivalently as a univariate polynomial in L[T]
and as a bivariate polynomial in F,[X,7]. We then factor N(X,T) € F,[X,T] using a bivariate
factorization algorithm. This takes deterministic time polynomial in ¢ and the degree of N [11, 22].

By the Gaul Lemma [20, Chap. IV, Thm. 2.1], the irreducible factors of N in L[T] exactly
correspond to the irreducible factors of N in F,[X,T]. Thus we have factored N € L[T], and so,
by Lemma 6, we can determine the factors of G € K[T]. By Remark 4, this step is also polynomial
time. Finally, knowing the factors of G we also know the factors of G. O

Remark 9. (1) In all parts of the above algorithm except for the polynomial factorizations over
Fy, q contributes polylogarithmically to the running time. To obtain an overall polylogarithmic
contribution of q one could employ a probabilistic rather than a deterministic factorization
algorithm: refer to [11].

(2) If the curve defined by the algebraic function field K is a plane curve with only ordinary
singularities, then it follows from the work in [16] that the parameter S in the above theorem
is polynomial in n, [K: L], and size(f). Furthermore, in many practical cases (e.q., for elliptic
or Hermitian function fields), the parameters [K: L], size(f), and S are all polynomial in n (as
will be demonstrated in Section 10); our algorithm then takes time poly(n). Also note that, if
these parameters were on the contrary very large, this would make difficult any encoding or
decoding of the AG-code. Hence this would not be a problem specific to our algorithm.

(3) The algorithm we have presented is polynomial time, but is quite arduous. Its running time
can likely be improved using methods to find roots of polynomials over function fields directly,
rather than carrying out full polynomial factorization. Furthermore, in Sections 6-7 we will
develop more efficient algorithms for certain cases.

5 Application to Asymptotically Good AG-Codes

Garcia and Stichtenoth [10] give an explicit sequence of function fields F,/F, having more than
™ 1(q?—1) prime divisors of degree one and genus g,, < ¢"~!(g+1). The description of these fields
is as follows: [is the rational function field F,2(Xy), and for m > 2 we have Fy, := F,_1(Zpn),

where Z% + Z,, = anj_ll, and X,,_1 := Z;_1/Xn_o for m > 3.

Obviously, F,, is a separable extension of L := F;. However, we cannot apply the results of
Section 4 to this extension directly, as we do not have a primitive element at our disposal. One way
to remedy this problem would be to find a primitive element together with its minimal polynomial.
However, this approach is not very natural to the Garcia-Stichtenoth fields and does not yield
a deterministic algorithm. Alternatively, we will sketch how the ideas of the Section 4 can be

generalized to apply to this tower of separable extensions.

Let n := ¢™~!(¢? — 1). Note that [F},: L] = ¢! < n. Each g € F,, can be represented
uniquely as

g:ZQIZ;Z;T_lv
i

where i runs over all elements of {0,...,¢—1}""! and g; € L. We define the size of g to be the sum
of the degrees of the numerators and denominators of the g;. The size of a polynomial G := 5, k1"
over I, is then defined to be the sum of the sizes of the x;. Observe that sums, products, and
ged’s of polynomials over F), of size at most S and degree at most d can be computed in time
polynomial in n, S, and d.

For the remainder of this section, let S denote the sum of the sizes of the functions
©1,. .+, Pn_gs1 forming a basis of L(nQ), where @ is a prime divisor of degree one of I, /F,.

The polynomial G as specified in the algorithm of Section 3 can evidently be computed in
time polynomial in n and 5. We now have a task of polynomial factorization over F),, which, as
described in Section 4, can be reduced to a task of polynomial factorization over F,,,_1. Repeating
this reduction m —1 times, we arrive at the manageable task of factoring a polynomial over rational
function field Fy. These repeated reductions generate a blowup in size which is polynomial in
g™~ ! < n. It is then easily seen that the time bound of our algorithm is polynomial in n and .

Combining the above argument with Theorem 2, we obtain the following result.

Theorem 10. Let C be an [n,k,d],2-AG-code built over the Garcia-Stichtenoth field Fy, [F 2. Let

0:=1/(¢g=1), a:= [k+On—1], and § := [V2an+0n—1]. Then C isan[n,k,n—F-1,[\/2n/a]],.-
code. Equivalently, letting R := k/n, C is an

[, B, [(1— 60— V2AR+0))n), [V2/(R+ 0)]]q2-code.

Furthermore, the codewords in the Hamming sphere of radius |(1 — 6 — \/2(R + 0))n| around any
given y € Fq@ can be computed in time polynomial in n and S, where S is the basis size as defined
above.

Proor. We need only prove that C' has the parameters stated above. For this we use Theorem 2.
Notice that the genus of F,, is at most n/(¢— 1) = 6n. O

Remark 11. The running time of our decoding algorithm depends not only on n, but also on S
(which of course also affects the encoding time). It is not known whether for each Garcia-Stichtenoth
field one can select a divisor Q and a basis ¢1,...,¢,_g41 for L(nQ) such that the size S of this
basis is polynomial in mn. Section 10 provides a hint in this direction: we will prove that, for the
case of I3, S is indeed polynomial in n.

Example 12. Using F,, /Fig12 and setting k := |0.01n], we can create an [n,k,|0.79n],10];9;2-
AG-code. Fquivalently, we have specified an infinite sequence of constant-rate codes over Fyg12 such
that, for each code, at most ten candidates for a codeword may be efficiently determined after 79%
of its letters have been arbitrarily corrupted.

6 Simplified Algorithms

Here we consider variant algorithms which in some cases are stronger and more efficient than
our main algorithm of Section 3. In particular, we will specify an extremely simple and efficient
algorithm for conventional decoding of AG-codes.

We begin with the following straightforward variant of Theorem 2:

Theorem 13. Let C be an [n, k, d],-AG-code built over an algebraic function field of genus g. Then,
for any positive integer b, C' is an [n, k,n— [—1,b],-code, where 3 := [(n+1)/(b+1)+ba/2+g—1]
and a ;= k+ g — 1.

Proor. The proof is as for Theorem 2, except that we use s := b and the new value of 5. O

The cases b = 1 and b = 2 of the above theorem will be of particular interest. Recall that [n, &, e, 1],-
codes are those for which a codeword may be conventionally (i.e., uniquely) reconstructed after the
corruption of up to e letters. Therefore, we will refer to the case b = 1 as the unique reconstruction
case. Similarly, we will refer to the case b = 2 as the binary reconstruction case.

We start with the unique reconstruction case. Setting b = 1 in the previous theorem yields the
following.

Corollary 14. Let C be an [n, k, d|,-AG-code built over an algebraic function field of genus g, and
leta:=k+g—1. Then C is an [n,k, |(n —a —1)/2 — g],1],-code.

We saw in Section 2 that AG-codes have designed distance d* = n — «, and thus have designed
error-correction bound e* := |(d* — 1)/2] = [(n — o — 1)/2]. Hence Corollary 14 tells us nothing
new about the conventional correctability of AG-codes, and indeed falls short of the designed bound
by a difference of exactly g. However, the simplified form of our algorithm in this case proves to
be of interest.

With reference to our main algorithm, this simplified algorithm may be sketched as follows. Let
B :=[(n+a—-1)/2+g]. We find a nonzero polynomial G(7') := u1T'+ ug, where u; € L((f—ja)Q),
such that ui(P;)y; + uo(P;) = 0 for i = 1,...,n. If there is any codeword z = (h(Py),...,h(P,))
within distance n — 3 — 1 of y, then A must be a root of G(7'). But then A can only be —ug/u;.

Thus our algorithm in this case simplifies to a conventional decoding algorithm giving a unique
solution. Moreover, this algorithm only requires solving an n X (n + 1) system of linear equations.
Hence it is quite efficient. Furthermore, it seems conceptually simpler than previous algorithms for
decoding AG-codes (e.g., [5, 7, 8,9, 17, 18, 26, 27, 29, 30, 37, 44]). The utility of this algorithm
is only slightly diminished by the restriction that the number of errors must be g less than the
designed error-correction bound.

The binary reconstruction case is based on the following special case of Theorem 13 for b = 2.

Corollary 15. Let C be an [n,k,d],-AG-code built over an algebraic function field K of genus g.
Then C is an [n,k, [2n/3 — k — 29 + 2/3],2],-code.

Observe that, if the rate and genus are sufficiently small, then the error-bound here may rise
substantially above the conventional correction bound e := [(d — 1)/2]. Even if we are interested
only in unique decoding, we might wish to employ the binary reconstruction algorithm described
below: we shall see that it is quite efficient, and, for certain codes, it will allow us to decode right
up to the true correction bound.

We now proceed with the description of the binary reconstruction algorithm. Let a, 3 be as in
the statement of Theorem 13 for b = 2. As above, we find functions u; € L((8 — ja)Q), = 0,1,2,
such that uo(P;) 4+ u1(P;)y; + ue(Pi)y? = 0 for i = 1,...,n. We now need to find the roots in
L(aQ) of G(T) := ug + u1T + uaT?. For this we assume that we know a prime divisor p of degree
d > a of K. This is equivalent to finding an F q4-rational point P on the corresponding algebraic
curve having at least one coordinate which is a primitive element of the extension F 4 /F,. This step
depends on the presentation of the algebraic function field (or the curve) and can be performed
off-line using probabilistic methods. (For a demonstration of how, for instance, to do this in the
case of elliptic curves, the reader may consult [33].)

Now suppose that ¢1,..., ¢ is a basis of the space L(a@Q). We are looking for hq,...,hs such
that h = Y h;p; satisfies

UO—|-U1h—|-UQh2 = 0. (1)

This implies that uo(p) + u1(p)h(p) + ua(p)h(p)*> = 0. We thus start by solving the equation
uo(p) + ur(p)z + uz(p)z? = 0 for © € F,a. This task of solving a quadratic equation over a finite
field F,a can be easily accomplished. E.g., using the method of [28] if ¢ is odd, or that of [34] if ¢
is even. Call the solutions z1,x5. For ¢ = 1,2, we then solve the linear system

e1(p) o wu(p) hy i
e1(p)? e pe(p)? ha _ :cf
991 (p)qd—l gO[(p)qd—l h[xgd—l

Let h be a solution of (1), and fix ¢ such that A(p) = z;. Then h(p?) = 27 for all d distinct
automorphisms o of F 4 /F,. But this implies that A is a solution of the above linear system. We

also claim that the linear system has only this one solution. Indeed, suppose that h,A are both
solutions. Then h — h is a function in L(a@) which vanishes at the d > a distinct points p”, where
o tuns over the automorphisms of F 4 /F,. This function thus has more zeros than poles, so must
be zero.

Solving the above linear system for each of 21, x5 thus suffices to efficiently identify all solutions

of (1).

7 Unique Decoding for Random Noise

Our principal decoding algorithms, given high-noise corruption y of codeword z, may return more
than one possible value for z. This arguably limits the utility of high-noise decoding. In the next
two sections, we respond to this argument.

Here we consider the possibility that, if noise is assumed to be random in a specified sense,
then a codeword x may be uniquely reconstructed from its highly noisy corruption y. We fix the
following definition:

Definition 16. An [n,k, e, 1]5-code is an [n, k],-code such that, after up to e letters of a codeword
x have been replaced with uniform-random letters, x may be uniquely reconstructed, with probability
of failure at most p.

Our model of random noise is thus that corrupted letters can only be replaced with uniform-
random members of F,. (Moreover, extensions to the case of near-uniform-random distributions
over F, should be straightforward.) We however allow the choice of which letters to corrupt to be
adversarial.

The existence of a unique solution in the presence of large quantities of random noise has been
considered previously, e.g., in [12, Sec. 6]. Here we shall accompany our existence result with an
efficient decoding algorithm. Indeed, this algorithm will have the advantage of being more efficient
than our main algorithm of Section 4.

The new algorithm (which extends a method of [45]) is suggested by the proof of Theorem 2. In
that proof, one constructs a polynomial G such that G(P;,y;) = 0fori=1,...,n. In the following,
we refer to the pairs (P, ;) as data-points. We proved that, if there are enough data-points such
that y; = h(F;), then G(h) = 0. Now assume that there are enough such correct data-points that, if
we interpolate to find G having the first n/2 data-points as roots, this is already sufficient to assure
that G(h) = 0. But G(h) = 0 implies that any correct data-point must be a zero of G. Hence,
among the second n/2 data-points, the correct data-points will be identifiable, because they are
zeros of G while the noisy data-points are randomized in such a manner that they are unlikely to
be zeros of G. Hence we have a “filter” which we can use to identify and discard most of the noisy
data-points. If this works well enough to leave us with a sufficient majority of correct data-points,
we can then uniquely reconstruct h.

As a preliminary, we will need the following Chernoff bounds.

Lemma 17. (1) Let Xy,..., X, be independent random variables over {0,1} such that Pr[X; =
1] = p for all i. Then for any § > 0, we have Pr[3""; X; > n(p + §)] < exp(—262n).

(2) Assume that e of n items are labeled “bad.” Then for any § > 0, the probability that a
randomly selected size-n/2 subset of the n items contains more than e/2 + én bad items is
upper-bounded by exp(—26%n).

Proor. (1) From [25, Prob. 4.7(c), p. 98].

(2) The specified tail-probability is evidently upper-bounded by the probability, if we threw the
items into two bins so that each item had independent probability 0.5 of landing in the first bin,
that the first bin would receive more than e/2 4 én bad items. Using (1) and [25, Prob. 4.6], this
probability is at most exp(—28%n). O

Theorem 18. Let C' be an [n, k,d],-AG-code built over an algebraic function field of genus g. Let
a:=k+g—1and 3 :=[\/an+g—1]|. Then for any 6 >0, C is an [n,k, e, 1]-code, where

e:=|n—dén—28-pn/(ag) —a—2g-1], (2)
pi= 2exp(—8°n/2) + 2exp(—§*n). (3)
Moreover, the associated decoding task can be accomplished efficiently using Algorithm 19 below.

Proor. Assume that C' is constructed using divisors @, Py, ..., P,. We wish to decode a received
message ¥ = (y1,...,Yn) € F'. At least n — e of the data-points (P, 91),...,(Pn,yn) are correct,
meaning that y; = h(F;), for h € L(a@Q). The rest are noisy, meaning that y; is a uniform-random
element of F,. We then apply the following algorithm.

10

Algorithm 19. Randomly partition the data-points into two lists of length n/2, which we will call
D1y, Dpyp and D1, . . .,@;/2. Let s := |(B—g+1)/a]. Find a nonzero G := ug+u T+ -+usT?,
where u; € L((8—ja)Q), having D1,...,D,/; as zeros. Discard any of D, .. .,@;/2 which are not
zeros of G. Similarly, find G' having D1, .. .,@;/2 as zeros, and discard any of D1, ...,D,/; which
are not zeros of G'. Apply our unique reconstruction algorithm of Section 6, or any conventional
decoding algorithm, to uniquely determine h from the remaining data-points.

Our proof proceeds in two stages.

Cram 1. G as specified in Algorithm 19 exists and the probability that G(h) # 0 is at most
exp(—é2n/2).

By Lemma 17(2) the probability that ®,...,9,,/, include more than e/24-6n/2 noisy data-points
is at most exp(—6&%2n/2). By (2), /2 + én/2 is at most n/2 — 3 — 1. Mimicking the proof of
Theorem 2 (using n/2 in place of n) now yields the claim.

Cram 2. The probability that the number of noisy data-points among 7, .. .,@;/2 which are
zeros of G is larger than 8 + Bn/(2aq) + én/2 is at most exp(—62n).

Since GG := ug + u1T + --- + u,T° is nonzero, there exists at least one u;« which is nonzero. But
u;» € L(SQ), so at most § of the P; can be zeros of u;«. Now let ®) = (P;, y;) be a noisy data-point
such that u; is nonzero at P;. Then the independent probability that (P;,y;) is a zero of G is at
most s/q < #/(aq). Hence, by Lemma 17(1), the probability that more than 3+ 3(3/(aq) + 6) of
D155 D],), Will be zeros of G is at most exp(—6%n).

Given these claims (and the corresponding claims for G’), it follows that, once we complete our
filtering stage, with probability > 1 — 2exp(—6§*n/2) — 2 exp(—6&%n) there remain in the worst case
n=(n—e)+ (264 pn/(aq)+ én) data-points, of which at least n — e are correct. By Corollary 14,
we may uniquely determine h from this filtered data, provided that

264 pnf(aqg)+én < (h—a—-1)/2—g.

It is easily seen that (2) suffices to assure this. O

Observe that Algorithm 19 requires only simple linear algebra: we never actually factor G.
Hence this algorithm has the advantage of being particularly efficient. Also note that bounds (2)
and (3) could no doubt be readily improved.

Example 20. We create an AG-code based on the Garcia-Stichtenoth field I, [Fig12 (refer to Sec-
tion 5), which has genus at most 10302 and more than 1030200 prime divisors of degree one.
Theorem 18 then tells us that, using this field and picking n := 108, k := 10%, § := 0.01, we can
create an [n, k, 642790, 1]71)012-60(16, where p is less than 10721, Equivalently, we have specified a long
linear code of rate 0.01 over Fygy2 such that, with probability very close to 1, a codeword x may be

uniquely and efficiently reconstructed after 64% of its letters have been replaced with random noise.

8 Unique Decoding via Cryptographic Signatures

While the decoding algorithm of Section 3 may not return a unique solution, we argue that this
is not a limitation, as heuristics may subsequently be used to pick among the candidate solutions.
Indeed, we will now see that this argument can be made rigorous if our algorithm is used in
conjunction with cryptographic methods.

11

In a cryptographic signature scheme, Alice, wishing to send a message v, computes w := S4(v).
Here 54 is an efficient algorithm which uses a private key known only to Alice. Alice then transmits
w, which has the property that anyone may efficiently retrieve v from w and yet an adversary, given
v, w, and other publicly available information, cannot efficiently (and with non-trivial probability)
find any w’ such that w' = S4(v") for v' # v. We say that w is a message with an unforgeable
signature.

Now imagine that Alice encodes w into an AG-codeword z, which she transmits to Bob. During
transmission, we allow a high portion of noise to be applied to z by an adversary, so that Bob receives
a corrupted message y. Applying one of our non-unique decoding algorithms, Bob determines
candidates w(®), ... w® for w. But of these, with high probability only w will be a signed message
from Alice. (Indeed, if this were not so, then we would have an efficient means of breaking the
signature scheme.) Hence the adversary cannot efficiently prevent Bob from uniquely identifying
the message from Alice.

Thus, by combining signatures and AG-codes, we can specify codes such that a codeword is
uniquely reconstructible after a majority of its letters have been adversarially corrupted.

9 Asymptotic Considerations

One of the principal goals of asymptotic coding theory is the description of ¥,, which is the set of
all (6, R) such that for any ng € N there exist [n, k,d],-codes for which n > ng and (d/n,k/n) is
arbitrarily close to (8, R). Analogously, for each positive integer b, we now define Eg to be the set
of all (¢, R) such that for any ng € N there exist [n, k, €, b],-codes for which n > ng and (e/n, k/n)
is arbitrarily close to (¢, R). We also set X% := [J;2, Eg. We similarly define E;z to be the set
of all (¢, R) such that for any ng € N there exist [n, k, e, 1]5-codes for which n > ng, (e/n,k/n) is
arbitrarily close to (¢, R), and p is upper-bounded by an exponentially small function of n.

Observe that E; is precisely the set of all (¢, R) such that (2¢, R) € X,. Furthermore, we have
obvious inclusions E; C E;z and Eg C Eg’ for b < ¥'.

The function ay: [0,1] — [0,1], defined in [23, Def. 5.1.2], describes the boundary of ¥,. To
be precise, X, is the set of all (6, R) such that R < a,(¢). Similarly, we now define 3, to be the
inverse of agy; then ¥, is equivalently the set of all (é, R) such that § < §,(R). (For the results of
the current paper, the inverted 3 notation will be more convenient.)

Employing a shorthand notation, we can write X, = (<§,(R), R). Analogously, there must exist
functions ﬁg, ¥, and ﬁ;z such that Eg = (< ﬁg(R), R),¥¢ = (<BY(R), R),and E;z = (< ﬁf(R), R).

Our theorems readily provide lower bounds for these functions.
Theorem 21. Let 0:=1/(q—1).
(1) B(R)>1—1/(b+1) =60 —b(R+0)/2.
(2) F4(R) 21— 60— JARFO).
(3) BR(R)>1-20 2B — B/(Aq*) — A, where A:= R+ 6 and B := VA +90.

Proor. The proof is by constructing sequences of AG-codes based on the Garcia-Stichtenoth
fields and then applying: (1) Theorem 13; (2) Theorem 10; (3) Theorem 18. O

12

Observe that, when ¢ is large, known upper and lower bounds on ﬁ;z) nearly match. Next
observe that, when R is small, our lower bound on ﬁ§2 goes well beyond the upper bound on ﬁ;z) It
is indeed easily seen from Theorem 21(1) that 232 SZ E;Q for all ¢ > 13. Similarly, our lower bound

on ﬁ;% is sufficient to demonstrate that E;% goes beyond E;Q when ¢ is large (¢ > 37 suffices) and
rate is small.

Also keep in mind that 222 must include the region under the “b = 1” line as well as the region
under the “b = 2” line. Analogously, pe includes the region under the curved “omega” line, which
corresponds to Theorem 21(2); but observe that we can improve this lower bound by also including
the known 222 regions for all positive integers b. Correspondingly, for certain codes, the variant
algorithms of Section 6 may give stronger results than our main algorithm of Section 3.

The true values of the new 3 functions are evidently far from known. Section 11 will summarize
open questions relating to these functions.

10 Examples

The running time of our decoding algorithm of Section 4 is polynomial in the block length n, the
field size ¢, the size of the polynomial f separably generating the function field K over a rational
subfield L, the index [K: L], and the parameter S defined to be the total size of basis 1, ..., Ppn_g41
for L(n@), where @) is a prime divisor of degree one and ¢ is the genus of K. In this section we
will demonstrate for several classes of function fields that, for appropriately chosen @ and ¢;, all of
these parameters are polynomial in n. We will consider elliptic function fields, Hermitian function
fields, and the Garcia-Stichtenoth field F3 of Section 5. In all of these cases the crucial assertion is
that S is polynomial in n. To prove this, we will explicitly construct the functions ;. The basis
computation for elliptic function fields is trivial. The basis computation for Hermitian function
fields is well known: e.g., refer to [31, 38]. However, our basis computation for the case of F5 seems
to be novel.

Throughout this section we assume familiarity with the theory of algebraic function fields as
presented in [39].

10.1 Elliptic Codes

For simplicity we will assume in this subsection that the characteristic of I, is different from 2 or
3. Let K be generated over L := F,(X) by the polynomial f(X,Y)=Y?%— X? - cX — d, where
c,d € F, and 27d* — ¢® # 0. It is well known that K has genus 1. (For these and related facts
about elliptic curves, the reader may consult standard texts such as [36].) Evidently, the size of f
as well as [K: L] are constants. Thus we need only construct basis functions ¢y, ..., ¢, and show
that 5, the sum of their sizes, is polynomial in n.

By an abuse of notation, we let Y denote a root of f in the algebraic closure of L. Let ¢) be the
common pole of X and Y. Then X € L(2Q) and Y € L(3Q). Hence we can set @1 := 1, 3 := X,
and ¢3 := Y. Each ¢; can then be of form X*Yb where 0 < a; < i/2 and b; € {0,1}. Thus the
size of ¢; is at most i/2, and S is O(n?). By the Hasse-Weil inequality, K has at most ¢+ 2,/q and
at least ¢ — 2,/q prime divisors of degree one other than (). Hence ¢ and n have the same order of
magnitude, and our decoding algorithm takes time polynomial in n.

13

10.2 Hermitian Codes

The Hermitian function field K is equal to the Garcia-Stichtenoth field F and is generated over
L :=TFp.(X) by the polynomial f(X,Y):=Y?+Y — X7+ Tt has ¢® + 1 prime divisors of degree
one and its genus is ¢(q — 1)/2 [10]. We set n := ¢>. Then size(f) and [K: L] are both o(n). Let @
be the common zero of X and Y. Then 1/X € L(¢Q) and 1/Y € L((¢+ 1)Q). Observe then that
L(n@Q)) has a basis of the following form: each pole order @ = ag + b (for 0 < a, 0 < b < ¢) has a
corresponding ; iff b < a; and in this case ¢; = X*~*Y =%, Tt is easily seen that this basis has size
O(n?), and hence that our decoding algorithm takes time polynomial in n.

10.3 Codes over Fj

Recall from Section 5 that Fg/}qu is the extension of the Hermitian function field F; generated by
the polynomial Z? + Z — (Y/X)?*!. (We have changed our notation slightly.) F3 has more than
q* — ¢? prime divisors of degree one [10, Prop. 3.1] and its genus is ¢ — 2¢ + 1 [10, Thm. 2.10]. Let
n = ¢* — ¢*. To show that our decoding algorithm takes time poly(n), we need only prove that
basis size 5 is polynomial in n. Again, we will do this by exhibiting an explicit prime divisor ¢ and
explicit basis functions ;. For) we choose the unique common zero of the functions X,Y, Z [10,
Lem. 2.3].

We will now employ the notation of [10]. The divisor D®) can be written as D®) = E, + F,, for
effective divisors Fy, Fy such that Fq N Fy is the divisor of poles of X. The discussion in Section 2

of [10] implies that we have the following divisor decompositions for X,Y, Z in F3:

(X) = Q+ D+ qby — ¢*Ey
(V) = (¢+1)(@Q+ D — qFy)
(Z2) = (€ +9Q — (q+ 1)(Ey + Ey).

For integers a, b, ¢, this readily implies that

(XY227%) = (bg + ¢ — alq® +)@ + (bg +) DS+)
(g = b)+ alg+ D)E1 + (alg + 1) = a(b + cq)) Es.

Let us call @ € N representable by the triple of integers (a, b, ¢) if
(i) a=a(¢® +q) — (bg + c),

(i) 0<bg+ec< ¢’ +q,

(i) —(¢—2)<c<1,
)

(iv) b < a(—)—qifc:l,
(v) bga(l—l—%)—l—cifcgo.

If no such triple exists for a, then we call @ non-representable. Note that if a is representable,
then there exists exactly one triple (a,b,c) satisfying conditions (i)-(v). Furthermore, (4) and

conditions (i)~(v) then imply that X°7*Y*Z~?% € L(aQ)\ L((a — 1)Q).

14

Theorem 22. (1) The gaps at) are exzactly the non-representable o € N.

(2) For g € N, let B be the set of triples (a, b, ¢) satisfying conditions (i)-(v) above for any o < 3.
Then {X°=°Y*Z=% | (a,b,c) € B} is a basis of L(3Q).

Proor. (2)follows immediately from (1). We will sketch the proof of (1), leaving the details to the
reader. For each a = 0,...,q— 1, the number of integers representable by (a,b,¢)is (a+1)+Y 9, i:
indeed, no integer is representable by (a,b, 1), a+1 integers are representable by (a,b,0), and E?:_OI i
integers are representable by (a,b, ¢) such that ¢ < 0. For each @ = ¢,...,2¢ — 2, the number of
integers representable by (a,b,¢)is (¢ —qg+2)+(¢g—1)(g+1)— Z?igz_a i: indeed, a — g+ 2 integers
are representable by (a,b,1), and, for each ¢ < 0, the number of integers representable by (a,b,c)
is min{qg + 1, a + ¢+ 1}. For each @ > 2¢ — 2, the number of integers representable by (a,b,c) is
q* + q. Tt follows that every non-representable a € N satisfies 0 < a < (2¢ — 2)(¢* + ¢), and that,
of all @ such that 0 < o < (2¢ —2)(¢%>+ q), ¢> are representable and ¢ — 2¢ + 1 non-representable.

But ¢ — 2¢ + 1 is exactly the genus of F3, which by the Riemann-Roch Theorem is the number of
gaps at (). O

It is now straightforward to check that L(n()) has a basis as specified in Theorem 22(2) whose size
is polynomial in n.

11 Conclusions and Open Problems

We have generalized Sudan’s Reed-Solomon results [41] to algebraic-geometric codes. We have
introduced the class of [n, k, e, b],-codes, and have demonstrated that there exist [n,k, e, b],-AG-
codes for which e is surprisingly close to n while k/n is bounded away from zero and b is small.
We have designed efficient decoding algorithms which can non-uniquely reconstruct codewords
after a number of errors which may go far beyond the conventional error-correction bound. Such
coding methods could appropriately be used for extremely noisy channels: e.g., in deep-space
communication.

Our general decoding algorithm only requires finding the roots of a univariate polynomial over
an algebraic function field. We have provided a polynomial-time algorithm for this task which
completely factors the given polynomial. This gives rise to our first open problem:

(1) Is there a more efficient way to compute the roots of a univariate polynomial over an algebraic
function field?

The running time of our decoding algorithm depends not only on block length »n but also on 5, the
sum of the sizes of basis functions ¢1,...,¢,_g4+1. To remove this additional parameter, we would
need an affirmative answer to the following question:

(2) Does every function field have a divisor ¢ and a basis ¢1,...,n_g41 for L(n@) such that
the sum of the sizes of the ¢; is polynomial in n?

In particular, for applications to asymptotically good AG-codes the following question is of interest.

(3) Is it possible to explicitly construct polynomial-size bases for each of the Garcia-Stichtenoth
function fields?

15

We have seen that this is indeed the case for the Garcia-Stichtenoth field F3.

A specialization of our general algorithm has yielded a new and very simple conventional decod-
ing algorithm for AG-codes. Its main step is an interpolation over an algebraic function field. Using
standard matrix methods, this step can be performed in O(n®) FF,-operations. But observe that
univariate interpolation takes only O(n!*¢) F,-operations [3, Chap. 3]. This observation inspires
us to ask:

(4) Can the interpolation step of our algorithm be performed in O(n?) or O(n'*¢) FF,-operations?

An affirmative answer to this question would yield a very fast algorithm for conventional AG-
decoding. However, a weakness of our conventional decoding algorithm is that it can correct only
up to (d* — 1)/2 — g errors. Hence we also ask:

(5) Is there a variant of our conventional decoding algorithm which can correct up to (d* —1)/2
errors’

Restricting ourselves to a model of random noise, we have also introduced [n, &, e, 1]0-codes,
and have demonstrated that there exist [n, k, e, 1]7-AG-codes for which e is close to n while k/n is
bounded away from zero and p is very small. Equivalently, we have shown that, for noise random
in a specified sense, the codewords of an AG-code are efficiently, uniquely reconstructible after a
number of errors which may go far beyond the conventional error-correction bound.

In Section 9 we constructed asymptotically good sequences of [n, k, e, b],-codes and [n, k, e, 1]}-
codes over a fixed field F,. We introduced the functions ﬁg, g and ﬁf, which are natural variants
of the well-known function a,. Manin [24] has proved the continuity of a,. This motivates us to

ask:
(6) Are ﬁg, ¢, and ﬁ;z continuous?

We have proved lower bounds analogous to the Tsfasman-VIidut-Zink bound [43] for 2, g » and
ﬁf However, these lower bounds do not appear to be tight. In particular, it would be of pragmatic
interest to find lower bounds which are non-trivial when the field size ¢ is small or the rate R is

high. Upper bounds would also be desirable.

(7) Find improved lower bounds and good upper bounds for 2, g, and ﬁ;z

One might also consider sequences of [n,k, e, b],-codes for which b is allowed to increase with n:
we require only that b must be bounded by a polynomial function of n. Such codes fit within a
reasonable definition of efficient non-unique decoding. With reference to Section 9, corresponding
to such codes we can define a function ﬁf which is analogous to and evidently at least as large as
By . Hence we pose the following problem:

(8) Find bounds which distinguish 87 from 3.

Finally, all our results are for AG-codes. It would be of interest to derive analogous results for
other classes of error-correcting codes.

Acknowledgements

The authors would like to thank Ian Blake, Ilya Dumer, Tom Hgholdt, Ralf K&étter, Ruud Pellikaan,
Madhu Sudan, and Alexander Vardy for helpful comments and discussions.

16

References

(1]

2]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

S. Ar, R. Lipton, R. Rubinfeld, and M. Sudan. Reconstructing algebraic functions from mixed data. In Proc.
33rd FOCS, pages 503-512, 1992.

E.R. Berlekamp. Bounded distance + 1 soft decision Reed-Solomon decoding. IFEFE Trans. Inform. Theory,
42:704-720, 1996.

P. Birgisser, M. Clausen, and M.A. Shokrollahi. Algebraic Complexity Theory, volume 315 of Grundlehren der
Mathematischen Wissenschaften. Springer Verlag, Heidelberg, 1996.

H. Cohen. A Course in Computational Algebraic Number Theory, volume 138 of Graduate Texts in Mathematics.
Springer Verlag, 1993.

C. Dahl. Fast decoding of codes from algebraic curves. IFEFE Trans. Inform. Theory, 40:223-229, 1994.
I.I. Dumer. Two algorithms for the decoding of linear codes. Problems Inform. Transmission, 25:17-23, 1989.
I. Duursma. Algebraic decoding using special divisors. IEFE Trans. Inform. Theory, 39:694—698, 1993.

D. Ehrhard. Achieving the designed error capacity in decoding algebraic-geometric codes. IEFE Trans. In-
form. Theory, 39:743-751, 1993.

G.L. Feng and T.R.N. Rao. Decoding algebraic-geometric codes up to the designed minimum distance. IFEF
Trans. Inform. Theory, 39:37-45, 1993.

A. Garcia and H. Stichtenoth. A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-
Vladut bound. Invent. Math., 121:211-222, 1995.

J. von zur Gathen and E. Kaltofen. Factorization of multivariate polynomials over finite fields. Math. Comp.,
45:251-261, 1985.

O. Goldreich, R. Rubinfeld, and M. Sudan. Learning polynomials with queries: the highly noisy case. In Proc.
36th FOCS, pages 294-303, 1995.

V.D. Goppa. Codes on algebraic curves. Sov. Math. Dokl., 24:170-172, 1981.
V.D. Goppa. Geometry and Codes. Kluwer Academic Publishers, 1988.

M. Huang and D. lerardi. Efficient algorithms for the Riemann-Roch problem and for addition in the Jacobian
of a curve. In Proc. 32nd FOCS, pages 678687, 1991.

M. Huang and D. lerardi. Efficient algorithms for the Riemann-Roch problem and for addition in the Jacobian
of a curve. J. Symb. Comp., 18:519-539, 1994.

J. Justesen, K.J. Larsen, A. Havemose, H.E. Jensen, and T. Hgholdt. Construction and decoding of a class of
algebraic geometry codes. IEEFE Trans. Inform. Theory, 35:811-821, 1989.

J. Justesen, K.J. Larsen, H.E. Jensen, and T. Hgholdt. Fast decoding of codes from algebraic plane curves.
IEEE Trans. Inform. Theory, 38:111-119, 1992.

S. Landau. Factoring polynomials over algebraic number fields. SIAM J. Comput., 14:184-195, 1985.
S. Lang. Algebra. Addison-Wesley, third edition, 1993.

A.K. Lenstra. Factoring polynomials over algebraic number fields. Technical Report TW213/82, Dept. Comp.
Science, Stichting Mathematisch Centrum, Amsterdam, 1982.

A.K. Lenstra. Factoring multivariate polynomials over finite fields. In Proc. 15th STOC, pages 189-192, 1983.

17

(23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

31]

32]

33]

34]

[33]

[36]

[38]
[39]
[40]
[41]

[42]

[43]

[44]

J.H. van Lint. Introduction to Coding Theory, volume 86 of Graduate Texts in Mathematics. Springer Verlag,
1982.

Yu.I. Manin. What is the maximum number of points on a curve over [Fs? J. Fac. Sci. Tokio, 28:715-720, 1981.
R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

M.E. O’Sullivan. Decoding of codes defined by a single point on a curve. IEEFE Trans. Inform. Theory, 41:1709—
1719, 1995.

R. Pellikaan. On a decoding algorithm for codes on maximal curves. IEEE Trans. Inform. Theory, 35:1228-1232,
1989.

A. Peralta. A simple and fast probabilistic algorithm for computing square roots modulo a prime number. /EEFE
Trans. Inform. Theory, 32:846-847, 1986.

S.C. Porter, B.Z. Shen, and R. Pellikaan. Decoding geometric Goppa codes using an extra place. IEEE Trans. In-
form. Theory, 38:1663-1676, 1992.

S. Sakata, J. Justesen, Y. Madelung, H.E. Jensen, and T. Hgholdt. Fast decoding of algebraic-geometric codes
up to the designed minimum distance. IFEF Trans. Inform. Theory, 41:1672-1677, 1995.

M.A. Shokrollahi. Codes on Hermitian curves. In Th. Beth and M. Clausen, editors, Proc. AAECC-4, number
307 in Lecture Notes in Computer Science, pages 168-176. Springer Verlag, 1988.

M.A. Shokrollahi. Beitrage zur Codierungs- und Komplexitatstheorie mittels algebraischer Funktionenkorper.
Bayreuth. math. Schriften, 39:1-236, 1992.

M.A. Shokrollahi. Efficient randomized generation of algorithms for multiplication in certain finite fields. Comp.
Compl., 2:67-96, 1992.

M.A. Shokrollahi and K. Werther. Generation of optimal bilinear multiplication algorithms: theory and imple-
mentation. Technical report, Department of Computer Sciene, Universitat Bonn, 1992.

V.M. Sidel’'nikov. Decoding the Reed-Solomon code when the number of errors is greater than (d — 1)/2, and
zeros of polynomials in several variables. Problems Inform. Transmission, 30:44-59, 1994.

J.H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate Texts in Mathematics. Springer
Verlag, 1986.

A.N. Skorbogatov and S.G. Vladut. On decoding of algebraic-geometric codes. IFEE Trans. Inform. Theory,
36:1051-1060, 1990.

H. Stichtenoth. A note on Hermitian codes over GF(q*). IEEE Trans. Inform. Theory, 34:1345-1348, 1988.
H. Stichtenoth. Algebraic Function Fields and Codes. Universitext. Springer Verlag, 1993.

M. Sudan. Maximum likelihood decoding of Reed-Solomon codes. In Proc. 37th FOCS, pages 164-172, 1996.
M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. J. Compl., 13:180-193, 1997.

M.A. Tsfasman and S.G. Vladut. Algebraic-Geometric Codes. Mathematics and Its Applications. Kluwer Aca-
demic Publishers, Dordrecht, 1991.

M.A. Tsfasman, S.G. Vladut, and Th. Zink. Modular curves, Shimura curves, and Goppa codes better than the
Varshamov-Gilbert bound. Math. Nachrichten, 109:21-28, 1982.

S.G. Vladut. On the decoding of algebraic-geometric codes over Fy for ¢ > 16. IEEE Trans. Inform. Theory,
36:1461-1463, 1990.

18

[45] H. Wasserman. Reconstructing randomly sampled multivariate polynomials from highly noisy data. In Proc.
9th SODA, 1998.

[46] L.R. Welch and E.R. Berlekamp. Error correction for algebraic block codes. U.S. Patent 4,633,470, issued Dec.

30, 1986.
M. AMIN SHOKROLLAHI HAL WASSERMAN
International Computer Science Institute Computer Science Division
1947 Center Street, Suite 600 University of California
Berkeley, CA 94704-1198 Berkeley, CA 94720
amin@icsi.berkeley.edu halw@cs.berkeley.edu
http://www.icsi.berkeley.edu/ amin http://http.cs.berkeley.edu/ halw

19

