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Abstract. Several interesting strategies are adopted by the well-known Pappas clustering
algorithm to segment smooth images. These include exploitation of contextual information
to model both class conditional densities and a priori knowledge in a Bayesian framework.
Deficiencies of this algorithm are that: i) it removes from the scene any genuine but small
region; and ii) its feature-preserving capability largely depends on a user-defined smoothing
parameter. This parameter is equivalent to a clique potential of a Markov Random Field
model employed to capture known stochastic components of the labeled scene. In this pa-
per a modified version of the Pappas segmentation algorithm is proposed to process smooth
and noiseless images requiring enhanced pattern-preserving capability. In the proposed al-
gorithm: iii) no spatial continuity in pixel labeling is enforced to capture known stochastic
components of the labeled scene; iv) local intensity parameters, pixel labels, and global in-
tensity parameters are estimated in sequence; and v) if no local intensity average is available
to model one category in the neighborhood of a given pixel, then global statistics are em-
ployed to determine whether that category is the one closest to pixel data. Results show that
our contextual algorithm can be employed: vi) in cascade to any noncontextual (pixel-wise)
hard c-means clustering algorithm to enhance detection of small image features; and vii)
as the initialization stage of any crisp and iterative segmentation algorithm requiring pri-
ors to be neglected on earlier iterations (such as the Iterative Conditional Modes algorithm).
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1 Introduction

In recent years, the scientific community has been involved in an important debate on the
reasons why the many image processing techniques presented in the literature have had
such a slight impact on their potential field of application [1], [2], [3]. To take this debate
into account, we have attempted to make this paper as “focused on its very original core”
[1] as possible. This original core is regarded as a set of useful items that a broad scientific
audience would be willing to include in commercial image-processing all-purpose software
toolboxes [1].

Picture segmentation is a subjective and context-dependent cognitive process. In math-
ematical terms, this process is ill-posed, i.e., there is no single goal for picture partition
algorithms [4], [5]. To make picture segmentation a well-posed problem, it is regarded as
an optimization task featuring a firm statistic foundation. Recently, there has been consid-
erable interest in statistical clustering techniques for image segmentation inspired by the
methods of statistical physics, which were developed to study the equilibrium properties of
large, lattice-based systems consisting of identical, interacting components [6]. In a cluster-
ing technique for image segmentation, each pixel is associated with one of a finite number
of categories (also termed pure substances, or colors, or region types, or states) to form
disjointed regions.

It is well known that, when applied to image segmentation, the traditional hard c-
means clustering algorithm features one main limitation: it assumes that each region type
is characterized by uniform intensity throughout the image, i.e., it assesses global intensity
parameters that do not account for local intensity variations. As a consequence, the c-means
clustering algorithm tends to generate noisy (salt-and-pepper) segmentation results [7]. The
same problem affects any noncontextual (pixel-wise) classification algorithm (independent
model, [10]) by assuming the independence of observables y given pixel labels (states) z (see
(2) below) as well as the independence of pixel labels, such as the Maximum Likelihood (ML)
parameter estimation procedure [9], [10], [11]. It is obvious that adjacent pixels are likely
to have similar labels when the pixel’s size is smaller than the smallest detail of interest.
Therefore, to obtain smooth segmentations, a Markov Random Field (MRF) model (for a
general overview of MRF models, refer to [12]) is often imposed on the spatial distribution of
different image categories to introduce spatial correlation in pixel labeling (interpizel class
dependency) [6], [7], [8], [9], [10], [13], [14]. This underlying MRF model can be considered
a “stabilizer” in the sense of the regularization theory [10], which helps in solving otherwise
ill-posed problems [15], [16]. Parameters of the MRF model, i.e., the neighborhood size
and the smoothing parameters (clique potentials), incorporate a priori knowledge into the
modeling process, i.e., they are either user-defined or known on an a priori basis, e.g., by
means of off-line [6], [8], [9], [21], or on-line [9] parameter estimation techniques employing
supervised data. The MRF parameters affect the size of disjointed regions, i.e., the amount
of spatial details preserved by the segmentation process [9]. In [21], a detail-preserving image
segmentation method utilizing MRF's is proposed. In this algorithm, minimization of the
energy function also requires selection of the most appropriate neighborhood system for the
pixel under analysis. In [22] and [23], coarse-to-fine multiresolution segmentation approaches
are proposed with no adaptive neighborhood being employed, although in [23] smoothing
parameters are fixed as a function of scale. The multiresolution segmentation algorithm
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proposed in [23] is found to be less likely to be trapped in local minima than the Iterative
Conditional Mode (ICM) algorithm [9], since, at each resolution, regions are classified and
used to guide finer resolutions. This conclusion is complementary to the observation that
convergence of MRF-based segmentation algorithms can be improved by varying the local
neighborhoods [24]. In conclusion, adaptive and multiresolution approaches to parameter
estimation in segmentation algorithms exploiting MRF models appear to be highly desirable.

Several clustering algorithms that exploit a MRF model to impose spatial continuity in
pixel labeling assume that the intensity of each region type is uniform throughout the image
[6], [8], [9], [13], and/or employ hard pixel labeling [6], [7], [8], [9]. When these two con-
ditions hold true, these segmentation algorithms can be considered a generalization of the
traditional c-means clustering algorithm, such that pixels are hard-clustered on the basis of
both their intensity and their context (neighboring labels). From an information-processing
perspective, it is well known that a hard-decision approach to parameter estimation is
less effective than the use of soft decisions which, in picture segmentation applications,
would compare the probabilities of all possible pixel labels [10]. This consideration led to
the development of fuzzy clustering algorithms for image classification [17], in which the
Expectation-Maximization (EM) procedure [18] can be employed to determine the Maxi-
mum Likelihood (ML) estimate of parameters of a Gaussian mixture decomposition [19],
where a MRF model is often imposed on the spatial distribution of the pixel labels [10],
[13].

An interesting algorithm that includes multiresolution analysis and adaptive spatial con-
straints in a traditional hard c-means clustering algorithm is the Pappas Adaptive Clustering
(PAQC) algorithm for image segmentation [7]. Unlike the c-means algorithm, this scheme
assumes that each image category is characterized by a slowly varying intensity function,
i.e., the same region type may feature different intensity parameters in different parts of
the image. PAC is iterative, alternating between estimating category local intensities and
hard pixel labels. Moreover, PAC adapts and progressively reduces the neighborhood size:
local intensities of each category are estimated by averaging over a sliding window whose
size decreases monotonically as the algorithm approaches convergence. This means that
PAC starts with global parameter estimates and progressively adapts these estimates to the
image’s local properties. Parameter estimates in each iteration employ current hard pixel
labels, assuming they are correct. Exploitation of a decreasing window size should miti-
gate deficiencies in crisp label assignments [10]. Finally, PAC can employ a multiresolution
implementation scheme. Since PAC preserves large image features while removing small
details, it is employed to provide sketches or caricatures of the original image.

This paper proposes a Modified version of PAC (MPAC) to be employed in cascade
with a hard noncontextual c-means clustering stage. MPAC aims to: i) enhance pattern-
preserving capability of both c-means and PAC algorithms, such that genuine but small
regions are not removed; and ii) feature high usability, because no user-defined parameter
is required. Experimental results confirm that MPAC may be considered an easy-to-use
and effective algorithm for use in cascade with a c-means clustering algorithm to segment
images featuring smooth surfaces and no texture. Within the frame of the debate started
by Zamperoni [1], we recommend inclusion of the proposed algorithm in a commercial
image-processing all-purpose software toolbox.

The organization of this paper is as follows: Section 2 presents a brief review of statistical
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clustering algorithms for image segmentation; Section 3 reviews the PAC algorithm; in
Section 4 the MPAC scheme is proposed. Experimental results are discussed in Section 5;
conclusions are presented in Section 6.

2 Statistical approaches to image analysis

Let us consider clustering algorithms for image segmentation defined as optimization prob-
lems. We identify as y; the observed vector at pixel ¢, which belongs to a two-dimensional
region (image) S, such that i € {1,n}, where n is the total number of pixels. Each pixel
i can take one label (pure substance) z; € {1,c}. An arbitrary labeling (clustering) of S
is denoted by z = (z1,...,z,). Some probabilistic methods provide estimate Z of the true
(although unknown) labeled scene z*, which is chosen to have maximum probability, given
observables y. By Bayes’ theorem, & maximizes the posterior probability

P(z/y) o< l(y/z)p(z), (1)

where [(y/z) is the class conditional density and p(x) is the prior. Thus, Z is the maximum a
posteriori (MAP) estimate of * that maximizes the posterior cost function (1). A common
assumption is that given any particular scene z, observables are conditionally independent
and each pixel value has the same class conditional density function f(y;/z;), dependent
only on z;. Then,

I(y/=) :f[f (yi/zi)- (2)

In the hypothesis that the 2-D random field (stochastic process) {p(z)} is any locally de-
pendent Markov Random Field (MRF), then

P(z;/zs;) = pi(zi/zN,), (3)

where zg; is the scene reconstruction anywhere, but pixel i, p; is specific to pixel 4, and
zn; is the scene reconstruction in the neighborhood of pixel 7 to be defined according to an
m—th order MRF (typically, second-order; for more details refer to [6], [8], [20]). Suppose
that our goal is to estimate Z; at pixel ¢ given all observables y and current reconstruction
s, elsewhere, i.e., #; maximizes P(x;/y,%s;). According to assumptions (2) and (3), we
can write [9]

P(zi/y, &s;) o< f(yi/zi)pi(@i/EN;,)- (4)

In an iterative optimization procedure the “hats” in Equation (4) imply the use of estimated
label assignments from the previous iteration in the current iteration. Since

P(x/y) = P(J"i"q;sg/y) = P(xi/y,:vgg)P(ng/y),

maximization of Equation (4) guarantees that P(z/y) never decreases at any maximization
step, i.e., convergence to a local maximum of P(z/y) is assured. When addressing pixel
i with Equation (4), only y;, ; and the labels of the neighbors are required. Implemen-
tation of Equation (4) is trivial for any MRF {p(z)}, which is locally dependent. While
maximization of Equation (4) is performed at every point in the image, label updating
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can be implemented, for example, in a batch mode (at the end of each raster scan). This
iterative suboptimal procedure, termed the Iterated Conditional Modes (ICM) algorithm,
guarantees convergence to a local maximum of P(z/y) in few processing cycles (e.g., about
six [9]). Then, ICM must be started with a good initialization of the scene x, which is often
provided by a noncontextual ML classifier [9]. ICM has been criticized for its heavy depen-
dence on initial classification [25], and because it ignores the fuzzy membership (degree of
compatibility) with which a pixel is associated with a given class [9], [11], [26]. For example,
when applied to satellite image applications, fuzzy classification can be employed to identify
misclassified cases and to direct ground surveys [11], [17], [27]. Simulated Annealing (SA)
exploiting the “Gibbs sampler” is capable of reaching the global maximum of

Pr(z/y) o< {l(y/2)p(x)}", ()

where T' > 0 is a user-defined parameter representing the “absolute temperature” of the
system, when at each pixel i label z; is chosen to maximize the posterior probability [6], [9]

Pr(zi/y, zs,) o< {f (yi/i)pi(zi/zn;) }/T (6)

Observe that ICM, which provides simple suboptimal iterative scene estimates, is equivalent
to SA when T is fixed to 1 [9].

If pairwise interactions in a second-order MRF {p(z)} are considered exclusively (i.e.,
three- and four-point cliques are ignored), and a single smoothing parameter (two-point
clique potential) g is employed (i.e., all neighbor pairs are treated equally), then [7], [9],
[12],

pi(zi/2N;) o< expla(z;) + Bii(z:)], (7)

where a(z;), related to one-point clique potential, is the a priori knowledge of the relative
likelihood of category assignment z; [7], while 4;(x;) is the current number of 8-adjacency
neighbors of ¢ having label z;. Counter 4;(z;) is termed “self-aura measure” [20]. Comple-
mentary to the self-aura measure is the “cross-aura measure”, 9;(z;), defined as the current
number of 8-adjacency neighbors of 7 having a label different from z;, such that

Ui (x;) + 0i(x;) = 8.

Parameter 8 in Equation (7) can be considered an intensive quantity, independent of the
number of particles (pixels) present in the system; this term describes pairwise interac-
tion potential between two categories that can be related to pure substances or fluids. To
continue with the analogy to pure substances, the self-aura measure, which is an exten-
sive quantity, increases when the spatial clumpiness of the clustered (segmented) image
increases, that is, when the separability between cluster types increases, which is to say
when the common boundary between different clusters decreases. Vice versa, the cross-
aura measure increases when the mixing between pairs of different clusters increases, i.e.,
when the common boundary between pairs of clusters increases.

As underlined by several authors [7], [28], the MRF model by itself is not very useful,
unless we provide a good model for class conditional density f(y;/z;). Modeling of joint
class conditional density [(y/z) affects MAP estimate Z not only because the model is simply
involved in characterizing the posterior cost function (1), but also because it affects estimate



% when used to provide starting scene z (e.g., determined by the use of a noncontextual
ML classifier) for a contextual iterative classification method such as ICM [28].

Two major models can be used in formulating class conditional densities. The first
model, termed continuous random field model [28], employs the causal autoregressive model,
the simultaneous autoregressive model, or the conditional Markov model [28], to describe
statistical dependency of a gray level at a lattice point on that of its neighbors, given the un-
derlying classes (interpizel feature correlation, [14]), e.g., see [10], [23]. It is computationally
expensive and may be preferred in modeling images featuring distinct texture information
[10], [28]. It will not be further considered in this paper, since we address images featuring
little useful texture information. The second model in formulating class conditional densi-
ties is the conventional spectral model based on a multivariate-Normal assumption for the
distribution of independent spectral responses [28]: in the hypothesis that each category
J € {1, c} has uniform intensity u(j) and that the image is corrupted by a white Gaussian
noise field independent of the scene and featuring standard deviation o, then the conditional
density term f(y;/xz;) becomes [7], [9], [10]

£l f3) = esp {55l = i)} Q

This spectral model is computationally simple and yields good classification results when
applied to images holding little useful texture information [28]. Substituting Equations (7)
and (8) in Equation (4), and setting v = 1/202, we obtain the final form of the suboptimal
iterative solution to the maximization of (1), which is

; = arg ximiI}c}{v[yi — p(@)]? — ala;) + Boi(w:)}, VieS. (9)
The first term on the right side of Equation (9), called the error term [15], constrains inten-
sity of the region type p(x;) to be close to data y;, i.e., it represents fidelity of the region
type to the data [9]. The third term on the right side of Equation (9) imposes spatial con-
tinuity in pixel labeling to reduce “mixing” between different pure substances (categories).
In the framework of regularization theory, the sum [—a(xz;) + 89;(x;)] is termed smoothness
functional or stabilizer. A stabilizer embodies our a priori knowledge of the labeled scene
and is used to impose constraints on the solution, since significant probabilities are assigned
only to underlying scenes that satisfy these constraints [15]. According to regularization
theory, parameter (3 in Equation (9) is a regularization parameter that determines the trade-
off between the strength of the a priori assumptions about the solution and the closeness
of the solution to the data. For example, as noise (degree of uncertainty) increases, then (3
should increase, to find a solution diminishingly closed to the raw data.

It is to be observed that v and [ are inversely correlated: reducing «y (increasing o)
is equivalent to increasing (3 to obtain smoother segment contours while larger details are
lost, and vice versa [7]. When § = 0, Equation (9) is equivalent to an ML classifier
ignoring contextual information. In [9], it is remarked that the exact value of § is usually
unimportant with ICM if smaller values are used on earlier iterations [9], so that at an early
stage the algorithm follows the data, while at later stages the algorithm follows the region
model [7]. However, in many practical applications, 3 is kept constant [7], [9], [23] because
the schedule needed for changing this parameter would require additional free parameters
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which are generally image dependent [23]. If the 2-D stochastic process {p(x)} is to support
special features such as thin lines, then pairwise interaction models do not suffice, and
smoothing parameters (s, as well as the neighborhood size, must be adapted depending on
the type of scene and, possibly, on local image properties [8], [9], [21].

3 Pappas clustering for image segmentation

In [7], Equation (9) is adapted to exploit both types of contextual information, namely,
interpixel feature correlation given the underlying classes and interpixel class dependency
[14] (see Sections 1 and 2). Equation (9) is modified as follows

T; = arg xilell{ifc}{’Y[yi — o (:))? — a(@:) + Boi(x:)}, Vi€ S, (10)
where the model for conditional density (error term) employs a slowly varying intensity
function fw,(z;) estimated as the average of the gray levels of all pixels that currently
belong to region type z; and fall inside a window W; which is centered on pixel 7. The
window size decreases monotonically as the algorithm approaches convergence to guarantee
robust estimation of intensity functions as the segmentation, which is “crude” in the early
stages of the algorithm, becomes progressively more sensitive to local image properties [7].
When the number of pixels of type z; within window W; is less than or equal to window
width W; ,,, then estimate fiyy,(z;) is not considered reliable and pixel ¢ cannot be assigned
to region type z;. Thus, isolated regions with area smaller than W;,, are removed by the
clustering algorithm. As shown in [7], the new spectral model of the error term proposed
in Equation (10) makes PAC more robust than traditional c-means clustering algorithms
in the choice of the number of clusters [19], because regions of entirely different intensities
can belong to the same category, as long as they are separated in space.

In Equation (10), Pappas also fixes a(z;) = 0,Vz; € {1,c}, ie., all pixel states are
assumed to be equally likely, and employs a constant 8 = 0.5 for all iterations and for
any image. Vice versa, coefficient -y, which is inversely related to noise variance, is either
user-defined or assessed from the image of interest to control the amount of details detected
by the algorithm (which increases as 7 increases). Then, Equation (10) becomes

T; = arg min{{ilr,lc}{'y[yi — fw, ()2 + 0.5 - 9;(z:)}, Vi€ S, (11)
where y is a free parameter.

In [7], a PAC hierarchical multiresolution implementation is proposed to reduce the
amount of computation. This implementation constructs a pyramid of images at different
resolutions by low pass filtering and decimating by a factor of two. At each level in the
pyramid, the algorithm uses the segmentation generated at the previous level, expanded
by a factor of two, as a starting point. The v parameter doubles when the resolution level
decreases (i.e., noise standard deviation is reduced by half, then algorithm follows the data
at low resolution stages), while parameter § is kept unchanged (otherwise, vy can be fixed
while (3 is reduced by half). This multiresolution approach, besides reducing computation
time, may improve feature-preserving capability (for details, refer to [7]). The Pappas
adaptive clustering algorithm for image segmentation at a given resolution level is shown
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in Fig. 1. For implementation details about how to reduce computation time in estimating
the intensity parameters, refer to [7].

4 Modification of Pappas’ algorithm

Our main objective is to segment noiseless images featuring smooth surfaces and no texture
while preserving genuine but small details. Real data sets satisfy these pictorial constraints.
For example, high resolution satellite images acquired by SPOT HRV or Landsat TM sensors
may be not severely degraded by noise. If this is the case, the model used to express
the joint class-conditional distribution can be based on a multivariate-Normal assumption
of independent spectral responses [28], which is consistent with Equations (9) and (10).
Therefore, to reach our goal, a feasible approach is to develop a Modified PAC (MPAC)
algorithm featuring enhanced pattern-preserving capability. Thus, in line with the debate
started by Zamperoni [1], we do not claim to present yet another picture segmentation
algorithm. As an adaptation of Equation (10), we adopt the following cost function

Z; =arg min {A(z;)}, Vie€S, (12)
x;€{1,c}
such that
min{[y; — fiw, (#:)]% [vi — Aw (2:)]*},
Alzi) = if fiw, (z;) exists and is considered reliable; (13)

[yi — dw (x:)]?, if fw, (7;) does not exist
or is considered unreliable, (14)

where W identifies the fixed window that covers the entire image.

A scheme of the MPAC algorithm at a given resolution level is shown in Fig. 2. The
main differences between MPAC and PAC, emerging from the comparison of Figs. 1 and 2
and Equations (10) to (12) respectively, can be summarized as follows:

1. In MPAG, since 8 = 0 (see Equations (10) and (12)), no spatial continuity in pixel la-
beling is enforced, i.e., contextual information is employed to model class conditional
distributions exclusively. Since it ignores any regularization term in its objective func-
tion, MPAC focuses on keeping the error term low, so that local intensity parameter
fw, (z;) of region type z; is kept as close as possible to observable data y;. This also
means that MPAC assumes to deal with noiseless raw images (see Section 2). Since it
employs no regularization coefficient, MPAC is also easy to use: in cascade to a non-
contextual c-means clustering algorithm, MPAC requires no user-defined parameter.

2. Rather than alternating estimation of local intensity parameters and pixel labels,
MPAC alternates between estimating local intensity parameters, pixel labels, and
global intensity parameters.

3. If no local intensity average is available to model one category in the neighborhood of
a given pixel, MPAC employs global statistics to determine whether that category is
the one closest to pixel data. Note that when an intensity estimate jiy, (z;), computed
in neighborhood W; < W centered on pixel ¢, does not exist or is considered unreliable
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Figure 1: The Pappas adaptive clustering algorithm for image segmentation at a given
resolution level.
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by Equation (12), then global intensity fiy (z;), which is the image-wide estimate of
the average gray value of all pixels currently belonging to region type z;, is employed
instead for comparison with the pixel data according to Equation (14). In line with
Equation (10), local estimate iy, (x;) is not considered reliable by Equation (12) when
the number of pixels of type z; within window W; is less than or equal to adaptive
window width W;,,. This adaptation of the Pappas algorithm is sufficient to avoid
removal of isolated but genuine regions whose area is smaller than W ,,.

4. In MPAC, when local intensity estimate fw,(z;) exists and is considered reliable by
Equation (12), both local and global intensity estimates, fiw,(z;) and fiw(z;) respec-
tively, are employed for comparison with the pixel data according to Equation (13).
It is worthy of mention that we have found images to which Equations (12) to (14)
apply successfully while exclusive exploitation of local intensity estimates in Equation
(13) is uncapable of providing satisfactory image partitions.

Theoretical failure modes and limitations of the MPAC algorithm are listed below:

1. MPAC can be applied only to images where sharp intensity transitions occur at re-
gion boundaries, i.e., where each category is characterized by a slowly varying intensity
function. In fact: i) MPAC employs no texture model; and ii) owing to its crisp label-
ing strategy, MPAC is unable to ignore noisy pixels while segmentation parameters
are estimated.

2. MPAC is a suboptimal iterative algorithm detecting local minima. This is tantamount
to stating that MPAC largely depends on its initialization. To initialize MPAC, any
hard c-means clustering algorithm can be chosen from those found in the literature,
see for example [30], [31]. One main issue regards the number of clusters to be
detected [19], [23]. Nonetheless, in line with PAC, MPAC is more robust than c-
means clustering algorithms in the choice of the number of clusters, because regions
of entirely different intensities can belong to the same category, as long as they are
separated in space.

3. MPAC exploits higher degree of heuristics than PAC, i.e., MPAC features a statistical
framework which is less rigorous than that featured by PAC.

5 Quantitative evaluation of segmentation

Most picture partitions are evaluated visually and qualitatively on a subjective, perceptual
basis. This is also due to the fact that traditional supervised measures employed in image
processing tasks, such as the mislabeling rate, are global statistics unable to account for
local visual properties. For example, the segmentation of a crossboard picture may improve
when the number of small holes decreases even though its mislabeling rate actually increases
[22]. Therefore, these global statistics cannot be employed for quantitative evaluation of
picture segmentation [29]. Since no single segmentation goal exists because of the subjective
appraisal of continuous perceptual features, a system developed to compare segmentation
results must employ [4], [5]: i) an entire set of measures of success (termed battery test)
to account for the fuzziness of perceptual segmentation; ii) a test set of images to allow
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exploitation of supervised data, i.e., of a priori knowledge about the objects in a scene,
so that the external environment (supervisor) provides the generic (vague) segmentation
task with an explicit goal; and iii) a set of exisiting techniques against which the proposed
algorithm must be compared.

Let us start by defining the battery test. As we are dealing with image segmentation
algorithms that minimize a given cost function, i.e., algorithms that are well-posed and
feature one explicitly defined segmentation objective, this function is included in the battery
test of the system we have developed to compare segmentation results. Other statistics
that are considered in the segmentation comparison are: average value of the error term,
number of cycles required to reach convergence, number of label replacements, and number
of misclassified pixels when ground truth data are available. Note that computation time is
not considered in the battery test since the proposed MPAC algorithm may employ a PAC-
based hierarchical multiresolution implementation that significantly reduces the amount of
computation (for details, refer to [7]).

The test set of images must consist of a sufficient number of real and standard data sets
capable of demonstrating the potential utility of MPAC, i.e., these images must feature a
high signal-to-noise ratio and little texture. We selected a standard achromatic human face
(Lenna), a three-band SPOT HRV image, and a Landsat TM image provided with super-
vised data fields. Because of difficulties in comparing alternative classification procedures in
a meaningful way, the first application uses a face as opposed to natural scenes because we
know what a face looks like and can therefore judge the results of the clustering algorithm
intuitively [11].

To demonstrate its potential utility, MPAC is compared against two existing segmen-
tation algorithms based on probabilistic theory. The first of these clustering algorithms is
the PAC iterative procedure implemented to detect a local minimum of the following cost
function:

£ = argm,m{inc}{[yi — pw, ()] + B di(z:)}, Vi€, (15)
where [, rather than v, as in Equation (11), is the free parameter to be user-defined, which
makes the error term in Equation (15) more similar to that employed in Equations (13) and
(14). Experimentally, we discovered that in our test images several pixels may feature no
reliable intensity estimate in their adaptive neighborhood at some resolution level. Thus,
we had to remove the Pappas constraint that considers any estimate fw,(z;) unreliable
when the number of pixels of type z; in window W; is less than or equal to window width
Wi w- In other words, in our implementation of the Pappas algorithm, any category z;
featuring pixel occurrence above zero within window W; is considered in the minimization
of Equation (15).

The second segmentation scheme employed for comparison is the SA algorithm, which
is a general purpose approach for detecting the absolute minimum of a cost function [32].
We employ SA to minimize the cost function:

&; = arg m{iln}{[yi—u(wi)]2+ﬁ'ﬁi(wz‘)}a Vi€ S, (16)
x;€1l,c

where [ is the free parameter to be user-defined, and p(z;) is the non-adaptive (image-wise)
vector parameter of region type x; to be provided by a noncontextual classifier (e.g., the hard
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c-means clustering algorithm). Note that Equation (16) is a special form of Equation (9)
to be compared with Equation (15). According to the principles of simulated annealing [8],
as temperature 7' decreases, the chance of random label assignments decreases accordingly.
At each iteration, T is lowered by a constant cooling rate ¢, which is fixed at 0.95. Pixels
are visited according to a raster scan and updated in batch (synchronous) mode at the end
of each cycle [9]. Unfortunately, SA requires long computation times to run successfully.

5.1 Standard image application

The standard achromatic input image of Lenna is shown in Fig. 3. Six category templates
are fixed by a photointerpreter: u(1) = 68 (corresponding to surface classes: shadow wall,
hair), u(2) = 100 (hair), p(3) = 143 (wall, hat), p(4) = 160 (skin), p(5) = 190 (hat),
p(6) = 213 (wall, skin). This set of templates is larger than what is suggested in [7], where
2 to 4 clusters were employed to obtain caricatures of the original images. These templates
are employed by the noncontextual hard c-means clustering algorithm to provide the three
segmentation algorithms under testing with an initial segmentation to start from. To high-
light functional differences between the three algorithms, free parameter 8 in Equations
(15) and (16) is kept low. This choice yields SA and PAC segmentation results where small
spatial details tend to be preserved, and can be compared to segmentation results of MPAC,
which implicitly adopts parameter 8 = 0.

Fig. 4 shows the output of the Simulated Annealing (SA) algorithm exploiting param-
eters T' = 800, § = 0.95, 8 = 0.5, tjpae = 150, where t,,4, is the epoch at which the
algorithm is stopped [32]. Since weight  of the term enforcing spatial continuity in pixel
labeling is small, then, as expected, minimization of Equation (16) provides a segmentation
result almost identical to that generated by the hard c-means clustering algorithm at the
initialization step. For this reason the initial segmentation provided by the hard c-means
clustering is not shown. Figs. 5 to 7 show the plots of the mean value of Equation (16), the
mean value of the error term in Equation (16), and the percentage number of replacements
per pixel (multiplied by factor 100) respectively. All plots are in terms of the epoch number.
Of course, since g is small, the two plots in Figs. 5 and 6 respectively are quite similar.

Fig. 8 shows the output of the PAC algorithm exploiting parameter 8 = 0.5, t;q, = 150,
where t,,,4, is the epoch at which the algorithm is stopped. Figs. 9 to 11 provides meaningful
plots of this PAC application at full resolution. PAC reaches convergence after about 10
iterations, although the cost function tends to oscillate once its asymptote has been reached.
Since weight [ of the term enforcing spatial continuity in pixel labeling is small, then
minimization of Equation (15) is mostly focused on minimization of the error term. This is
shown in Figs. 9 and 10 where plots of the PAC mean cost and error term appear similar.
Observe that although [ is the same as the one in the SA application, small details are
better preserved in Fig. 8 than in Fig. 4 (e.g., in the woman’s hat). The conclusion is that
the enhanced feature-preserving capability of PAC with respect to SA is totally dependent
on their different class conditional density models (error term). As expected, Figs. 9 to 11
also show that PAC reaches convergence earlier than the time-consuming SA algorithm at
full resolution.

Fig. 12 shows the output of the MPAC algorithm exploiting parameter ¢, = 150,
where t,,4, is the epoch at which the algorithm is stopped. Since MPAC does not enforce
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Figure 3: Standard achromatic input image of Lenna (521x512 pixels).
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Figure 4: Output of the SA algorithm applied to Fig. 3. SA parameters are: T = 800,
0 =0.95, 8 = 0.5, tmaz = 150.
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Figure 5: Plot of the SA algorithm applied to Fig. 3: mean value of Equation (16).
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Figure 6: Plot of the SA algorithm applied to Fig. 3: mean value of the error term in
Equation (16).
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Figure 7: Plot of the SA algorithm applied to Fig. 3: the percentage number of replacements
per pixel.
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Figure 8: Output of the PAC algorithm applied to Fig. 3. PAC parameters are: 8 = 0.5,
tmaz = 150.
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Figure 9: Plot of the PAC algorithm applied to Fig. 3: mean value of Equation (15).
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Figure 10: Plot of the PAC algorithm applied to Fig. 3: mean value of the error term in
Equation (15).
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Figure 11: Plot of the PAC algorithm applied to Fig. 3: percentage number of replacements
per pixel.
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any spatial continuity in pixel labeling, small details are preserved better in Fig. 12 than in
Fig. 8 (e.g., in the woman’s hat). MPAC tolerates isolated pixels, which are considered a
problem in [7] even though they feature high contrast to their neighbors. This creates a sort
of dithering effect around the woman’s shoulder, for example. Overall, subjective appraisal
of Fig. 12 with respect to Fig. 8 may be either positive or negative, accounting for the
subjective nature of segmentation problems. However, this subjective assessment may not
be relevant, with Fig. 12 representing a limiting product (when 8 = 0) of MPAC, which is
a (slightly modified, see Section 4) PAC algorithm capable of generating, in its traditional
form, Fig. 8 when S is small, starting from Fig. 3. Figs. 13 and 14 provide meaningful
plots of this MPAC application at full resolution. MPAC reaches convergence after about
20 iterations. To be compared with initial centroid values, final templates estimated by the
MPAC algorithm are: p(1) = 69.1, x(2) = 107.1, u(3) = 138.8, u(4) = 161, u(5) = 185.4,
wu(6) = 206.

5.2 Unsupervised satellite image application

Figs. 15 to 17 show a multispectral SPOT HRV image of the city of Porto Alegre (Rio
Grande do Sul, Brazil) acquired on Nov. 7, 1987. Spectral bands are Green, Red and Near
InfraRed, respectively. We underline the presence of three bay bridges linked to the large
island in the upper left-hand corner of these images. A zoomed area around the city airport
extracted from Fig. 17 is shown in Fig. 18.

Eight category templates are fixed by a photointerpreter: u(1) = (49,43,18) (water),
w(2) = (39,30,66) (vegetation), u(3) = (46,30,112) (vegetation), u(4) = (49,42,36) (air-
port, asphalt), u(5) = (66,66,85) (street), u(6) = (207,193,152) (metal roofs), u(7) =
(50,46, 62) (houses), u(8) = (57,51,62) (houses). This set of templates is larger than that
suggested in [7] to obtain caricatures of the original images. These templates are employed
by the noncontextual hard c-means clustering algorithm to provide PAC and MPAC with
an initial segmentation to start from. This initial segmentation is shown in Fig. 19. The
zoomed area taken from Fig. 19 and corresponding to Fig. 18 is shown in Fig. 20. This clus-
tered image shows the presence of several isolated pixels which are typical of noncontextual
classification.

To highlight functional differences between the three algorithms, free parameter 8 in
Equations (15) and (16) is kept rather low. This choice yields SA and PAC segmentation
results in which small spatial details tend to be preserved (i.e., the algorithm follows the
data, rather than following the prior region model [7]), and can be compared to MPAC
segmentation performances. As in [7], the standard deviation of noise in each spectral band
of the satellite image was assumed to be o = 4 gray levels, then v = 1/202 = 0.031. In this
case, from Equation (11), ratio 8/ = 0.5/0.031 is approximately equal to 16. In Equations
(15) and (16), this parameter condition is equivalent to fixing 8 = 16 given y = 1.

Fig. 21 shows the output of the SA algorithm exploiting parameters T' = 800, § =
0.95, 8 = 16, and t;e, = 150. Fig. 22 shows the zoomed area extracted from Fig. 21
and corresponding to Fig. 18. As expected, since weight [ of the term enforcing spatial
continuity in pixel labeling is small with respect to the error term, which tends to increase
with the number of image bands, minimization of Equation (16) provides segmentation
results that are not so different from those depicted in Fig. 19, although spatial details are
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Figure 12: Output of the MPAC algorithm applied to Fig. 3. MPAC parameter is: ty,q, =
150.
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Figure 13: Plot of the MPAC algorithm applied to Fig. 3: mean value of Equation (12)
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Figure 14: Plot of the MPAC algorithm applied to Fig. 3: percentage number of replace-
ments per pixel.
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Figure 15: SPOT HRV image of the city of Porto Alegre (Rio Grande do Sul, Brazil): Band
1 (Visible Green; 512x512 pixels).




Figure 16: SPOT HRV image of the city of Porto Alegre: Band 2 (Visible Red).
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Figure 17: SPOT HRV image of the city of Porto Alegre: Band 3
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Figure 18: A zoomed area around the city airport extracted from Fig. 17.

lost (e.g., see the bay bridges in Fig. 21 and some linear patterns in Fig. 22).

Fig. 23 shows the output of the PAC algorithm exploiting parameter 8 = 16, and
tmaz = 150. The asymptote of the cost function (16) is reached after about 20 iterations at
full resolution. Fig. 24 shows the zoomed area extracted from Fig. 23 and corresponding
to Fig. 18. Note that although ( is the same as the one in the SA application, small details
are preserved better in Fig. 24 than in Fig. 22. In Fig. 24, the number of isolated pixels
is reduced with respect to Fig. 20 (some of them are still present due to oscillations in the
estimation of the labeled scene). The conclusion is that the enhanced feature-preserving
capability of PAC with respect to SA is totally due to their different class conditional density
models (error term).

Fig. 25 shows the output of the MPAC algorithm exploiting parameter t,,,, = 150.
The asymptote of the cost function (15) is reached after about 15 iterations at full reso-
lution. Fig. 26 shows the zoomed area extracted from Fig. 25 and corresponding to Fig.
18. In Fig. 26, the number of isolated pixels is reduced with respect to Fig. 20. Many
isolated pixels, rather than being filtered out, as occurred in Fig. 24, have been linked to
neighboring pixels featuring similar spectral signatures. Since MPAC does not enforce any
spatial continuity in pixel labeling, small details are better preserved in Figs. 25 and 26
than in Figs. 19 to 24 (e.g., in Fig. 25 the three bay bridges have been reconstructed).
To be compared with initial centroid values, final templates estimated by the MPAC algo-
rithm are: u(1) = (49.2,43.3,20), pu(2) = (41.4,31.6,73.1), p(3) = (45.1,33.6,96.4), u(4) =
(49.2,44.1,45.3), u(5) = (70,68.5,78), u(6) = (148.6,137.2,105.1), u(7) = (50.8,45.8,65.4),
w1(8) = (59.6,55.9,63.8).
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Figure 19: Initial segmentation of Figs. 15-17, obtained by a noncontextual c-means clus-
tering algorithm.
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Figure 20: Zoomed area taken from Fig. 19 and corresponding to Fig. 18.

5.3 Supervised medical image application

A three-band Magnetic Resonance Image (MRI) of a horizontal section of a brain is shown
in Figs. 27 to 29 (Band 1: T1 Magnetization-Prepared RApid Gradient Echo, MP-RAGE;
Band 2: T2 Spin-Echo, SE; Band 3: Proton Density, PD). Regions belonging to six classes
(tissues) of interest are manually selected by expert photointerpreters. These classes are
(see Fig. 30): white matter (red), grey matter (green), Cerebral Spinal Fluid (CSF, liquor:
light blue), lesions (yellow), background (blue), other (bones, fat, thalamus: white).

A Self-Organizing Map (SOM, [33]) is employed to extract twenty-two statistical regu-
larities (equivalent to centers of image categories or clusters) from the MRI 3-D histogram.
Then each cluster is related to one supervised class by majority voting. All categories relat-
ing to the same class form a so-called metacategory, i.e., six metacategories are formed (one
for each class). Next, cluster centers detected by SOM are used as input by MPAC, and
each image category recomputed by MPAC is related to one supervised class by majority
voting. Six new metacategories are formed according to MPAC. Tables 1 and 2 show that,
owing to exploitation of contextual information, MPAC improves the average classification
performance of the non-contextual (pixel-based) clustering algorithm. Analogous results
have been obtained when eleven classes of interest are selected in the MRI image (MPAC
average classification performance scoring 64.3 % versus 61.5 % of SOM), and when satellite
images provided with ground truth regions are classified.

6 Conclusions

PAC is a traditional hard clustering algorithm for image segmentation designed as an op-
timization task. It is based on a statistical framework where neighborhood adaptivity and
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Figure 21: Output of the SA algorithm applied to Figs. 15
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Figure 22: Zoomed area taken from Fig. 21 and corresponding to Fig. 18.

multiresolution analysis are pursued. In this paper, the MPAC algorithm is proposed as
a modified version of PAC to feature enhanced pattern-preserving capability with noise-
less and textureless images, i.e., when image categories feature slowly varying intensities.
These basic assumptions, although severe, reasonably approximate characteristics of several
real-world images. MPAC is an iterative suboptimal segmentation algorithm featuring: i)
adaptive- and shrinking-neighborhood approach to the estimation of reliable category pa-
rameters; ii) a multiresolution approach to improve computation time and segmentation
accuracy [7]; iii) hard (crisp) pixel labeling; iv) a spectral model of the error term that
accounts for the interpixel feature correlation given the underlying classes (i.e., it exploits
contextual information); and v) no interpixel class correlation model of the prior term, i.e.,
no contextual information is exploited to detect known stochastic components of the labeled
scene.

To segment an image featuring no texture and noise, MPAC must be used in cascade
with a noncontextual hard c-means clustering algorithm (e.g., see [30], [31]), that provides
histogram analysis of pixel values. By alternating between estimating pixel labels and local
and global intensity values, MPAC preserves small details better than noncontextual hard
c-means clustering algorithms. Moreover, in line with PAC, MPAC is more robust than
c-means clustering algorithms in the choice of the number of clusters, because regions of
entirely different intensities may belong to the same category as long as they are separated
in space [7]. Since MPAC is also easy to use, requiring no user-defined parameter, its
exploitation is recommended in a commercial image-processing all-purpose software toolbox
[1]: a) to improve segmentation performances of a noncontextual hard c-means clustering
algorithm; and/or b) to provide initial conditions to hard iterative contextual segmentation
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Figure 23: Output of the PAC algorithm applied to Figs. 15-17. PAC parameters are:
B =16, timae = 150.
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Figure 24: Zoomed area extracted from Fig. 23 and corresponding to Fig. 18.

algorithms where spatial continuity in pixel labeling should be enforced as a monotone
increasing function of processing time (i.e., as the algorithm approaches convergence), such
as ICM or PAC (see Sections 2 and 3).

Future developments in the field of image segmentation algorithms based on iterative
(suboptimal) optimization approaches should employ in parallel:
1) soft decision strategies in pixel labeling to identify pure pixels, mixed pixels and mis-
classified cases [11], [13], [27], this information being necessary in map accuracy assessment
and/or for directing ground surveys [11];
2) adaptive neighborhood approaches, allowing reliable estimation of local pictorial param-
eters when the iterative procedure alternates between estimates of pixel labels and category
parameters [7];
3) multiresolution approaches, to improve computation time and performances [7], [22],
[23];
4) locally adaptive combinations of the two types of contextual information, namely, in-
terpixel feature correlation, given the underlying classes, and interpixel class dependency,
where all the a priori knowledge, if any, is employed to capture (detect) known stochastic
components of the labeled scene [7], [9], [21], [28].
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Output of the MPAC algorithm applied to Figs.

Figure 25:
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Figure 26: Zoomed area extracted from Fig. 25 and corresponding to Fig. 18.
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