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Abstract

We focus here on the access to multiple, distributed, heterogeneous and autonomous infor-
mation sources storing geospatial data and we study alternatives to integrate them. Common
solutions to data integration in the database area nowadays are the data warehouse approach
and the wrapper/mediator approach. None of them is really satisfactory to handle a large
range of geospatial applications. In this paper we present a novel hybrid approach to data
integration based on the two popular paradigms. We believe that such architectures will be
of major importance in the geospatial applications of the near future.
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1 Introduction

Interoperability within Geographic Information Systems (GIS) is concerned with both data and op-
erations. We focus here on the data aspect, more specifically on the access to multiple, distributed,
heterogeneous and autonomous information sources and on their integration. For this purpose, we
need to take into account the special requirements of applications dealing with geospatial data,
such as:

e the vast amounts of data considered;

the existence of complex and highly-structured data;

the co-existence of many different geographic formats;

e the increasing trend towards reuse of geographic data all over the world;

the distributed nature of geographic data.

In addition, temporal aspects play an important role in many geospatial applications. For in-
stance, in geomarketing applications, it is useful to keep many versions of data for analysis over
time. Applications such as traffic control or intelligent transportation require fast access to highly
dynamic data.

GIS are concerned with many tasks, such as input and store, query and analyze, display and
select geographic information. In this paper we concentrate on the data management aspect. The
participating information sources may vary widely, from legacy systems to geospatial repositories.
The three main actions we focus on are the following: (1) collecting data from the information
sources, (2) organizing data in a geospatial store or keeping track of data organization in different
systems and (3) querying data. In the sequel we refer to these actions as 3-step data handling.

In the database area, common approaches to data integration are as follows [Wid97]: In the
eager approach, data is collected in a data warehouse, which allows direct querying and analysis.
The query-driven or lazy approach, on the other hand, hinges on the concepts of a mediator together
with wrappers built on top of the participating repositories. In practice, it turns out that a combi-
nation of both approaches is often more appropriate. In this paper, we present a hybrid alternative
to geospatial data integration. Geospatial data sets are either integrated through wrappers and
mediators or part of a data warehouse. In this context, a warehouse plays not only the role of a
participating system but also the role of an efficient storage for further reuse. This storage can be
related to data themselves but also to application sessions. For instance, results of queries likely to
be posed in the near future are stored in the warehouse for efficiency reasons.

This paper is organized as follows. We first present the two common database approaches to
data integration and compare them for different types of geospatial applications. We then present
our hybrid solution, which we illustrate with a flood control application. We give a list of qualita-
tive parameters for tailoring such general frameworks to particular application requirements. We
conclude with the main research issues that need to be addressed in order to design such systems
efficiently.
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Figure 1: Eager approach to data integration.

2 Common approaches to data integration

This section starts with a description of the two common database approaches to data integration,
i.e., the eager approach and the lazy approach. We then give examples drawn from geospatial
applications in order to illustrate their use, before studying the main differences between the two
solutions.

2.1 Eager approach (data warehouse)

In the eager or in-advance approach, data is integrated in advance in a data warehouse, which is
defined as a subject-oriented, integrated, non-volatile and time-variant collection of data [Inm96].
It allows the multidimensional storage of data. A common integrator component extracts data
sets from different sources and integrates them before sending them to the warehouse. Figure 1
illustrates this approach.

Following the 3-step data handling mentioned in the introduction, we now describe the major
tasks necessary to run a data warehouse, namely data warehousing, warehouse organization and
query processing.

Data warehousing (1). The process of collecting the data is known as data warehousing. New
data is added to the data warehouse from different sources, which generally handle data in different
formats. Metadata describes how data has to be transformed between formats and how it is inte-
grated. Before data is added to the warehouse, consistency checks are performed and a mechanism
guarantees that all data is loaded exactly once. The load time becomes a critical issue when the
number of sources or the size of sources increases. Attention should be paid to keep the load time
as short as possible.

Regarding the moment when data is fetched to the warehouse, two options are possible. With
the push mechanism the source decides when to send the data to the warehouse. In the pull
mechanism the warehouse asks explicitly for the data at a certain time. A push or a pull is either
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event- or time-driven. To reduce the amount of data transferred to the warehouse, only the changed
data could be shipped. Sending the delta between two data sets saves significant amount of time
and space in applications with small changes from time to time. This turns out to be useful in
applications handling large maps, especially in the case of raster maps with changes in a few cells.

Warehouse organization (2). The resulting warehouse database is somewhat special as there
is usually no delete nor update operation possible. The problem of constant growth can be solved
either by moving the data that is not used to less expensive media or by summarizing it further.
The role of data warehouses goes beyond data storage. Raw data is (re)-structured, and aggregated
in such systems and stored in base tables. In addition there are aggregates held in summary tables.
Aggregation rules are defined in the metadata. Further aggregation is useful because most common
queries analyze subsets of data. Users are sometimes not interested in particular objects but in
aggregated values, such as the population of a state computed from a table gathering the population
of all its counties. If these results have to be calculated on the fly, i.e., when the query is processed
in the system, the response time can be intolerably long. Results of aggregation are calculated in
advance during times when the system is not used for analysis (e.g. during nights or weekends).
They are stored in summary tables [MQM97].

The more data is aggregated, the faster can queries be processed, but the higher are update
and storage costs. [WGLT96] presents algorithms for selection of summary tables and indices.
Aggregation is appropriate when clients require specific predictable portions of information. It is
noteworthy that, even if this mechanism provides high performance when answering queries, the
warehouse does not necessarily show neither the most recent state of information sources nor all
details, because summarized data and not all raw data is stored there. However in many appli-
cations it makes sense to get a rough result fast rather than a precise value after long processing
time.

Query processing (3). Users typically pose ad-hoc queries against the warehouse and expect
answers quickly. To ensure that typical queries will be answered fast, queries are logged and users
profiles are generated from the log-files. These profiles are used to adapt the organization of the
warehouse to users’ needs and to generate indices for faster access and better performance. Because
profiles change over time, the reorganization of the warehouse might be necessary on a regular basis.
During the data warehousing and warehouse organization phases the warehouse is off-line and
no queries can be processed. It is on-line only when no changes are made. This architecture is
called a read-mostly environment. The clear distinction between on-line and off-line modes makes
transaction monitors superfluous while being in on-line mode. This decreases response time.

2.2 Lazy approach (mediator)

In the lazy or on-demand approach, when a query is issued, the appropriate information sources
are selected and a mediator generates the subqueries or commands that will be addressed to the
information sources via their wrapper (Iigure 2). A wrapper converts data objects of specific data
sources into objects of a common information model (Step 1). A catalog keeps metainformation
related to the information sources (Step 2). Data conversion works both ways. Queries from
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Figure 2: Lazy approach to data integration.

the mediator are transformed to queries understood by the sources and data from the sources is
converted to a format processable by the mediator [GMHIT95] (Step 3).

In such systems, the results are collected from the information sources and the mediator performs
translation, filtering and merging of data before returning the answer to the client. A mediator is
a software module that refines in some way information from one or more sources. The wrapper
does the technical transformation (e.g., unit transformation) whereas the mediators task concerns
the semantical integration of data (e.g, generalization). The great advantages of this architecture
are low storage costs and flexibility for integration of new sources. A disadvantage is that time
analysis is only possible on data provided by the data sources.

One may wonder about the differences between a mediator/wrapper architecture and a feder-
ated DBMS. In the first architecture, the sources are often semistructured, and no schemas are
available. Source integration occurs at access time. The traditional method of first integrating the
schemas and then the data does not apply in this context. Because the format of data sources
often changes, one important research issue is the development of tools to support the efficient
development of wrappers and mediators.

2.3 Summary: Warehouse vs. mediator approach

Following our 3-step view of data handling, Table 1 sums up the functionalities of each approach.

Using a warehouse in geospatial application

A major interest in warehousing is to avoid converting large amounts of data in and out by having
information at hand. This is an important issue in geographic information systems where map
transformations are usually complex and time-consuming. From time to time, snapshots are taken
from the data origins and loaded to the warehouse (Cf. Section 2.1).

Clearly, this approach brings new potentials to data handling, with the fact that data can be
further processed, e.g., annotated, modified, structured and aggregated. Annotating data is partic-
ularly useful in geographic applications: Sometimes, old data cannot be used because information
on its origin or on its accuracy is missing. Moreover, historical information can be associated with
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Data Warehouse Mediator
(eager approach) (lazy approach)

Load/Clean/Consistency Check/
Aggregation Rules for Base Data

Summary Tables/Base Tables/
Data Organization Aggregation Rules for Catalog
Summary Data

Data Collecting Wrapper

Query Processing Warehouse Querying Distributed Query Processing

Table 1: 3-step data handling in eager and lazy approach

the data. Techniques borrowed from related disciplines, such as statistical databases (e.g., aggre-
gation or data cube metaphor), versioning, data mining or OLAP (On-Line Analytical Processing)
can greatly improve data handling in this context.

Data warehouses are often used for ad-hoc queries and what-if analysis. What-if analysis cal-
culates different scenarios for the future. This functionality is well supported by data warehouse
architectures. It allows to calculate new data from the already stored data. This predicted data can
be labeled differently from the data loaded from the real world. Such analysis would be difficult
with the pure mediator approach. Geospatial applications dealing with analysis over time gain
from using a data warehouse. In such systems the life-expectancy of data is 5-10 years (compared
to 60-90 days in operational systems [Inm96]). In some applications such as the ones handled by
decision support systems (DSS), expected response time is usually relaxed and the order is minutes
or hours. Hence the analogy with ”"quarrying data”.

Using the wrapper/mediator approach in geospatial application

In contrast, the mediator approach is in particular appropriate when data and data sources change
rapidly. It is obviously well-suited to electronic marketplaces, in which prices for goods or services
are assumed to alter constantly. However, the delay induced by significant processing needed for
data transformation and shipping may make its use inefficient. Moreover, if the same queries are
issued multiple times, numerous accesses to data are unnecessarily expensive. This approach is
appropriate for near-real time applications, such as intelligent transportation systems or environ-
mental problems monitoring. Note that it cannot be used if ad hoc querying is not feasible. This
approach is inefficient for applications where static data from different sources has to be expensively
combined many times in the same way (for instance, joined for a map overlay).

With each object in the warehouse is associated a validity time, whereas in operational systems
the data is true at access time. This is one fundamental distinction between OLAP and OLTP
(On-Line Transaction Processing), where the snapshot view of data in data sources makes data
analyses impossible.
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3 Hybrid approach

Given these two general approaches to data integration, one may wonder about the most appro-
priate solution for geospatial data handling. Part of the answer is that it depends on the type of
application and on the type of data. We place ourselves in a context where data is coming from
extremely heterogeneous sources, from a semantical and physical view point. For instance, it can
be available freely on the Internet but also purchased from agencies (e.g., governmental institu-
tions). Moreover, data can be either static in the sense that it is unlikely to change over time (e.g.,
state contour) or dynamic (e.g., traffic flow, population, weather, stock market, currency exchange
rates, entertainment programs or sales data). Note that there are many degrees in dynamicity.
A challenge is to integrate these different types of data within one coherent framework. Hence in
many geospatial applications a somehow hybrid approach is needed.

This section starts with the basic concepts of such architectures. We then illustrate their use
through an example drawn from an application that predicts water floods in a given geographic
space. We conclude with a list of qualitative parameters to be considered when designing such
flexible frameworks. This list is based on both the type of applications and on the types of data in
the sources.

3.1 Basic concepts

In hybrid approaches, part of the data is collected, processed and integrated in advance in the
warehouse, while other data is fetched when users pose queries against the overall system. The data
catalog knows where to find appropriate data (the size of this registry is negligible compared to the
size of the data involved). Figure 3 depicts a hybrid solution to data integration. This architecture is
a generalization of the two architectures described in sections 2.1 and 2.2, respectively. If everything
is loaded from the data sources 51 ... S, to the geodata warehouse, every query can be answered
by using data from the warehouse. This approach is the pure first architecture described in Section
2.1. If the data warehouse is left empty, it cannot support answering queries. All data necessary
for answering queries has to be shipped from the sources, wrapped and processed by the mediator.
This is the pure second architecture as explained in Section 2.2.

To our knowledge, even though they are more and more used in practice, such architectures have
not been studied in detail by the scientific community. The problem is obviously more complicated
than considering a data warehouse as a regular information source. The warehouse is a special
kind of data storage. In contrast to the other information sources, which are fixed and cannot be
changed by the system, the warehouse is freely configurable by the system itself. The fact that
the system can precompute and store regularly the required data can improve the performance
considerably. In addition, other data related to applications and sessions can be stored for further
use, which opens new horizons to many geospatial applications.

Many degrees of hybridization should be considered from the pure data warehouse approach to
the pure mediator approach, and a major design issue is to determine which parts of each should
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Figure 3: Hybrid approach to data integration.

be considered. A first step is to consider the sources where data may come from. Once the sources
with data stored in the data warehouse are determined, the question is whether raw data should be
stored or if it is, for space and time reasons, more sensible to store (pre)aggregated data. This is a
common issue in pure data warehousing. There are many possibilities regarding data aggregation.
First of all, data of only one source can be aggregated, such as the population of counties in one
state aggregated in the population of a state. Besides, because of the multiple repositories, data
from different sources can be joined and generate aggregated data. For example, the population of
cities joined with sales data from other sources to get sales data for cities with more than 100.000
inhabitants. Once data is collected in the data warehouse, the later plays the role of a participating
system, hence the wrapper depicted in Figure 3 (right-hand side).

In this approach, the data warehouse can be used for more than storing data coming from
different sources, which we refer to as application-driven contents. The selection of the data to
be stored is done when the system is installed. In practice, such a data warehouse serves many
purposes. Following are the three types of data it hosts:

e Application-driven contents (100 % manual work).

A warehouse is useful for archiving data related to a whole application field. In order to use
it in the long run data is stored in one part of the warehouse. This is useful in geomarketing
applications where data, being socio-cultural behaviors or statistical data, is considered over
long periods of time. A mechanism enforces the storage of data (even some dynamic data)
in order to keep it and make studies over years for a specific application. These application-
dependent data sets are selected by users or system administrators, who decide in particular
which tables have to be stored in the warehouse together with the update frequency.

e Usage-driven contents (programmed selection of data).
As mentioned in Section 2.1. (query processing in data warehouses), it is useful to monitor
the users queries and to generate user profiles. This is done during the data organization
phase. This treatment can be applied to metadata as well, i.e., to save user sessions (query
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graphs) over time. This metadata holds data about typical user behaviors and can be also
exploited for analysis. It can also be referred to as session-driven contents.

e Data-driven contents (0 % manual work).

First, one could think of abusing the data warehouse as a kind of cache. A cache is a small
fast memory which stores the most recent accessed values from a large slow storage. It is
based on the assumption that the user will require some of the most recent used data again.
He/she can access the data much faster by using the cache than accessing the data from the
large slow memory.

Second, one could consider the integration of data as it comes to the application and not
necessarily in advance; after being processed, it is stored for further use within the same
application (e.g., retrieval and analysis). Collecting data in this context is more than simply
merging data sets. This is the role of the "on-line integrator” displayed on top of the geodata
warehouse in Figure 3. One of its tasks is to check that data is not stored many times.

3.2 Running example

Let us consider an application for predicting floods of major European rivers, and suppose that
we concentrate on rivers that flow through more than one country, such as the Rhine. The overall
system (the geospatial data manager) gets information from various repositories located in differ-
ent countries. Some of these sources are static (e.g., topographic maps) while others are dynamic
(e.g., water levels at some stations). To predict floods, we assume the existence of a model that
runs on the following data sets: The topography of the landscape (altitude), the water network,
the present water levels and speed of flow at specific reading points and finally the present and
predicted precipitation. All these sources are overlaid and the simulation model returns a set of
points that are likely to be flooded.

In the sequel, we start with a more complete description of the data sources. We then describe
the major processing steps as well as the new relations to be created. Operations to be performed
are given in a pseudo-code whose syntax is supposed to be intuitive. Database queries and schema
definitions are given in our SQL-like language.

Supply of data by different data sources

As depicted in Figure 4, the data sets come from six data sources. A static map with altitude infor-
mation is stored in R-alt. The static map R-water contains the water network where in particular
the positions of all rivers and other waters bodies are stored. Two dynamic sources (containing the
maps R-flood1, R-flood2) make available the water levels and the speed of flow of selected rivers for
different regions, with updates every hour. R-prec-a keeps the actual precipitation and R-prec-p
contains the predicted weather map.

We assume that these maps are stored in relations whose schema is given below. Regarding
attribute types, we assume the existence of basic types and of geospatial types, such as point, line
and region [Giit88, SV89]. Timestamp is a combination of types time and date.

e R-alt (Location: point, Altitude: real)

e R-water (Rivername: string, Area: region)
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Figure 4: Example application.

R-flood1

(Location: point, Level: integer, Speed: real) [level in cm, speed in km/h]
e R-flood2 (Location: point, Level: real, Speed: real) [level in m, speed in m/s]
(

e R-prec-a (Location: point, Precipitation: real)

R-prec-p (Location: point, Precipitation: real)

We assume the existence of an operation transform (Relation-name: string, Attribute-name:
string, Old-unit: string, New-unit: string), which, for all tuples of relation Relation-name, applies
a unit transformation from Old-unit into New-unit for the value of attribute-name.

Table creation

In the data warehouse, two types of relations are considered: Base tables and summary tables.
Base tables store the most detailed information handled in the warehouse. The summary tables
are generated from the base data. The base tables are Topography (on which the model will be
run), Flow and Precipitation. They are defined as follows:

create table Topography (Rivername: string, Location: point, Altitude: real, Rivername: string,
Area: region);

create table Precipitation (Location: point, Time: timestamp, Precipitation: real);

create table Flow (Location: point, Time: timestamp, Level: real, Speed: real);

Sequence of operations
The pseudo-code corresponding to the first sequence of operations is given below.
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Step 1: Data transformation
R-flood1” :=transform ( R-floodl, Level, "cm”, "m”);
R-flood1” := transform ( R-flood1’, Speed, ”km/h” "m/s”)

Step 2: Union of the two dynamic sources R-flood1 and R-flood?2
R-flood := union(R-flood1”, R-flood2);

Step 3: Data extraction from R-flood

The following query is triggered every hour and extracts data from R-flood. The value of attribute
Time corresponds to the access time.

insert into Flow (Location, Time, Level)

select Location, Access time , Level

from R-flood;

Step 4: Data extraction from the precipitation prec-a

The following query is triggered every 12 hours and extracts the present precipitation from the
source prec-a.

insert into Precipitation (Location, Time, Precipitation)

select Location, Access time , Precipitation

from prec-a;

Because data about flows and precipitations are needed for analysis in the system, relations Flow
and Precipitation are stored in the warehouse.

For the above insert operations the warehouse has to be off-line. To avoid switching the system
on and off, new data could be stored in a buffer first.

Step 5: Map overlay
map :=overlay (R-alt, R-water);

Maps R-alt and R-water are assumed to be static. Therefore it is efficient to do the overlay only
once and to store the resulting map in the warehouse.

Step 6: Maintenance of summary tables
In addition, tables with aggregated values over the base tables are stored in the warehouse. These
summary tables can be defined by views, e.g.:

create view avg-level(Location: point, Year: integer, Month: integer, Day: integer, Level: real)
as

select Location, Year (Time), Month (Time), Day (Time), avg(Level)

from prec-a

group by Year, Month, Day

union

select Location, Year (Time), Month (Time), NULL, avg(Level)

from prec-a
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group by Year, Month

union

select Location, Year (Time), NULL, NULL, avg(Level)
from prec-a

group by Year

union

select Location, NULL, NULL, NULL, avg(Level)

from prec-a

Remark on aggregated values.

If the view above is materialized, it creates tuples with the average level of water at different loca-
tions for different time periods. This implies the existence of a function that computes the year,
the month, and the day from a given timestamp. It should be mentioned that in this example,
there exist group by operations over calculated values that are not supported by standard SQL.
The extension of SQL with a cube operator to overcome this problem is discussed in [GCB*97].
One way to avoid using a group by over calculated values is to consider a star schema. In a star
schema the dimensions are not directly stored in the fact tables but in dimension tables. The fact
tables themselves contain foreign keys to entries in the dimension tables. Fact tables are placed in
the middle of dimension tables (hence the name star schema). To get the desired data, the fact
table and the the dimension table have to be joined and the group by is performed on the joined
table. These operations can be defined in standard SQL although they are complex to write.

Instead of being aggregated over time, data could also be aggregated over space. Sets of locations
(points) could be summarized to regions and, for example, the average precipitation per region could
be calculated. It could also be aggregated over both time and space at each possible aggregation
level. However, the type of data that can be summarized has to be carefully chosen. [L.S97] defines
a framework and a set of conditions for summarizability of data in statistical databases and OLAP.

3.3 Configuring parameters: A qualitative approach

Within this mixed solution, the criteria for using either mechanism are based on infrastructure,
i.e., on the characteristics of the networks and the collection of data sources, as for instance:

e Nature of data, i.e., whether is it static or dynamic.
Dynamic data is less likely to be integrated in the data warehouse because it increases the
update cost. In our example, the altitude map and the weather map are static and are stored
in the warehouse whereas the predicted precipitation is highly dynamic and is therefore not
integrated.

o Cost for transforming (integrating) the data and existence of wrappers and protocols.
High transformation costs can be reduced by transforming the data from the sources to a
neutral format in the data warehouse only once. This is an important criterion in geographic
applications where transformation of map formats is a costly operation.

e Cost for accessing data.
Repeatedly paying high access cost can be circumvented by loading the data from the sources
to the data warehouse, as above.
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e Size of the data sets.

The bigger the data set the more it is unlikely to be integrated in the data warehouse unless
it can be easily compressed, e.g. for in the case of raster images.

e Speed for data shipping and networks used.
The trouble caused by slow connections to data sources can be alleviated by storing the data
in the data warehouse if possible.

o Frequency of access to particular sources.
Some sources are needed more often than others. Sources rarely used should not be materi-
alized in the warehouse.

e Sources availability.
There is no need to integrate sources in a data warehouse if they are always available. But
in case of low availability integration should be considered.

On the application side, examples of parameters to be taken into account are:

o Possibility of predicting queries (e.g., the number of times that queries are issued).
If queries can be predicted and if they do not require dynamic (e.g., real-time) data, then it
is advisable to precompute them and to store the results in the data warehouse.

o Needs for data analysis (e.g., time).
If data is not stored in the warehouse, data analysis can be tedious and even sometimes
impossible.

e Possible joins over many sources.
Joins over different sources can be expensive and time can be saved by precomputing them
(even though the results are large).

o Granularity of the fetched information.
If data granularity is high, the results can be precomputed easily and stored in the warehouse.

e Size of the query results.
Small answers in terms of size are more likely to be precomputed and stored in the data
warehouse than large ones.

o Required response time.
The shorter the required response time the greater the need for precomputing data.

e Possible compromise on the accuracy of data.
If less accurate data can be used, data should be condensed to save space, which is sometimes
a compromise in large geospatial applications.

Systems based on hybrid architectures should be tailored to accommodate the parameters above.
A quantitative approach would consist in defining a cost model that takes these parameters into
account.
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4 Conclusion

The goal of this paper was to study solutions to the integration of geospatial data coming from
multiple, distributed and autonomous sources. These sources are moreover heterogeneous, both
physically and semantically, and their only common aspect is to store geospatial data. We assumed
that the applications we deal with know the sources where the data come from, hence considering
transparent access to these sources was out of the scope of this paper. However, if users do not
know where data is coming from, one requires a mechanism to allow transparent access (e.g., that
finds appropriate resources and dispatches queries). We presented the two popular database alter-
natives to data integration, namely the eager approach (data warehouse) and the lazy approach
(mediator). We showed that the concept of a data warehouse goes far beyond a simple storage
for terabytes of data. Data is not just copied from the sources to the data warehouse but is also
integrated, cleaned, and aggregated. In the wrapper/mediator approach, on the other hand, data
is collected on demand and not stored further, or only locally. However, both approaches have
limits to handle various kinds of applications, as illustrated by many geospatial examples. We then
presented a promising approach based on the two paradigms, and we illustrated its use through an
example drawn from a flood control application. We finally gave a list of qualitative parameters
for configuring a particular instance of such frameworks.

It is our belief that the future should bring adaptable, scalable frameworks based on the com-
bination of the two common database approaches described above. However, even though these
approaches are now well-understood by the community, lots of work remains to be done in the
design of such hybrid systems. An important issue concerns the geospatial data warehouse organi-
zation itself, both at a logical and at a physical level. For instance, issues such as the adaptability
of such systems to various applications and time-space trade-offs still need to be addressed. [Han97]
shows a first step towards that direction with selective materialization, based on the fact that com-
puting on the fly is expensive, saving all combinations has a huge space overhead and that rough
approximations lead to accuracy problems.

Conceptual models to describe hierarchies in many dimensions (e.g., time and space) are also
missing. These models encompass aggregation rules in addition to geospatial objects. Work from
the statistical database community could be adapted to take the notion of space into account, as
initiated by [SR95]. Another issue concerns the granularity and the partitioning of data. What
level of detail has to be shown? How to break the data into separate physical units that are
handled independently? Data can be partitioned by date, organizational units, geography, and
clustered according to users’ needs. Combinations should also be considered. Classical techniques
(e.g., materialized views) are based on redundancy and cannot be used in the context of geographic
information because of the huge amounts of data involved.

More related to software engineering issues is the design of the whole system. The ideal situation
would be to have a list of quantitative parameters to tailor the system to particular application
requirements and to adapt it automatically to users’ needs. The input of the function that defines
a suitable configuration would be a list of parameters together with possible compromises, as listed
in Section 3. Its output would be a set of given configurations. This problem, which is related to
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cost models issues, is currently being addressed.
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