INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. ® Suite 600 ® Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

Scatter-partitioning RBF network
for function regression and image
segmentation: Preliminary results

Andrea Baraldi*
TR-98-017 |

June 1998

Abstract. Scatter-partitioning Radial Basis Function (RBF) networks increase their num-
ber of degrees of freedom with the complexity of an input-output mapping to be estimated
on the basis of a supervised training data set. Due to its superior expressive power a
scatter-partitioning Gaussian RBF (GRBF) model, termed Supervised Growing Neural Gas
(SGNG), is selected from the literature. SGNG employs a one-stage error-driven learning
strategy and is capable of generating and removing both hidden units and synaptic connec-
tions. A slightly modified SGNG version is tested as a function estimator when the training
surface to be fitted is an image, i.e., a 2-D signal whose size is finite. The relationship
between the generation, by the learning system, of disjointed maps of hidden units and
the presence, in the image, of pictorially homogeneous subsets (segments) is investigated.
Unfortunately, the examined SGNG version performs poorly both as function estimator and
image segmenter. This may be due to an intrinsic inadequacy of the one-stage error-driven
learning strategy to adjust structural parameters and output weights simultaneously but
consistently. In the framework of RBF networks, further studies should investigate the com-
bination of two-stage error-driven learning strategies with synapse generation and removal
criteria.

Keywords: RBF networks, supervised and unsupervised learning from data, prototype
vectors, synaptic links, Gestaltist theory, image segmentation, low-level vision.

*ICSI, 1947 Center Street, Suite 600, Berkeley, CA 94704-1198, Email: baraldi@icsi.berkeley.edu

tInternal report of the paper entitled “Image segmentation with scatter-partitioning RBF networks: A
feasibility study,” to be presented at the conference Applications and Science of Neural Networks, Fuzzy
Systems, and Evolutionary Computation, part of SPIE’s International Symposium on Optical Science, En-
gineering and Instrumentation, 19-24 July 1998, San Diego, CA.

1 Introduction

A Radial Basis Function (RBF) network consists of a hidden layer of neural units plus an
output layer where linear combinations of activations provided by the hidden units form the
network outputs. Among possible RBFs, the Gaussian function, g(-), is preferred due to
the fact that it is localized and factorizable [1]. When the Gaussian Radial Basis Function
(GRBF) is adopted, the approximating function provided by the GRBF network is

§(x) = 2ng<x;uj,aj>. W)

In Eq. (1), the following adjustable parameters, related to the hidden layer, are termed
structural parameters: the number ¢ of hidden units (also termed mixture components
or basis functions), positions (templates or prototype vectors) yu; and covariances oj, j =
1,...,c, of the GRBFs. Related to the output layer, parameters wj, 7 = 1,..., ¢, are termed
output weights.

In both classification and function regression tasks, the role of RBF networks is to obtain
good predictions for unobserved data by optimizing the values of the network adjustable
parameters on the basis of a data set of observed input-output examples. This parameter
adaptation process is called learning from data. For the class of RBF networks the learning
task is typically implemented as a two-stage procedure, termed hybrid learning [2]. A hybrid
learning algorithm combines unsupervised with supervised learning as described below. In
the first stage, an unsupervised learning method adjusts the structural parameters of the
RBF network on the basis of the density of the input vectors exclusively, i.e., without em-
ploying the input-output examples of the supervised training set. Unsupervised adaptation
of the network parameters is also termed (input) data-driven learning. Once that structural
parameters are set, the second stage of the hybrid learning scheme employs a supervised
learning method to adjust the weights of the output layer on the basis of the supervised
training set. Supervised adaptation of the network parameters is also termed error-driven
learning.

RBF networks employing a hybrid learning procedure feature the following interesting
properties: i) they employ simple architectures to perform complex mappings; ii) they train
faster than multi layer perceptrons; iii) they may be particularly attractive for applications
where input patterns are readily available but input-output sample pairs are difficult to be
gathered; iv) they are easily interpretable when they employ RBFs that are well localized
[1]; and v) the use of unsupervised learning methods can be quite successful in practice
when the input distribution is highly nonuniform [3].

Disadvantages include: i) many unsupervised techniques require some parameters of
the hidden layer be fixed in advance, typically the number of hidden units; and ii) the
distribution of RBF's in the input space as it is computed by the unsupervised technique
may be poor for the classification or regression problem at hand, e.g., unsupervised methods
may form clusters of input vectors that are closely spaced in the input space but belong
to different classes [1], [4]-[6]. This is tantamount to saying that in practical applications
where RBF networks based on hybrid learning techniques are involved, if the number of
hidden units (i.e., the number of adjustable parameters) is increased by the user, there is
no guarantee of improving the system’s performance on a test set, consisting of unobserved

ii

examples, because the unsupervised algorithm may locate basis functions in regions of the
input space where they are either useless or harmful for implementing the desired input-
output mapping [6].

To overcome this limitation, growing RBF networks based on error-driven learning tech-
niques have been recently proposed in the literature [6]-[9]. In these systems localized basis
functions are selectively positioned at those locations of the input space where it is difficult
to approximate the target input-output mapping at the desired level of precision.

Growing RBF networks employ either scatter- [6]-[8], or grid-partitioning mechanisms
[9], such that the input space is covered with localized basis functions, also termed small
patches [4], or data windows [10]. Unlike grid-partitioning systems, scatter-partitioning
systems position small patches at locations which are not known a priori. Among scatter-
partitioning RBF networks, those proposed by Karayiannis and Fritzke employ learning
strategies whose properties are complementary: Karayiannis’ learning is two-stage, error-
driven, and batch, while Fritzke’s method, termed Supervised Growing Neural Gas (SGNG),
adopts a one-stage, error-driven, on-line learning mechanism. One-stage learning referred
to RBF networks means that structural parameters and output weights are trained simul-
taneously (in parallel).

The different attributes of the learning strategies adopted by the Karayiannis and SGNG
algorithms reflect a difference in properties of their supervised training sets. In batch
learning parameters are estimated once for every processing epoch, i.e., on the basis of the
full training data set. This implies that batch learning can be employed only when the
data set of observed examples is finite and small [11]. On the contrary, in on-line learning
a steady (infinite) stream of data is assumed to be presented to the system; in this case, it
may be that the input-output distribution is non-stationary, i.e., it may change with time,
so that specific rules for relocating basis functions within the input space are enforced [12].

Additional major differences between SGNG and the Karayannis growing system are
that: i) while Karayannis’ system is incremental, i.e., the number of hidden units increases
monotonically, SGNG may generate as well as delete hidden units dynamically; ii) by adopt-
ing the Competitive Hebbian Rule (CHR) [13], SGNG is capable of generating synaptic links
between pairs of hidden units (intra-layer connections); and iii) according to a heuristic,
SGNG may also remove synaptic links. This means that, from a theoretical point of view,
the expressive power of the SGNG model is superior to that of the Karayannis growing
system.

To the best of our knowledge, performances of these two systems reported in the lit-
erature regard classification tasks exclusively, i.e., no application to function regression
problems has been described.

In this paper we discuss the application of a slightly modified version of SGNG to
approximate images, which are 2-D signals. In the mammalian low-level visual system an
image is partitioned into segments that are perceived as pictorially uniform [14]. The goal
of this paper is to assess the ability of SGNG to approximate images while generating maps
of hidden units somehow correlated to image segments considered uniform by a human
photointerpreter. If this correlation exists, then the image segmentation problem would be
addressed in a way that is new and interesting within the framework of complex system
development.

The paper is organized as follows: first, the Karayannis and SGNG learning methods

iii

are summarized and the CHR criterion is presented. Next, an adaptation of CHR is pro-
posed. Finally, experimental results obtained by applying SGNG to a test set of images are
presented and discussed.

2 Scatter-partitioning RBF networks

In this section brief descriptions of the Karayiannis growing RBF network and SGNG
algorithm are provided.

2.1 Karayiannis’ learning scheme

For classification tasks, Karayiannis employs a GRBF network and a two-stage learning
scheme where both learning stages, applied to the hidden and output layer respectively, are
batch and error-driven. The Karayiannis learning scheme is presented below [6]:

1. Set ¢ = 2. Initialize prototypes uj, j = 1,...,c.

2. First learning stage.

(a)

For all the training data, update prototypes uj, j = 1,...,c, by means of a
batch error-driven adaptation strategy (e.g., gradient descent of a cost function
computed as the sum of class-conditional variances over all output classes and
all the hidden units).

For fixed prototypes pj, 7 = 1,...,c, and for all the training data, update the
spread parameters oj, j = 1,...,¢, by means of a batch error-driven adaptation
strategy (e.g., gradient descent of a cost function computed as the sum of class-
conditional variances over all output classes and all the hidden units).

3. Second learning stage.

(a)
(b)

Initialize the weights of the output layer.

For fixed prototypes and spread parameters, (uj,03), j = 1,...,¢, and for all
the training data, update the weights of the output layer by means of a batch
error-driven technique (e.g., gradient descent of the output sum-of-squares error).
Note that Steps 2(a) to 3(b) form a so-called growing cycle.

If a stopping criterion is satisfied, then stop. This stopping criterion detects
overfitting as follows: after each growing cycle, a training and a testing error are
computed and recorded. If the testing error does not decrease after a sufficient
number of growing cycles, then the training is terminated while the network that
resulted in the smallest error on the testing set is considered as the final product
of the learning process. This is tantamount to saying that the proposed GRBF
learning algorithm employs a back-tracking strategy to avoid overfitting. If the
stopping criterion is not satisfied, then:

v

(d) Split one of the existing prototypes according to a supervised splitting crite-
rion. For example, after presentation of the whole input data set (i.e., after one
processing epoch), split the unit responsible of the highest number of misclassi-
fied patterns (note that before this step both structural parameters and output
weights of the network are set).

(e) Set ¢ =c+1 and go to Step 2(a).

For each unit insertion the growing cycle, described by Steps 2(a) to 3(b), is repeated
until convergence is reached. This procedure is computationally intensive, its computation
time increasing as O(c - n), where c is the size of the hidden layer and n is the size of the
training data set.

2.2

SGNG learning scheme

For both classification and function regression tasks, SGNG employs a one-stage learning
scheme where parameters in both the hidden and the output layer are trained simultane-
ously according to an on-line and error-driven (supervised) adaptation strategy. SGNG
employs CHR to generate intra-layer connections. It has been proved that CHR guarantees
topological preserving mapping [13]. The SGNG algorithm is presented below:

1.

2.

Set ¢ = 2. Initialize prototypes u; and output weights w;, j =1,...,c.

Select at random an input-output vector pair from the supervised training set.

. Determine the winner, w; € {1,c}, and the second-nearest unit, wy € {1,c}, as the

pair of hidden units featuring, respectively, the nearest and the second-nearest proto-
type to the input vector. If this inter-pattern distance is measured as the Euclidean

distance, then receptive fields centered on prototype vectors are equivalent to Voronoi
polyhedra [4], [13], [15].

. According to CHR, if a synaptic link between units w; and w9, identified as sy w,,

does not exist already, create it. Set (or reset) to zero the synaptic link-based local
counter ages,, ., which is the age of synaptic link sy, ,. It is important to stress
that synaptic links generated by CHR belong to an output graph or network of neural
units; both synapses and neural units can be projected back onto the input space as
a set of template vectors and inter-template connections [13].

. Move prototype pw, toward the input pattern by a quantity equal to learning rate ¢,

times the Euclidean distance between template pw, and the input vector.

. The prototype of every hidden unit connected to the winner is moved toward the input

pattern by a quantity equal to learning rate ¢, times the Euclidean distance between
that prototype vector and the input vector (where €, << €,).

. Increase by one the age of all synapses in the network of hidden units.

. Remove all synapses whose age is above threshold age, maz. If this results in units

having no more emanating connection, then remove these hidden units as well.

9. If the number of input presentations is a multiple of parameter A (equivalent to a
number of processing steps), then split the hidden unit selected as the one featuring
the highest value of its neuron-based (local) error counter (for more details about this
splitting criterion, refer to the literature) [7], [8]. The output weights of the generated
unit are initialized. Note that this neuron insertion policy allows the function esti-
mator to average over the noise on the data (i.e., one noisy pattern, e.g., an outlier,
which is poorly mapped does not cause a unit insertion), despite the fact that the
learning strategy is on-line (i.e., although the network immediately reacts to an input
presentation through parameter adaptation).

10. Decrease by a constant fraction, S (e.g., 8 = 0.02), the local error counter of all
neurons, so that errors related to more recent signals are weighted stronger than
previous ones.

11. In the input space, compute the spread parameters oj, 7 = 1,...,c, as the mean
euclidean length of all connections emanating from each prototype.

12. Compute the actual output of the GRBF network according to Eq. (1).

13. Compute the squared error between the actual output of the GRBF network and the
desired (supervised) output.

14. Update the output weights of the GRBF network according to the delta rule, i.e.,
according to stochastic (on-line) gradient descent of the output squared error.

15. In function regression, add the computed output squared error to the local error
counter of winner unit wy, as each input vector is represented by its winner unit
which provides the prototype nearest to the input pattern. In a classification task,
the local error counter of the winner unit is increased by one if the input pattern is
misclassified.

16. If a stopping criterion is met (e.g., network size is equal to user-defined parameter
Cmaz) then stop; otherwise go to Step 2.

Note that SGNG requires six user-defined parameters to run: €4, €, A, 3, ¢maz, 49€s maz-
The computational complexity of the algorithm increases as O(cnazA), i-e., SGNG increases
its computation time with the size of the network rather than with the size of the training
set.

3 Constrained CHR based on perceptual grouping

The Gestaltist theory has long ago revealed the existence of innate perceptual mechanisms
capable of organizing visual stimuli (observations) into perceived objects which are sep-
arated from their background [16]. For our purpose the problem of perceptual grouping
can be described by considering the set of points shown in Fig. 1, hereafter referred to
as Simpson’s data set, consisting of 24 vectors [17]. Typically, different human observers
would provide different partitions of the Simpson data set. This means that perceptual
grouping is an ill-posed problem which allows different (subjective) solutions depending on

vi

the state of (subjective) prior world knowledge. This view is consistent with a Bayesian
interpretation of the grouping percept. The difficulty, of course, is in specifying the prior
world knowledge; some of it relates to low level visual processing based on obervations about
intensity, color and texture features, but some of it also relates to higher processing levels
involving symmetries of objects or object models [18].

Let us consider the GNG clustering algorithm, which is the unsupervised version of
SGNG. GNG differs from the SGNG procedure described in Section 2.2 as follows: Steps
11 to 14 must be removed, while in Step 15 the computation of the supervised output
squared error must be substituted with the computation of the input requantization error.
The requantization error can be computed as the squared Euclidean distance between the
current input pattern and the prototype vector of the winner unit (for more details, refer
to the literature) [7], [8]. If parameter cpq. is set to 24 (equal to the number of input
patterns) and GNG is input with the data set shown in Fig. 1, then Fig. 2 is generated
when convergence is reached. In Fig. 2, lines represent projections back onto the 2-D input
space of connections linking neural units belonging to the output network, while squares
depict the prototype vectors, equivalent to receptive field centers. Note that, in line with
theoretical expectations, each prototype coincides with one separate input pattern. Fig. 2
clearly shows that GNG provided with CHR generates disjointed maps of prototypes that
are not consistent with the results of perceptual grouping by a human observer. This is
particularly evident for the point approximately located at the center of Fig. 1: this point
is perceived as a cluster on its own by a human observer, while its matching prototype is
linked to another group of prototype vectors in the clustering result depicted in Fig. 2.

To increase its consistency with perceptual grouping mechanisms, CHR is modified as
suggested below. For a given input pattern, determine the winner unit, w; € {1,c}, and
the second-nearest unit, we € {1,c}, as those units featuring, respectively, the nearest and
the second-nearest prototype to the input vector. If a synaptic link between units w; and
W2, Sw;,wy, Whose length in the input space is identified as lsy; «,, does not exist already,
then consider /sy, min as the length of the shortest connection currently emanating from
prototype p,, in the input space, and Is., min as the corresponding length value related
to prototype piy,. If neural unit w; is currently isolated (i.e., there is no synaptic link
emanating from it), then set ISy, min — o0. Analogously, if neural unit wy is isolated,
set Swymin — 00. If ISy, w, < k- min{lSw, min, Swy,min}, Where k > 1 is a user-defined
parameter, then: i) generate s, w,; ii) if ISy, wy < ISw;,min, remove all connections from
unit w; whose Euclidean length in the input space is bigger than k times ls,), ,; and iii) if
[Swyws < Swy,min, remove all connections from unit we whose Euclidean length in the input
space is bigger than k times Is,, w,. This is tantamount to saying that the ratio between
the length of the longest and shortest connection emanating from any template must always
be < k. This connection generation policy is termed Constrained CHR (CCHR) [19]. When
CCHR is adopted, slightly modified versions of GNG and SGNG must be developed, such
that a new criterion for removing processing units replaces that described at Step 8 in
Section 2.2. QOur choice is to employ the following heuristic. At any processing step, a
neuron-based age attribute, age;, j = 1,...,¢, is set to zero for the winner, otherwise it is
increased by one. Next, all neural units whose age is above threshold age;, mq. are removed.

A GNG version that employs CCHR in place of CHR is applied to the Simpson data set
shown in Fig. 1. Input parameters are: A = 24 (i.e., equal to the number of separate input

vii

patterns), a9€s.max = 09€n maz = Cmaz = A, While parameter k is fixed equal to 1.2 and
1.6 respectively. In these two cases, after a few processing epochs, GNG generates Figs. 3
and 4 respectively. Although no single solution exists for the perceptual grouping problem,
Figs. 3 and 4 are consistent with human visual percepts.

4 SGNG as an image segmentation algorithm

A digitized image, which is to say a discrete 2-D signal, is a finite data set equivalent to a
surface defined on a 2-D input space. This means that exploitation of batch rather than on-
line learning algorithms should be recommended for finding an approximating surface that
provides the best fit to the image data points. On the other hand, CHR and CCHR may be
applied only to on-line learning frameworks. Since SGNG should be capable of adapting the
spread parameter of its hidden units on the basis of the localized spatial frequency content
of the image (i.e., more GRBFs are expected to be positioned in the input space where
the local spatial frequency content of the image increases), we expect that projections onto
the input space (i.e., between prototypes) of the connections generated between hidden
unit pairs may provide useful information for image segmentation, i.e., about the location
of image areas perceived as pictorially uniform by a human observer. To verify how well
SGNG performs as image segmenter we consider some synthetic images for testing.

It is known that contour pixels belong to: edges (step or ramp edges), ridges (e.g., a line
represents a narrow ridge), roofs, or to a combination of these structures [20]. These image
features are shown in Figs. 5 to 8, where images consist of 50 x 50 pixels. According to the
psychophysical phenomenon of the Mach bands, which is one of the best known brightness
illusions, when a luminance (radiance, intensity) ramp meets a plateau there is a spike of
brightness (i.e., perceived luminance), although there is continuity in the luminance profile
[20]. This phenomenon should be consistent with an ideal behavior of SGNG provided with
CCHR in approximating the surfaces depicted in Figs. 5 to 8. In this case, projections
onto the input space of maps of processing units generated by SGNG should look like those
depicted in Figs. 9 to 12.

5 Experimental results

SGNG provided with CCHR is run over images shown in Figs. 5 to 8. Input parameters
are: ¢, = 0.05, ¢ = 0.0005, A\ = 30 (i.e., during each processing epoch, consisting of
50 x 50 = 2500 patterns, up to 83 hidden units can be generated), agen maez = ag€smac =
2500, cmaz = 200, k = 1.6, processing epochs = 10. Approximated surfaces corresponding to
Figs. 5 to 8 are shown in Figs. 13 to 16 respectively. These results are largely unsatisfactory.
Corresponding SGNG-generated actual maps are shown in Figs. 17 to 20. These maps are
very different from the ideal ones depicted in Figs. 9 to 12.

6 Discussion and conclusions

Implementation errors may be one possible cause of the very poor behavior shown by SGNG
as both function approximator and image segmenter. The fact that GNG, which is the

viii

core of SGNG, has been widely tested before completing the SGNG architecture actually
reduces the chance that dramatic implementation errors have affected SGNG outcomes.
Unfortunately, we are not aware of analogous function approximation results that have
been presented in the literature to refer to for comparison.

Aside from implementation errors, SGNG unsatisfactory performance as both function
approximator and image segmenter may be due to an excessive degree of dynamicity of the
learning algorithm, i.e., parallel updating of structural parameters and output weights seems
to lead to inconsistent learning behaviors, at least when SGNG is involved with function
approximation tasks. One solution may be found by adopting two-stage, batch, error-driven
learning strategies as those implemented in the Karayiannis learning algorithm proposed
in Section 2.1. How to insert in such a scheme the on-line CHR or CCHR policy capable
of augmenting the expressive power of the model by introducing a competitive mechanism
among synaptic links may be the subject of further research. Additional interest may
be focused on hierarchical grid-partitioning RBF networks [9], that should be related to
wavelets and filter banks theory [21].

References

1. C. Bishop, Neural Networks for Pattern Recognition. Oxford University
Press, Oxford (UK), 1995.

2. J. Moody, and C. Darken, “Fast learning in networks of locally-tuned pro-
cessing units,” Neural Computation, 1, pp. 281-294, 1989.
3. V. Cherkassky, and F. Mulier, Learning from data, Wiley, New York, 1998.

4. B. Fritzke, “Incremental neuro-fuzzy systems,” Proc. SPIE’s Optical Science,
Engineering and Instrumentation ’97: Applications of Fuzzy Logic Technol-
ogy IV, San Diego, CA, July 1997.

. E. Alpaydin, Soft vector quantization and the EM algorithm. Neural Net-
works, in press, 1998.

(@3]

6. N. Karayiannis, “Growing radial basis neural networks: Merging supervised
and unsupervised learning with network growth techniques,” IEEE Trans.
on Neural Neworks, in press, 1998.

7. B. Fritzke, “Growing cell structures - A self-organizing network for unsu-
pervised and supervised learning,” Neural Networks, 7(9), pp. 1441-1460,
1994.

8. B. Fritzke, “Some competitive learning methods,” draft document, http://www.
neuroinformatik.ruhr-uni-bochum.de/ini/VDM /research/gsn/DemoGNG, 1998.

9. N. A. Borghese, and S. Ferrari, “Hierarchical RBF networks and local pa-
rameter estimate,” Neurocomputing, in press, 1998.

10. T. Masters, Signal and image processing with neural networks - A C++
sourcebook, Wiley, New York, 1994.

11. J. Buhmann, “Learning and data clustering,” in Handbook of Brain Theory
and Neural Networks, M. Arbib, Ed., Bradford Books / MIT Press, 1995.

ix

12.

13.

14.
15.
16.

17.

18.

19.

20.

21.

B. Fritzke, “A self-organizing network that can follow non-stationary dis-
tributions,” Proc. of the International Conference on Artificial Neural Net-
works ’97, Springer, 1997, pp. 613-618.

T. Martinetz, G. Berkovich, and K. Schulten, “Topology representing net-
works,” Neural Networks, 7(3), pp. 507-522, 1994.

D. Marr, Vision, Freeman, New York, 1982.
T. Mitchell, Machine learning, McGraw-Hill, New York, 1997.

M. Wertheimer, “Laws of organization in perceptual forms” (partial trans-
lation), in A Source-book of Gestalt Psychology, pp. 71-88, Harcourt, Brace
and Company, 1938.

P. Simpson, “Fuzzy min-max neural networks - Part 2: clustering,” IFEE
Trans. Fuzzy Systems, 1(1), pp. 32-45, 1993.

J. Shi, and J. Malik, “Normalized cuts and image segmentation,” Proc.

IEEE Conf. on Comp. Vision and Pattern Recognition, San Juan, Puerto
Rico, June 1997.

A. Baraldi, and F. Parmiggiani, “Novel neural network model combining
radial basis function, competitive Hebbian learning rule, and fuzzy simplified
adaptive resonance theory,” Proc. SPIE’s Optical Science, Engineering and
Instrumentation ’97: Applications of Fuzzy Logic Technology IV, San Diego,
CA, July 1997, vol. 3165, pp. 98-112.

D. Burr, and M. C. Morrone, “A nonlinear model of feature detection,” in
Nonlinear Vision: Determination of Neural Receptive Fields, Functions, and
Networks, R. B. Pinter and N. Bahram, Eds., pp. 309-327, CRC Press, Boca
Raton, 1992.

G. Strang, and T. Nguyen, Wauvelets and Filter Banks, Wellesley-Cambridge
Press, Wellesley (MA), 1997.

Neural Interaction
Neural Interaction

35
35
30
30 4 . -
®
o e . . 25 -
25 | = ~
. .. S
S 5
% o
1]

®
. . o«
20
20 ¢« o o . L

. 15 o
15 r

10 T T T T T T T

10 T T T T T T T 15 20 25 30 35 40 45 50 55
15 20 25 30 35 40 45 50 55 Band 1
Band 1

Figure 3: GNG processing of the Simpson
data set when CCHR is employed: param-
eter k = 1.2.

Figure 1: Simpson’s data set consisting of
24 points.

Neural Interaction
Neural Interaction

35

35

30 +
30 + I r

1 A

15

Band 2
Band 2

15 r

10 T T T T T T T

10 T T T T T T T 15 20 25 30 35 40 45 50 55
15 20 25 30 35 40 45 50 55 Band 1
Band 1

Figure 4: GNG processing of the Simpson
data set when CCHR is employed: param-
eter k = 1.6.

Figure 2: GNG processing of the Simpson
data set when CHR is employed.

xi

50

-===== .
[=====
__..“__.__“_.“r ..___.E“__“._“.___..__
ﬂ__“___ _-_-___“-“_—“_-“_-a_—“_--_-ﬁﬂ__“__“__“ﬁ
i it ====== ======
st i =_===== i _====_= =-==_
=.==== =====_ ==_= ! .___._._)
iy ..====.= ._.___. iy T
:SE:==_===== H o 10
=55=E=E=S ====== 11|
§§= :ES:Ex:SESS =====
\S\S\\EEES E:S:S :SSE o
S:S:::::§:.:§§S\§§S 2
:E::\SSES S§=§ S:SS
§§=:ES::::\§§E\§§E
:E::\SSES S:ES: §§S
:SE:::::§::§E=§S§E=
ESS\ESES EES:: 5:55
§§=::.:ES\\::S:ENS\SS\ 8
:ES:SEES::E:SE :::E:
\::::::::\§::S:SESS:S::
?z?éa:E:::=$S§§§§§
«a¢»,??—%?—5??»«\E::E\\\::
SR ?5? 7L
»”ﬂ”””ﬁ35b””””ﬂ”ﬁ?;»”””””r 8 __“_____“______“_“______“___“__“____“___“___“_ﬁ_“_
fff/ f’ffﬂf/fffffffff 4’4’4’&’/’&'/’/’ ! =—= _“-_—-—_—- ! ii! ==- =-_ i
45%5???3ﬁ»55?5?%5 o __“__=__ﬂ___“__=__“__=__=__=__=__=__=__=__=__=__=__
?»””4555??»”»”ﬁ535??”«4 w 3 =_=_=_=======____=_====___________
é,,,,%”ézé,,%«zzzé € “__,“__ﬁEﬁEE=__E__,__“__%%__ﬂ__“
5%%52»””””%%?z»”””””»«¢ Q __=__“__=__=__=__=__=__=__““__“__ﬁ__ﬁ__“__ﬁ__“__“__
55””5??355”””?'??55””4 o ot ___=_=_=_====_______=======.===. 2
ffff fdfd’!ﬂ!ﬂffffffff 4'4’4'4’4’/’/’/’ Q ========_—===-============
ffffffffff ffffff/fff T =—=—=======—=-=—=—=—====—===- p
N ot
,_,_,_,.,_,,,é,za»ﬁa,,é?”%, .. __,“__ﬁ“__,“EEﬁ__“__H__“__ﬁ__“g__ﬁﬁ o
=_-____“_“__“___.===___-_f-a_a-a_f?ﬁﬁﬁﬁ?»”— [ele} =_=_=_=__=_==__=_==__====_=_=== 9 =
i _._“._“ﬂ__““...__._._“__“_.“__“_.“_.___._. 7 8 “__=__““____“__=__=__““__““__=__=__=__=__=__=__=__=__“ w
““__“_“_“ﬂ__“__“__ﬁg_“m“_“__g__ __“““_“.“_““__ﬁ_. o “__“__=EEE“E“__“__ﬁ__“____“_ﬁ%ﬁ ©
----—- -—-—-—-— -—- —=========—=======—======= =3
=====_ ======= -===== o =_=_=_=_=_=__==_====_===_=_=_=_ i
g i ﬁ_““_“.ﬂﬁ__ﬁ _““.__“__“_“._ﬁ._ﬁ.___ s auo “__ﬁEEEE__ﬂ__“__“__“_%%“__ﬁ__“ =
F _“_-“ﬁ_-_-_-_-_“-_- --—---_-ﬂ_—“_-“_“_ ot ==_=_=_=_=_=_=_=_===_==_=_==== o
3 _____“._“____“__“__“__ﬁ ___“__“E__“._“____ i 2 z 8 5
« ====- 1 o ut Tt il s it it it i
S B -—-—-—-— -__—“_-__—-“_—-_—““__“_—-__—““_-_—ﬁ-——-—“-__“-_-__““__-
========_===-=—====—=—===-=— o g
w27 o __=__=__“__=__“__=__=__ﬁ__““__“__ﬁ__“__“__ﬁ__ﬂ__“ 8
- N { 8 0 o -—_===—====—=============== .n
o I Q o -_-=-=—===—=-===_===-====-=—=— — -_=====—-_=======-===-=-====
° “__=__=__=__ﬂ__=__=__=__=__ﬁ__“__ﬂ__ﬁ__ﬂ__“__ﬁ____ 8 =¥ “__ﬁ__““__=__E____“__=__ﬂ__E__““__ﬁ__ﬁ____“__“__ﬁ__
__=__=__““____“__ﬁ__ﬁ__“__=__““__ﬁ__“__ﬂ__ﬁ__ﬂ__“__ﬁ ¥ __E__=__=__=__E__=__E__““__g____“__“__ﬁ__ﬁ__ﬁ__“
-==_—-_===—=—=—=—=====_======— a ====-==—===—======—==-=====
“__=__E__“__“__E__=__=__“__““__““__“__““____“__“__“__“ 2 =__=__ﬁ__=__““____“__ﬁ__=__ﬁ__ﬁ__g__“__ﬁ__ﬁ__“__
—-—====—=—-_-=-=-====—=-==_—== m -==—-_—==-==—=-==_-=—===—===—=- o
=====—====—=====_=_==-===== ====-==================== 3
—=======—=—-==—=========-==_ —_ ==-====_—-_===_=====-=—===-==
“__=__ﬂ____“__=__=__=__=__=__““__““__ﬁ__“__ﬁ__ﬁ__ﬁ__“ 2 =__ﬁ__=__ﬂ__E__““__=__=__ﬁ__g__ﬂ__ﬁ__ﬂ__ﬁ__ﬁ
=—====-=-=======-=======—== a ===========—============= "
N . _—=—=—=—=—=-=—====—====-===-== e =—=—======—===-=-=—========- £
_======—=-================ d _=====—=—=—=====-==========
-—_=—==—==—==—=====-===—===== —=—=—=—====-=—====—======-=-= P ===_=====-=—-_=============
==—===_—==—==—-—-_—==—==—====—= o = o— -_===_—==—=====—===—=—======
__======_=====__=========_=_ = i __\v__\w_ ___w____v%v___\v_j__ ____vv il o
_==.=========.________________________ g Vi ______________________=_=== N 2
==_==_==_==_==_==_==_====_==_ g8 g G _======_=__=_=__=_=_====_===_=
====_==_==__======__====_=== S ===__=_====_===_===_=_=_===_=
======__=========__====_=== 3) g w =__====_======__====_===_=_=_
““ﬁ__“__ﬁ“ﬁ“ﬁ__,ﬁ_“__ﬂ_,ﬁ,ﬁ_,% 7 § ¢ % 5
====_==_==_=======.====.== g g
===========__====_====_==_ ? B _===_===_====_===__=_=_====_=
==_==_==_==_====_==__=====_=_ " T G _=____“___======_=____“__________________
==-= =—==-==—=—=== =========
==—====_—==—-_==_========—== < o o Q Q Q S =]
=_==_==__======__==_====_==_= s ° & < 3 =__=__E__=__““__E__““____“__““__““__ﬂ__ﬂ__ﬁ__ﬂ__ﬁ__ 3
“__“ﬁ__E__“ﬁ__E__“ﬁ__“ﬁ__“ﬁ__“ﬁ__ﬁ__ﬁ ___
__=_==_==__====__==_==_====_== ° - __E__ﬂ__““__=__E____“__=__“““__ﬂ__ﬂ__ﬁ__ﬁ____“__ﬂ__ﬁ
ﬁ“__ﬁ“__ﬁ“__ﬁ“__ﬁ__“ﬁ“__ﬁ“__ﬁ__“ﬁ__“ﬁ__ M 2> =__E__=__E__=__=____“__=__“““__ﬁ__ﬁ__“__g____“__“__ &
=_—=========_=—====—======= =—===—===================—
-======—====—==—==—==—==—=== e ====—=== ====== ==—= ==- =—=
“__E__E__ﬁ“__ﬁ“__ﬁ__ﬁﬁ__ﬁ__ﬁ__ﬁ__ﬁ : 8 = __E__=__““__=__"“_“__=__““__ﬁ__“_“__H__g“_ﬁ___g“_ﬁ__“ s
____________E_________________ mo & E__=__=__=__=__ﬁ__=__E__““__“__“__““__ﬁ__ﬁ__ﬁ
— —— — ==—==—=-===-=—=====-===— ===
Q e- .- g ==_—-_=====—-_—===-=—===—=_—===“ o
— — L N F ====-==================== -
\H\\IHI‘; “H;‘H; g d ==-====_——_—==========-=====
= = =1 - d N —-_—-=========-=—===-=—======
Tik ========= == it == ==— e ==-==-—_==——_===============
==—=========_==—==—==—====) =—======—========—======== o
=====—==—===_====_=======_= N e = a
“__E__ﬁ“__ﬁ“__“ﬁ__“ﬁ__ﬁ“__ﬁ“__ﬁ“__ﬁ“__ﬂ a, S
_—==—=======—====—==—=====—= = o
==_==_==_==_==_====.=======. o _=___=_==.=======.====_==_==__ =]
=_==_==_=]] i i 5
_“ﬁ___“g_““_“g__“_“““_“ﬁ“__ﬁ“____ﬁ__“ﬁ__ﬁ“__ﬁ__“) 2 “__“ﬁ“__ﬁ“__ﬂ_“__ﬁ_ﬂ__ﬁ_“__ﬁ_“__ﬁ_“__ﬁ_“__“ﬁ“_“ 8 5§ 8 ”
_“__ﬂ_“___“___E_“___ﬁ__ﬁ__“ﬁ__“ﬁ__“ﬁ__“ﬁ__“ n ___ = &
______==_==__=__====__==_==__===_ " __=___=_==_==_==_====.==.===== : B
================_===_===_ 2 ===_===_==_==_==_========== w0 7
==__=__==_==__=__________________________ .. _===__=__==_==______==_==_==_==__ 2 o= ~ = R
==—====_—==—=====—========= 5 -_==_==_=====-========—==== =1 i £ ES tS
-=—==—==—==—===—==========_= =—===—========_—==—==—=====—
===_==_==___________=========== o =======_==_==_====.=======
3 ____________==_====_==.==.==.==== e [==_==_==__________==.=======.== °
< _=—======—====—==—=—==—=-==-= ==—======_======—==—==—==—= <
4 =—=—==—==—======_========== P~ < ==—=======—==—============
o ____==_==_==_==___________====_=== = ________________________ ====.======
& g =_==_==__====______==.==.====.= ======_==========_==_==_== ittt ========
& & =__“ﬁ__ﬁ“__ﬁ“__ﬁ__ﬁ“__“ﬁ__“ﬁ__“ﬁ__“ﬁ__“ © j=Y0] “__E“__E“__“ﬁ__“ﬁ__“““__ﬂﬁ__ﬁ_________““__ﬁ___ “__“_____ﬁ 3
=] _____===_==_==== =_=== WW il
g 9 [ES e e
ERE —
K = 2
= 3
R . s o —
SR . ° —— i ; ,
=ﬂ=.==.=...==.= ====.======.)
-—-_=—========_==—==—==—==—==— =====—==—========—===—==—==
=====—==—===_====_=======_= {Q g “-_“““-_““-_—“-_—“--_“--—_--—_======—
=_________________________=========== = i i il il s =.==========
__====_==__====_==_==_==_==__= o= ity i i “____“____“___________====
______==============_==_==_== o i o il i ====__==_==
==_==_==_==_==_====.=======. o _“_r il i “_________==.==.====.=
===-=—==—==—======—======== « “—- “-—- _—“- “_“- “_“--—_—-————-——_—“-—-_—-—-_ 2
===_==_==_____==_=======.=== il i iy =__==__=== =__==__
=_====__====_==_==_==_==_==_= i i “____“____ ____==_=_=_==_====
________====_______________==__====__= .. i 1 il __“______==_==__==_====
====_==_==_====__==_==__=_== w e i il e ==_==_=====__==____
====.==.==========_==_===_ E ol _=_=_=_ _=_==___===_====_== 2
=—===—========—=========== ========—============-==—=
ﬁ__ﬁ“__ﬁ“__ﬁ“__ﬁ“__ﬁ__“ﬁ__ﬂﬁ__ﬁ__ﬁ__“ < ﬁ__“ﬁ__ﬁﬂ__“ﬁ“__“ﬁ“__“ﬁ__ﬁ“__ﬁ“__ﬁ“__“
o ===_==_=—===_==_=========== o — =======-==—====-====-—=====
g 9 =====__==_====__=_==_==_==_== E] = 2 2
79 “,ﬁ_,ﬁE_,ﬁ_gﬁ“ﬁﬁﬁ%ﬁ) %
v ==—==—==—==—=— == -—-— ======—= .
A =_==_==__=_==___==__==__==_==_=== F.l.. 2
= =__=======_=_==_====_==_==== " 2 3
§ g __==_==_==__________==.========= %
&
4 2
S
B 2 8
R . s 2 2 °
2 Q
2
2
2
==__==_==__==__==_==_=====__==
-—-———-——_=====_===—==========_
====__==_______==_==__==_=====__ “
=_=_==_=_==_==__=====__==__=== s
___====___=_===_____________==__==_=
_____________==_==_==_==_===__====
==_==___====__===.==========
===========—===== ==_ == il
==_==_=__==__==_==__“_____r___a___ E
-=—================—======
______________==_==__==_==_==___===_
=================._==_==__=
—============_======—====
==_____________==__==_=====__==_== »
___________=====_==__==__====__==_
8 .
s 7 e

SG
NG
idea
1
mappi
n
g of
the

F.
r_lgure
idge 10

F.
igure 7: R
am
p-

25

SG
NG
rec
onstructi
ion
of
the

F.
_lgul-e
ridge 14

SG
NG
idea
1
mappi
n

g of
the

Fi
gu
ram; e 11

rasil
I

aeu!
TN

W

e

1t it it
it it ==== _=======_=
__=__=_=_=__=_=_=_===_=_===_=_==
=_==_==_===_=_=_==_==_===_=_=_
==_=__=_=__=_=_=_=_=_=====_=_=
__=_=_=__=_=_____=_======_===_==
___=_=_—___=_=_=__=_=_=_===_===_=_
=__=_=_—___=_=_=___==_=_===_===_=
_=_____=_—___=_=_=_===_=_===_=_==_
=========_=_=_==_==_===_=_=_
======_=_===_=_=_===_======_
i —=—===== ======= it
it it

1l

aw
.
AN TN\
el ! n
v
W

i !
O
———?—z—s

wits

2
3

25

io
n of th
e

SG
NG
reco

SG

NG
ide
al m

appi

ng of the
rOOf
) .
gure
15

F-
gure 19

ramp

NS

40

45

3

&
-~
Gy
@)
g
e
(]
=
-
|7
=}
3
g
@)
Z
%
o
—
g
s
o
@ =
+~ B!
]

° <

<

-~

[

@]

=

2

-~

]

£

——

|1

=]

3

&

@)

Z

3

™

—

&

mo .

= %u

=8

Figure 17: SGNG actual mapping of the

step edge.

ing of the

20: SGNG actual mapp

Figure
roof.

SGNG actual mapping of the

Figure 18:
ridge.

Figure 19: SGNG actual mapping of the

ramp.

X1v

