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Abstract. This work presents a SAR image segmentation scheme consisting of a sequence
of four modules, all selected from the literature. These modules are: i) a speckle model-free
contour detector that is the core of the segmentation scheme; ii) a geometrical procedure to
detect closed regions from non-connected contours; iii) a region growing procedure whose
merging rules exploit local image properties, both topological and spectral, to eliminate
artifacts and reduce oversegmentation introduced by the second stage; iv) a neural network
clustering algorithm to detect global image regularities in the sequence of within-segment
properties extracted from the partitioned image provided by the third stage. In the frame-
work of a commercial image-processing software toolbox, the proposed SAR image segmen-
tation scheme employs a contour detector that is promising because: i) it is easy to use,
requiring the user to select only one contrast threshold as a relative number; and ii) it
exploits no prior domain-specific knowledge about the data source and the content of the
scene, i.e., it is capable of processing SAR images as well as both achromatic and multi-
spectral optical images. The segmentation scheme is tested on three images acquired by
different SAR sensors. The robustness of the segmentation method is assessed by changing
only one parameter of the procedure in the different experiments. Experimental results
are interpreted as an encouragement to focus further multidisciplinary research on how to
combine responses of multi-scale filter banks in low-level visual systems.
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1 Introduction

In recent years, the scientific community has been involved in an important debate on the
reasons why the many image processing techniques presented in the literature have had such
slight impact on their potential field of application [1]-[4]. To take this debate into account,
we have attempted to make this paper as “focused on its very original core” as possible [4].
This original core is regarded as a set of useful items that a broad scientific audience would
like to include in commercial image-processing all-purpose software toolboxes [4].

In the coming era of coherent imaging systems, one of the major challenges the remote
sensing community will have to cope with is the analysis of large volumes of SAR data where
intrinsic scene texture (within-class variability) is overlaid by speckle texture, especially at
the spatial resolution of spaceborn SAR systems [5]. It has been shown that SAR data
segmentation is useful in classification [6]-[8], feature extraction [9] and change detection
tasks [10]. Segmentation of SAR images is traditionally considered more difficult than
segmentation of incoherent (optical) images. Since heuristic filters (block averaging, median,
etc.) have proved inadequate in removing speckle noise [5], [11], intelligent incorporation of a
priori (background) knowledge has become fundamental to provide end users with powerful
SAR image processing tools [12]. In recent years, proposed speckled and unspeckled scene
models [5], [11], [13]-[18], have been incorporated in adaptive speckle filters, speckle contour
detectors and SAR image segmentation systems [6], [7], [9], [19], [20].

Our objective is to select from the literature an unsupervised SAR image segmentation
procedure considered feasible (in terms of performance, robustness, computation time) for
inclusion in a commercial image-processing toolbox whose goal is the extraction of geo-
physical information (texture, shape, size, orientation, etc.) from regions of the image that
are perceived as pictorially uniform by a photointerpreter for classification purposes. The
SAR image segmentation procedure must be unsupervised in the sense that it will segment
SAR images without a priori knowledge of: i) the number of surface classes depicted in the
image; and ii) the statistical properties characterizing each thematic class (e.g., n-th order
statistics computed off-line from supervised training samples).

Our work starts by selecting from the literature what we consider the most relevant SAR
image segmentation procedure. Experimental results show that segmented images generated
with this procedure are oversegmented for classification tasks. To reduce oversegmentation,
an alternative SAR image segmentation procedure consisting of processing blocks taken
from the literature is proposed. Thus, we do not claim to present yet another picture
segmentation algorithm [4].

This paper is organized as follows. Section 2 briefly overviews models of the speckled
scene. Section 3 points out the relationship between adaptive speckle filters and speckle con-
tour detectors. Section 4 discusses the state of the art in SAR image segmentation schemes.
Section 5 proposes a general-purpose segmentation framework capable of processing SAR
as well as optical monochromatic and multi-spectral images. In Section 6 implementation
details are discussed, while experimental results are discussed in Section 7 and conclusions
are presented in Section 8.
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2 Background knowledge about speckled radiance

Every coherent imaging system, like the SAR, is affected by constructive and destructive
interference of scatterers within a resolution cell. This interference generates light and dark
pixels in the image from regions that are homogeneous on the ground: such a visual effect is
known as speckle noise [19]. Typically, speckle noise is considered a multiplicative random
process, which is tantamount to stating that it is supposed to be “fully developed” [13],
[21]. The multiplicative speckle model holds true when: i) within each resolution cell there
are many independent scatterers; and ii) these independent scatterers feature: a) the same
backscatter coefficient (i.e., all scatterers belong to a homogeneous area); b) the backscatter
coefficient and phase functions are independent; and c¢) phases are uniformly distributed in
the range [0, 27] [13], [21]. The multiplicative speckle model loses its validity where speckle
is partially developed. This condition occurs in each resolution cell where: i) few strong
scatterers are present, e.g., in corner and specular reflectors; and ii) a large number of
independent scatterers are present, but they feature different backscatter coefficients. The
latter condition occurs where resolution cell size is larger than or comparable to the size of
scene details, e.g., near/across image contours and within highly textured areas (consisting
of small texels).

Based on ecological observations as well as experimental studies on SAR image textures
[5], [14], [18], it is now well accepted that for a wide variety of scattering situations, such as
homogeneous and textured terrain classes (including extended vegetated areas), the proba-
bility density function (pdf) of unspeckled (noise-free) radiance can be modeled by a Gamma,
distribution. When the “fully developed speckle” hypotheses hold true, then the Gamma-
distributed (true) scene model is modulated by either an independent complex-Gaussian
speckle model (in complex SAR images) or by a Gamma speckle model (in multilook dete-
tected SAR images). This product gives rise to a K-distributed speckled observed radiance
5, [11], [23)-[17-

3 Speckle filters depend on speckle contour detectors

The basic idea underlying the development of adaptive speckle filters is to exploit a priori
fully developed speckle model flexibly, i.e., only where this model holds true, by computing
local (adaptive) statistics on (adaptive) neighborhoods adjusted to cover homogeneous nat-
ural extended targets [14], [15], [22]-[26]. In other words, since the fully developed speckle
hypotheses do not hold true across image boundaries (i.e., across non-homogeneous areas,
see Section 2), it is clear that the difference between speckle filters and speckle contour de-
tectors becomes subtle, as adaptive speckle filters must incorporate speckle contour detection
principles.

For example, in the framework of Bayesian learning, introduction of a priori knowledge
in the design of adaptive speckle filters has become a domain of growing interest, giving rise
to a new class of Maximum A Posteriori (MAP) adaptive speckle filters [5], [11], [14], [15].
Among these filters, the well-known Refined Gamma-Gamma (to indicate Gamma pdfs for
both speckle and noise-free reflectivity of the true scene) Maximum A Posteriori speckle
filter (RGGMAP, [14], [15], [24]) improves the original GGMAP single-point filter expression
by including structural detectors. These are (odd-symmetric) difference of boxes operators,
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capable of detecting step edges, and even-symmetric operators, capable of detecting ridges,
employed in the filtering process to delimit the homogeneous neighborhood on which local
statistics are estimated [14]-[16]. An explicit dependence of adaptive speckle filters on
speckle contour detectors is found in the class of adaptive speckle filters featuring region-
based estimation of local statistics [24], [27]. These filters are two-stage procedures, the
first stage performing segmentation and the second filtering. The first stage is a hybrid
segmentation module consisting of: a) a contour detector incorporating a speckle model, such
as the well-known Constant False Alarm (CFAR) edge detector [28]; and b) a (speckle model-
free) segmentation module generating connected regions from non-connected contours based
on geometric information exclusively (i.e., no radiometric values are employed at this stage)
[6], [7], [24]. Next, the second stage of the filtering scheme applies a single-point adaptive
speckle filter (e.g., GGMAP) whose local statistics are extracted from neighboring pixels
belonging to the same segment as the pixel of interest.

4 State of the art in SAR image segmentation schemes

SAR image segmentation systems found in the literature can be divided into two main cat-
egories. The first category employs a speckle filtering stage to gemerate a noise-free image,
followed by a speckle model-free segmentation stage [9], [19], [20]. Among these algo-
rithms, the histogram-based segmentation method proposed in [19] as an improvement of
the algorithm presented in [20] is interesting because it is simple and fully automatic. It
is based on the iterative application of a feature-preserving speckle filter. The procedure
is stopped when a multimodal histogram suitable for thresholding is obtained. This seg-
mentation algorithm employs: i) an enhanced feature-preserving sigma filter [20], [22]; ii)
an automatic procedure for detecting speckle standard deviation (sigma) from processed
data; iii) a convergence criterion to stop the iterative filtering scheme; and iv) an automatic
procedure for detecting histogram peaks as a function of speckle standard deviation. The
first limitation of this procedure is that it relies heavily on the feature-preserving proper-
ties of its speckle filter. The second limitation is that it is incapable of detecting classes
whose grey levels fall within a two-sigma range of the larger (more frequent) classes in
the histogram (equivalent to histogram local maxima). This is tantamount to saying that
this histogram-based method guarantees acceptable performances iff the image of interest
depicts few well-separated (uniformly distributed) surface classes in the radiance domain.

The second category of SAR image segmentation systems found in the literature employs
a SAR contour detector incorporating a speckle model without any prior filtering, followed by
a speckle model-free segmentation stage [6], [7]. The CFAR edge detector, proposed in [28],
is a well-known example of speckle model-based contour detector employed for segmentation
purposes [6], [7], [24].

Since speckle contour detection principles are included in adaptive speckle filters (see
Section 3), we consider the first class of SAR image segmentation algorithms, where an
adaptive speckle filter is employed, as a subset of the second class of SAR image segmen-
tation algorithms centered on speckle contour detection. As a consequence, the rest of
this paper is focused on the analysis of SAR image segmentation systems exploiting a con-
tour detector as their first stage. Additional observations may support this decision. With
regard to computation time, edge detection methods are intrinsically parallel processes.
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Moreover, design of local filters for edge detection features a strong theoretical foundation
in signal processing theory and statistical analysis [29]-[32]. Finally, neurophysiology may
provide useful information on how the mammalian Primary Visual Cortex (PVC) employs
multi-scale filter banks in low-level vision [33]-[43]. This scenario is consistent with the
multidisciplinary effort urged to develop the new science of complex systems [44].

It is to be observed that several segmentation algorithms presented in the literature to
provide solutions that are statistically sound according to Bayes’ rule do not satisfy the
requirements of our SAR image segmentation task. In these algorithms a MAP estimate
of a labeling solution, given the (noise-affected) observables, employs a Markov Random
Field (MRF) model to capture known stochastic components of the labeled scene [12], [45],
[46]. A MRF model by itself is not very useful, unless we provide a good model for class-
conditional density (representing the degree to which the model of a class fits the data)
[46]. For example, the class-conditional likelihood can be modeled as either a uniform or
a slowly varying intensity affected by additive Gaussian noise [45], [46]. In these two cases
parameters required to be known or estimated prior to segmentation are: the number of
surface categories, their uniform intensity value (to be locally adapted during processing
in [46]) and the standard deviation of additive Gaussian noise. Thus, these algorithms
satisfy neither the multiplicative speckle model hypothesis nor our unsupervised learning
requirements (see Section 1). Another class of MRF segmentation algorithms employs a
textured region model for class-conditional likelihood. Since this approach is applicable
only to noise-free textured images formed by known textures [45], it does not satisfy our
unsupervised learning requirements either.

4.1 Assessment of the CFAR-based segmentation scheme

The hybrid segmentation procedure employed in [6] and [7] for classification purposes and
in [24] for filtering purposes is fully automatic and based on the well-known, speckle model-
based CFAR edge detector [28] (see Section 3). According to these observations the CFAR-
based hybrid segmentation scheme is selected as a significant example in the class of SAR
image segmentation systems based on contour detection. The selected segmentation scheme
is tested on three coherent images acquired by different SAR sensors and featuring different
contents of the scene. To assess how well the segmentation procedure fits the final goal
of our treatment, i.e., segmentation for classification, we can only inspect the segmented
output image qualitatively (see Section 7.1 for more details). On the other hand, in line
with [24], the region-based GGMAP speckle filtering stage is applied in cascade to the
segmentation block to assess how well the same CFAR-based segmentation scheme performs
in a processing framework different from classification such as speckle filtering.

The scheme of CFAR is shown in Appendix 1 while its basic principles are summarized
below [28]:
e In line with [18], the pdf of the speckled observed intensity for a homogeneous natural ex-
tended target is assumed to be equal to a Gamma distribution (rather than a K-distribution,
see Section 2).
e A battery of (odd-symmetric) difference of boxes operators featuring increasing size win-
dows (3 x 3,5 x5, 7x 7,9 x9) and four different orientations (0, 45, 90 and 135°) are
employed to compute the oriented image gradient. It is known that difference of boxes



operators are optimal step edge detectors [47]. This implies that CFAR is not designed to
optimally detect other image structures such as roofs and ramp edges [24], [40], [42].

e The activation function of each (difference of boxes) operator is defined as the minimum
ratio between the two absolute values computed by convolving the image with the two
opposite sides of the odd-symmetric filter. Thus, each activation value is a ratio (similarity)
measure computed as a relative number, i.e., belonging to range (0,1): when the similarity
measure is equal to one, then contrast (gradient) detected across the filter axis is zero, and
vice versa.

o At a given resolution level, each oriented filter, centered on the pixel of interest, provides a
ratio (similarity) measure to be compared with a scale-dependent theoretical ratio threshold
based on the assumption that the speckled signal is homogeneous on the two opposite sides of
the filter receptive field. If the filter activation value is below the theoretical ratio threshold
(i.e., if the detected contrast is above a theoretical contrast threshold), then the central
pixel is considered as belonging to an edge.

4.1.1 ERS-1 image

A spaceborn 3-look ERS-1 Precision Image (PRI), C-band, VV polarized, 512 x 512 pixels
in size, with a pixel size of 12.5 x 12.5 meters, acquired November 14, 1992 (© ESA
1992), showing ice floes in the Bellingshausen Sea (Antarctica), is depicted in Fig. 1. The
ENL value, providing a quantitative evaluation of the degree of speckle smoothing, was
extracted from the image in Fig. 1 by exploiting the average of the ten smallest coefficient of
variation values computed from local areas 9 x 9 pixels in size [22]. This automatic estimate
provided an ENL value equal to 2.9. Fig. 2 shows contour pixels detected according to
[28]. Fig. 3 shows the perimeters of the connected segments extracted from Fig. 2. Fig.
3, featuring 139-374 segments (where each contour pixel found in Fig. 2 is considered as a
segment on its own), is clearly oversegmented for classification purposes. Fig. 4, featuring
ENL = 73, shows the result of the region-based GGMAP speckle filtering. The filtered
image is satisfactory both in terms of speckle noise removal and qualitative preservation of
small structures. In other words, segmentation shown in Fig. 2 seems adequate when the
final goal is speckle filtering, despite its inadequacy for classification purposes.

4.1.2 E-SAR image

An airborne 8-look E-SAR (Experimental SAR) image featuring 490 x 724 pixels in size
and spatial resolution of 4.5 x 4.5 meters (Courtesy DLR-Germany) is shown in Fig. 5,
where urban, agricultural and forest areas located around the airport of Oberpfaffenhofen,
Germany, can be detected by the photointerpreter. Note that city areas are depicted as
ordered textures, i.e., they consist of texels that can be either uniform or non-uniform in
terms of size, orientation and density [48]. On the other hand, woodlands are depicted as
disordered textures, i.e., they feature no texel, and should be investigated by a statistical
model since they lack structure [48]. The EN L value extracted from this image is 16.7. Fig.
6 shows contour pixels detected according to [28]. Note that in both ordered and disordered
textures (city areas and woodlands respectively) many contours are detected. Moreover,
in line with theoretical failure modes of the algorithm (see Section 4.1), ramp edges and
step edges featuring low contrast, e.g., between agricultural fields, are not detected in many

vi



Figure 1: 3-look ERS-1 SAR image of the Bellingshausen Sea (Antarctica).



Figure 2: Contours of structural features detected by the speckle-based edge detectors.
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Figure 3: Segment boundaries extracted from non-connected contours shown in Fig. 2.
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Figure 4: Region-based GGMAP speckle filter exploiting segments shown in Fig. 3.



Figure 5: 8-look E-SAR image of the Oberpfaffenhofen area (Germany).

cases. Note that thin linear structures are properly detected instead. Fig. 7 shows the
perimeters of the connected segments extracted from Fig. 6. Fig. 7, featuring 142:055
segments (where each contour pixel found in Fig. 6 is considered as a segment on its own),
is clearly oversegmented for classification purposes. Fig. 8, featuring ENL = 800, shows
the result of region-based GGMAP speckle filtering [24]. The filtered image is satisfactory
both in terms of speckle noise removal and qualitative preservation of small structures.
We conclude that, in line with the previous example where a spaceborne SAR image was
processed, in this airborne SAR image example the segmentation process is considered
inadequate for classification purposes, although it is effective in the framework of speckle
filtering.

4.1.3 C-SAR image

An airborne 6 meter spatial resolution, 7-look, C-SAR ((© Canada Center for Remote
Sensing 1987) image of the area around Thetford (UK), acquired during the Agriscatt 87
Experiment campaign, 400 x 400 pixels in size is shown in Fig. 9. Urban, agricultural and
forest areas can be recognized. The ENL value extracted from this image is 6.6. Fig. 10
shows contour pixels detected according to [28]. Note that in both ordered and disordered
textures (city areas and woodlands respectively) many contours are detected. Moreover, in
line with the previous airborne image example, ramp edges and step edges featuring low
contrast, e.g., between agricultural fields, are not detected in many cases. Detection of
thin linear structures seems satisfactory. Fig. 11 shows the perimeters of the connected
segments extracted from Fig. 10. Fig. 11, featuring 60 786 segments (where each contour
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Figure 8: Region-based GGMAP speckle filter exploiting segments shown in Fig. 7.

pixel found in Fig. 10 is considered as a segment on its own), is clearly oversegmented
for classification purposes. Fig. 12, featuring ENL = 370, shows the result of region-
based GGMAP speckle filtering [24]. The filtered image is satisfactory both in terms of
speckle noise removal and qualitative preservation of small structures. In line with the two
previous examples, segmentation considered inadequate for classification purposes proved
to be effective in speckle filtering.

5 Modifying the SAR image segmentation scheme

The hybrid segmentation algorithm employed in Section 4 shows that CFAR is sensitive to
edges that can be considered false edges in a classification framework. Moreover, CFAR
employs a complex hierarchy of edge thresholding decisions (see Appendix 1); therefore, it
is unreasonable to provide the end user with a non-automatic version of CFAR whose (four)
thresholds are user-defined interactively. Our idea is to provide the hybrid segmentation
scheme employed in Section 4 with a contour detector selected from the literature that
satisfies the following constraints: i) it is less affected than CFAR by false edges within
the framework of a segment-based SAR image classification task; and ii) its thresholding
strategy makes it easy to use.

xiii



UK).

(

SAR image of the Thetford area

look C-

Figure 9: 7

xiv



)1 L

e ? r:%
¥ -‘

+r

Figure 10: Contours of structural features detected by the speckle-based edge detectors.
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connected contours shown in Fig. 10.

Figure 11: Segment boundaries extracted from non-
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Figure 12: Region-based GGMAP speckle filter exploiting segments shown in Fig. 11.
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5.1 A review of contour detectors

Some basic concepts involved with edge detection methods found in the literature are briefly
reviewed. In [47], odd-symmetric edge detectors and even-symmetric ridge detectors were
developed to optimize signal-to-noise ratio and localization criteria. The difference of boxes
operator, which is incidentally employed in RGGMAP and CFAR (see Sections 3 and 4.1
respectively), was considered to be optimal for detecting step edges. However, due to its
very large bandwidth, this operator features very marked effects for large operator sizes;
therefore, substitution of this operator with an odd-symmetric filter featuring limited band-
width (e.g., first derivative of a Gaussian) is recommended [47]. In [47] no effective solution
for combining detection properties of step edge and ridge operators was found. In computer
vision literature, contour and texture detectors employ even- and odd-symmetric filters ei-
ther computed as quadrature pairs [29], [30], [40], [49], or as complex Gabor functions [42],
[48], [50], [51]. It is known that Gabor functions provide band-pass filters working in a
joint space/spatial-frequency domain (such that a Gaussian frequency window band-passes
the spatial-frequency content of an image area localized by a Gaussian data window sliding
across the 2-D spatial domain). An important development has been proposed in [40] and
[49], where the two outputs of an even- and odd-symmetric filter pair are combined by a
nonlinear Phytagorean sum to compute local energy, which has proved to be an optimal
measure with respect to a variety of edge types (step edges, ridges, ramps, roofs). This com-
bination has led to the development of image processing algorithms combining responses of
even- and odd-symmetric filter pairs to detect contours of structural elements (step edges,
ridges, ramps, roofs) at high resolution scales [29], [30], [40], and texture transitions at lower
spatial resolutions [48], [50], [61]. In [42], the contour detector is capable of processing both
monochromatic and multi-spectral images and is, therefore, termed Chromatic and Achro-
matic Contour Detector (CACD). For each pixel of interest CACD applies a battery of
oriented operators working at two spatial scales (separated by one octave in the frequency
domain; possible filter sizes are, in pixel units, 3, 7, 13, 25 etc.). Operators are odd- and
even-symmetric filter pairs defined, respectively, as the imaginary and real part of a “zero dc
component” complex Gabor function (i.e., featuring zero output to constant input). Every
odd- and even-symmetric filter computes an activation value belonging to range (0,1) and
is proportional, respectively, to the oriented first (contrast) and second derivative (change
of contrast) of image intensity (in case of multi-spectral images, this activation value is
actually a combination of a chromatic color contrast term with an achromatic color con-
trast component). Next, activation values of each pair of odd- and even-symmetric filters
are combined by a nonlinear Phytagorean sum to compute a local energy term as a real
number in range (0,1). Finally, CACD employs a coupling mechanism among energy terms.
In particular, it adopts a competitive mechanism among filter pairs featuring: i) different
orientations, but the same size (cross-orientation inhibition, [49]); and ii) the same orien-
tation, but different sizes. It is to be noted that CACD analyzes the continuous values of
the second derivative of image intensity to perform consistently with the psychophysical
phenomenon of Mach bands' in detecting ramps and roofs [40]. This result is not obvious
insofar as in the literature many contour detection algorithms simply detect those points

!Where a luminance (radiance, intensity) ramp meets a plateau, there are spikes of brightness (perceived
luminance), although there is no discontinuity in the luminance profile.
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where the second derivative of image intensity is equal to zero (i.e., where the first derivative
presents a local maximum) [31], [47].

The first conclusion emerging from this brief review of contour detectors is that the com-
bination of even- and odd-symmetric filters working at different scales of analysis, rather
than their separate processing, is fundamental in detecting image structures as well as tex-
ture boundaries [24]. The second observation is that speckle model-based CFAR employs
a completely generic filter bank consisting of odd-symmetric (difference of boxes) filters to
compute the oriented first derivative of image intensity. What is domain-specific in CFAR is
its scale-dependent, hierarchical thresholding strategy, where a priori (background) knowl-
edge on speckled radiance is introduced to compute theoretical similarity (contrast) thresh-
olds below (above) which the presence of a step edge is detected by a difference of boxes
operator.

5.2 Assessment of the CACD-based segmentation scheme

Owing to its interesting functional properties, we intend to verify whether CACD is less
sensitive than CFAR to the presence of false edges in the framework of a segment-based
SAR image classification task. The segmentation approach that exploits CACD as its first
processing block is the same as that employed in Section 4 [6], [7], [24]. In our experiments
the two resolution levels of the local filters employed by CACD are selected equal to 13 and
25 pixels respectively.

5.2.1 ERS-1 image

Fig. 13 shows the output contour image generated by CACD when Fig. 1 is processed
and a user-defined Contrast Threshold, Cryy, is properly selected as a relative number in
range (0,1) (in this example, Cry = 0.09). Fig. 14 shows the perimeters of the connected
segments extracted from Fig. 13. Fig. 14, featuring 20°348 segments (where each contour
pixel found in Fig. 13 is considered as a segment on its own), is less fragmented than
Fig. 3, but it is still affected by artifacts and is clearly oversegmented for classification
purposes. Fig. 15, featuring EN L = 195, shows the result of region-based GGMAP speckle
filtering [24]. When compared to Fig. 4, Fig. 15 shows that some thin/small image details
are removed or blurred; thus, a refinement in the strategy employed by CACD to combine
multi-scale filter signals is recommended. This new strategy should also improve CACD
performance in detecting T- and X-junctions. Nonetheless, Fig. 14 appears to be more
feasible than Fig. 3 for classification purposes. In terms of computation time, the use of
CACD in place of CFAR allows a significant reduction (= 85%) in the number of segments
to be further reduced by time-consuming region growing blocks employed in cascade.

5.2.2 E-SAR image

Fig. 16 shows the output contour image generated by CACD when Fig. 5 is processed
and Crpy is set to 0.02. Owing to its combination of odd- and even-symmetric filter pair
signals, CACD is effective in detecting ramp edges and low contrast step edges between
agricultural fields. On the other hand, thin linear structures are not extracted properly.
The attempt at running a CACD version employing filter sizes equal to 3 and 6 pixel units
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Figure 13: Contours of structural features detected by CACD.
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Figure 14: Segment boundaries extracted from non-connected contours shown in Fig. 13.
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Figure 15: Region-based GGMAP speckle filter exploiting segments shown in Fig. 14.
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Figure 16: Contours of structural features detected by CACD (filter sizes: 13, 25).

would not solve this problem, as shown in Fig. 17, where Crp is set to 0.02. Fig. 18 shows
the perimeters of the connected segments extracted from Fig. 16. Fig. 18, featuring 63 534
segments (where each contour pixel found in Fig. 16 is considered as a segment on its own),
is less fragmented than Fig. 7, but it is still affected by artifacts and clearly oversegmented
for classification purposes. Fig. 19, featuring ENL = 1240, shows the result of region-
based GGMAP speckle filtering [24], where some thin/small image details are removed or
blurred. In line with the first spaceborne SAR image example, this airborne SAR image
case confirms that the strategy employed by CACD to combine multi-scale filter signals
must be improved. In terms of computation time, the use of CACD in place of CFAR
allows a significant reduction (= 55%) in the number of segments to be further reduced by
time-consuming region growing blocks employed in cascade.

5.2.3 C-SAR image

Fig. 20 shows the output contour image generated by CACD when Fig. 9 is processed and
Crpg is set to 0.06. Thin linear structures are not extracted properly. Fig. 21 shows the
perimeters of the connected segments extracted from Fig. 20. Fig. 21, featuring 21 844
segments (where each contour pixel found in Fig. 20 is considered as a segment on its own),
although less fragmented than Fig. 11, is still affected by artifacts and clearly oversegmented
for classification purposes. Fig. 22, featuring EN L = 1150, shows the result of region-based
GGMAP speckle filtering [24], where some thin/small image details are removed or blurred.
In line with the previous test cases, this airborne SAR example confirms that the strategy
employed by CACD in combining multi-scale filter signals must be improved. In terms of
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Figure 18: Segment boundaries extracted from non-connected contours shown in Fig. 16.
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Figure 19: Region-based GGMAP speckle filter exploiting segments shown in Fig. 18.

computation time, the use of CACD in place of CFAR allows a significant reduction (~ 77%)
in the number of segments to be further reduced by time-consuming region growing blocks
employed in cascade.

6 Implementing a SAR image segmentation scheme

Within the hybrid segmentation scheme proposed in [6], [7], [24], CFAR exploits prior
knowledge concerning speckle and is fully automatic, but it generates images that are over-
segmented for classification purposes. Besides, a non-automatic version of CFAR is not
conceivable, as it would require the end user to fine-tune a complex hierarchy of decisions
regarding edge thresholding. On the other hand, CACD employs no prior information about
the data source and is easy to use, requiring the user to select only one threshold as a rel-
ative number. In the framework of a SAR image classification task, substitution of CFAR
with CACD has been seen to reduce oversegmentation phenomena, although small spatial
details are lost, especially at airborne SAR resolution. Our proposal is to employ CACD as
the core of a speckle model-free SAR image segmentation scheme that takes its inspiration
from the SAR filtering procedure proposed in [24]. Since artifacts generated when segments
are extracted from non-connected contours are not acceptable in a classification framework
(while they are more acceptable when speckle filtering is the final goal of the treatment, see
Figs. 4, 8, 12), region merging blocks capable of eliminating artifacts must be added to the
basic segmentation scheme proposed in [6], [7], [24]. Incidentally, since CACD works on both
monochromatic and multi-spectral optical images, we propose a unified framework capable
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Figure 20: Contours of structural features detected by CACD.
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Figure 21: Segment boundaries extracted from non-connected contours shown in Fig. 20.
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Figure 22: Region-based GGMAP speckle filter exploiting segments shown in Fig. 21.

xxviii



of segmenting: i) incoherent (optical) or coherent (SAR) images; and ii) multi-spectral or
monochromatic images.

To reduce oversegmentation, a variety of segment-merging approaches can be found in
the literature [9], [52]-[56]. Basically, these methods are based on: i) heuristic segmen-
tation criteria, i.e., they do not minimize any known objective function; and ii) merging
constraints exploiting segment-based information such as: a) topology (e.g., adjacency be-
tween segments); b) shape; c) size; d) within-segment nth-order statistics, where 7 is not
larger than 3, to try to capture segment-based textural properties [42], [57]-[59]; and e)
segment boundary conditions [60].

We make up a region growing procedure by selecting two algorithms from the literature:
i) the Low Contrast Segmentation (LCS) algorithm, exploiting local statistics to detect
segments featuring smooth within-segment contrast [53], [54]; and ii) a self-organizing clus-
tering neural network to detect global image properties as statistical regularities in within-
segment statistics [58], [61], [62].

From the user point of view the interesting property of these two algorithms is that
they both need one single parameter to run (actually, the neural network also requires a
threshold on the maximum number of training epochs which can be set by the application
developer). Both parameters consist of an inter-segment similarity threshold equivalent to a
relative number belonging to range (0,1). For implementation details refer to the literature.

7 Segmentation results

The complete segmentation scheme proposed in Section 6 is tested on the three coherent
images processed in Section 5.2. The robustness of the segmentation method is assessed by
changing only one parameter of the procedure in the different experiments. This parameter
is contrast threshold Cry € (0,1) required by CACD. This also implies that the similarity
threshold employed by each of the two region growing stages (see Section 6) is fixed to a
conservative value: in our experiments, this similarity threshold is set equal to 0.7 for both
LCS and the clustering neural network.

Using the ERS-1 raw image shown in Fig. 1 and the segmented image shown in Fig.
14 as input, the proposed region growing procedure reduces the number of segments from
20348 to 16'811 (~ 17%). The segmented output image is shown in Fig. 23, where most
segment artifacts have been removed. Using the E-SAR raw image shown in Fig. 5 and the
segmented image shown in Fig. 18 as input, the proposed region growing procedure reduces
the number of segments from 63:534 to 35853 (=~ 43%). The segmented output image is
shown in Fig. 24. Using the C-SAR raw image shown Fig. 9 and the segmented image shown
in Fig. 21 as input, the proposed region growing procedure reduces the number of segments
from 21-844 to 13:860 (=~ 36%). The segmented output image is shown in Fig. 25. Final
segmentation results show that the proposed segmentation scheme must be significantly
improved, especially in its contour detection stage, to provide results comparable with
those of a human photointerpreter.
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Figure 23: Final segment boundaries obtained by merging segments shown in Fig. 14.
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Figure 24: Final segment boundaries obtained by merging segments shown in Fig. 18.

7.1 Quantitative segmentation assessment

To compare quantitatively the SAR segmentation scheme proposed in this paper with other
techniques found in the literature, it is important to stress that there is no single goal for
picture partition algorithms [63], [64]. Therefore, a system developed to compare segmen-
tation results must employ [63]: i) an entire set of measures of success (termed battery
test) to account for the fuzziness of perceptual segmentation; and ii) a test set of images
to allow exploitation of supervised data, i.e., of a priori knowledge about the objects in
a scene, so that the external environment provides the generic (vague) segmentation task
with an explicit goal. More efforts of the remote sensing community should be focused on
the definition of a standard battery test and test set of images. Up to now, these authors
have no expertise in developing a standard battery test and a set of test images [65], [66].

8 Conclusions

Our work started by observing that a standard SAR image segmentation procedure found
in the literature provides output images that are oversegmented for classification tasks.
This procedure is centered on a well-known speckle contour detector, termed CFAR, which
employs: i) odd-symmetric filters as step edge detectors, working independently at (four)
different spatial scales; ii) a competitive (coupling) mechanism among filters working at
the same scale but featuring different orientation; and iii) a hierarchy of scale-dependent
theoretical thresholds computed from background knowledge about speckled radiance. To
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reduce oversegmentation phenomena, an alternative SAR image segmentation scheme, ex-
ploiting four processing blocks taken from the literature, has been proposed. The core
of this processing scheme is a speckle model-free contour detector, termed CACD, which
employs: i) simple cells as odd- and even-symmetric filter pairs; ii) complex cells comput-
ing the Pythagorean sum of simple cell outputs; iii) a competitive (coupling) mechanism
among complex cells featuring: a) different orientations, but the same size; and b) the
same orientation, but different sizes; and iv) a user-defined threshold defined as a relative
number. By changing its pair of resolution scales, CACD has shown abilities in detecting
image structures (edges, ramps, ridges, roofs) as well as texture transitions. Unfortunately
CACD does not provide a mechanism capable of effectively combining signals of complex
cells working at (uo to four) different spatial scales. For example, CACD loses small/thin
details in airborne SAR images while working at lower spatial resolutions.

Although inspired by the PVC module of the mammalian visual system, CACD is far
from being “biologically plausible” both at microscopic and macroscopic (system) levels.
From the macroscopic viewpoint, note that our basic idea of developing an artificial preat-
tentive visual architecture as an independent image processing system is inconsistent with
current knowledge of the mammalian visual system, for which there is evidence proving the
existence of a feed-back loop between the preattentive and the attentive visual stages [67].

Our current implementation of the SAR segmentation scheme requires only one user-
defined parameter to process different SAR images. This parameter is a contrast threshold
provided with a clear physical meaning and belonging to the normalized range (0,1). Thus,
the proposed segmentation scheme is easy to use.

The advantages of the CACD-based approach to SAR image segmentation are that: i)
for classification purposes, it reduces oversegmentation phenomena affecting standard SAR
image segmentation techniques based on CFAR; as a consequence, it also reduces processing
time required to run region growing techniques employed in cascade to eliminate artifacts;
ii) the same segmentation scheme can be employed to segment SAR images as well as
monochromatic and multi-spectral incoherent imagery; and iii) multidisciplinary knowledge
(stemming from neurophysiology, psychophysics, computer vision and image processing [44])
can be employed to improve the processing scheme.

The limitations of the CACD-based approach to SAR image segmentation are that:
i) small/thin details are lost in airborne SAR images; ii) T- and X-junctions are poorly
detected; and iii) region growing techniques are required to eliminate artifacts and reduce
oversegmentation. Despite these drawbacks, our qualitative interpretation of experimental
results is that the objective of developing a SAR segmentation process independent of
background knowledge on the data source is feasible. This interpretation encourages further
research focused on how low-level visual systems should combine responses of multi-scale
filter banks for detecting image structures and texture transitions preattentively, i.e., at
a single glance while no prior domain-specific knowledge about the data source and the
content of the scene is employed.

Appendix

The basic scheme of CFAR is the following:
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Input L = number of looks of the intensity SAR image;
for each increasing window size N;, 1 =1,...,4,
{

compute ratio (similarity) threshold T;(N;, L);

/¥ T1 < .... < Ty, ie., threshold becomes

less restrictive as window size increases;

moreover, T; increases if L increases*/

}

for each pixel P

{
Edge(P) = FALSE;

for each window of increasing size 1 = 1, ..., 4,

{

for each orientation j=1,...,4,

{
}

T; = arg min;—i,. 4 {Ti,j};
if(’l‘i < Tz)

{

compute ratio (similarity) value r; ;;

Edge(P) = TRUE;
break;

/* skip iterations on window size */
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