
1

Enabling Synchronous Joint-Working In Java

Vladimir Minenko
International Computer Science Institute (ICSI), Berkeley, CA, U.S.A.

minenko@icsi.berkeley.edu

phone: +1 (510) 642 4274 ext. 306

ABSTRACT
This paper gives an outlook on technologies for joint-work-
ing with Java-based programs - applets and applications.
Various approaches and APIs applied to the Java environ-
ment are discussed and compared. A new architecture for
scalable Java application sharing is presented. Several sug-
gestions on possible future features of JDK facing synchro-
nous joint-working are presented.

Keywords: collaboration, joint-working, Swing, Java, JDK,
conferencing, application sharing, CSCW.

INTRODUCTION
This article focuses on design approaches and technological
possibilities of synchronous joint working with Java applica-
tions. In this case, “Joint working” means two or more indi-
viduals synchronously work in the same Java-based
application environment in different locations. This environ-
ment can be either a shared single-user Java application or a
special multi-user capable data processing application. In this
article the term “application” does not refer to any chat or
document exchange systems, but to an office suite, a CAD
system, a software IDE, etc.
The idea of synchronous joint working is not new in the
CSCW field. It mostly left research labs and turned into com-
mercial products. Several application sharing engines are
available for X Window [11], [12], Apple QuickView and
Microsoft Windows [9] operating environments. Neverthe-
less, the growing role of Intranets in the business data pro-
cessing and several peculiarities of the Java environment
open new horizons for enabling technologies, especially for
high-level collaborative frameworks.
The most important impact of Java on joint-working is that it
solves one of CSCW’s key problems [4]: distribution and
access to software and services for a group of users. There is
no sense in possessing a telephone, if nobody else has one.

Having a joint-working environment is useless, if your part-
ners do not have one. A Java program resides on the network.
Anybody who can access the network can use this Java pro-
gram. The same is valid for collaboration systems realized in
Java. This feature makes ad-hoc collaboration sessions and
long-term team building easier and more flexible. In addition,
object-oriented Java run-time and component-based GUI
architecture enable the realization of new scalable joint-
working and remote-access services.

This article discusses several approaches in the design of syn-
chronous joint-working in Java. All approaches focus on the
use of single-user Java applications* in multi-user environ-
ments. It also describes basic elements of a new approach
which realizes presentation independent scalable joint-work-
ing services on a GUI object level.

This article also gives a brief overview over the two most
powerful Java APIs for the design of collaborative environ-
ments and multi-user applications.

LEVELS OF AWARENESS AND TRANSPARENCY

Applications involved in joint-working can be placed on dif-
ferent levels of group-awareness. These levels reflect how to
what extent an application and its execution environment
know about being used by multiple users at same time:

1. Native multi-user. Applications with a data processing
flow and GUI specifically designed for synchronous use
by multiple individuals.

2. Multi-user enabled. Originally single-user applications
with some minor internal modifications in the event pro-
cessing and data synchronization.

3. Multi-user view. Originally single-user GUI elements of
the execution environment modified to support the multi-
user metaphor. Any single-user application with these
GUI elements can be operated by multiple users.

4. Shared Input. Modified event processing of the run-time
environment, which provides the mouse, keyboard and
some system access synchronization of several instances

*. If not indicated differently, here the term “application” also
includes here Java applets as well.

2

of one application executed by each user. Every single-
user application can be operated by multiple users with
some restrictions [3], [8].

5. Shared Graphic. Modified graphic rendering of the run-
time environment providing multiple graphic outputs of
one application instance. Every single-user application
can be operated by multiple users. Better network and
graphic performance is required.

The first two levels require either modifications in the appli-
cation code or the development of new applications with
build-in multi-user support. The last three approaches do not
assume any changes in applications. The required processing
takes place in the execution environment. These levels are
also know asapplication sharing.
There are several works [8], [5] discussing the advantages
and drawbacks of each level as well as different architectures
and implementations. The most important observation is that
the first level provides the best support of groupware aspects
of joint-working, whereas the last one provides the best inte-
gration of any single-user application into a multi-user envi-
ronment. All currently known commercial products use
either the first or the last approach. Several run-time and syn-
chronization problems prevent the availability of stable and
flexible solutions for traditional platforms (X Window,
Microsoft Windows, Apple QuickView) by using other lev-
els. The network-centric, object-oriented Java architecture
enables the design of new joint-working services on level 3,
which would be impossible on traditional platforms. There-
fore the advantage of level 3 is that it provides a high level of
group-awareness and yet does not require any changes in
applications.

BALANCING TRANSPARENCY AND AWARENESS

Talking about joint-working, a suitable proportion of trans-
parency and awareness must be found for a given system in a
given application area. The character of this proportion is
very similar to the “memory”/“access time” problems in data
structures and search algorithms. Finally, we want to put a
maximum amount of multi-user knowledge into any single-
user application with as little changes as possible in the
application itself and in the execution environment.
Again, like with the “memory”/“access time” problems,
some tricks can be applied to reach unreachable. Considering
Java, the main idea is to use its object-oriented character and
implement the group-awareness on the most abstract level of
the execution core of the system used by all applications.
An excellent example of what is possible on levels 3 and 4 is
the JAMM system designed by James Begole, Virginia Tech
[3]. JAMM applies “relaxed” WYSIWIS (What You See Is
What I See) metaphor by putting awareness into some GUI
object (i.e. level 3 on the list). Basing on the Swing GUI
from JDK 1.2, JAMM allows, for example, several users to
synchronously work on different pieces of one text in a sin-
gle-userNotepad application. A “radar view” displays the
working areas of each user.

This work introduces a different approach that is based cen-
tralized processing with a kind of reflection of the Java GUI
model over the network. It also provides a higher level of
group-awareness than known systems on level 5. Core ideas
and features of this approach are discussed in sections below.

SHARING JAVA
Commonly speaking, there are two run-time architectures for
enabling synchronous joint-working with single-user appli-
cations: multiple and centralized execution of shared appli-
cations. Both architectures have their advantages and
drawbacks discussed in detail in several publications [8],
[5]. When applied to the Java environment, these architec-
tures undergo some changes and become new features.

Figure. 1. Multiple Execution*

Multiple execution is known to have to provide sophisticated
synchronization mechanisms while executing several
instances of the same application for each user. Each
instance receives input and control events from the other
users via a synchronization channel #1 (Figure 1). A man-
agement module of channel #1 also has to keep the event
flow plausible and consistent for each application instance.
Early implementations of this architecture for Java (Collabo-
rator Toolset, from Old Dominion University, [1]) display
significant problems with an awkward event processing of
JDK 1.0.x; essential event information was consumed by
native window peers and some events carried unportable
data about its window peer. [3] gives a complete overview of
these problems. The Collaborator Toolset partly solved these
problems concerning event processing by replacing the
entire AWT toolkit with its own specially modified imple-
mentation. Collaborator’s AWT classes provide some addi-
tional synchronization and token control on channel #2.
The new event model and peer-less AWT in JDK 1.1 signifi-
cantly improved the situation. A version of JAMM used
these features for more efficient event distribution. JAMM
also solved another problem of the multiple execution archi-
tecture: joining latecomers to a running session. The problem
is to create a new instance of an application on the remote
host without playing back all the events of the session to a
new instance of a shared application. By using the Java Seri-

*. The structure of the Java run-time is simplified in this and all
following figures. Only the most important elements are listed

GUI

Application

Graphics
System

Native OS

Events

- related classes

Sync. #1

Sync. #2

Sync. #3

GUI

Application

Graphics
System

Native OS

Events

3

alization API, JAMM transfers object information to a new
participant and re-constructs the application state by creating
new object instances.
Nevertheless, two serious problems remain in the multiple
execution environment, if sharing needs to support complex
Java programs. It is still not possible to synchronize the
access to system resources (Figure 1, Sync. #3) without hav-
ing to change core modules of the run-time environment.
Many factors, such as data access times, quality of service
(QoS) parameters of the network, CPU load, etc., can nega-
tively influence the execution of an application and make
multiple instances of a shared application inconsistent
among participants. JAMM is announced to include special
wrapping system classes in future versions in order to keep
those factors under control and maintain application
instances consistent during the whole session.
Another open issue is the interaction of applications with
data. Sharing an application in a multiple execution architec-
ture also means sharing its data in the session. While syn-
chronizing the QoS parameters of data access can help to
keep consistency, the required data replication among ses-
sion participants may have negative impacts on data security.
However, in numerous cases, such as teleconsulting and tele-
learning, the data replication is not required. Users simply
need to have a joint view on the application and make some
inputs into it. Frequently, the application data is relevant
only for one session and can disappear after closing the ses-
sion. If some participants have small or portable devices,
data replication is not desired and can even be impossible.

Figure. 2. Centralized Execution

The centralized execution architecture involves only one
instance of the shared application. Remote hosts receive
information about visual presentations of an application on
the screen (usually Data #2 on Figure 2) and forward input
events back to the shared application (Figure 2, Data #1).
Since the application is running in its “original” environment
synchronization problems do not occur. Additionally, remote
participants need access neither to application classes nor to
its data. These are two main advantages of the centralized
architecture. The drawbacks of implementations on tradi-
tional platforms include that a relatively high network
throughput and a low network latency are required. The
multi-user awareness of centralized execution is also very
simple and provides only a token control with several pass-

ing policies.
It does not make much sense to realize this architecture with
processing of Data #1 and Data #2 under Java. Joint-working
on this level can be efficiently done with native sharing tools
such as [11], [12] or [9].
Nevertheless, new types of joint-working services can be
provided in Java, if a centralized sharing system will be
based on the processing of Java GUI component objects.
This can be done on the data channel #3 (Figure 2).
Since Java GUI components contain more information about
the application context, the centralized execution architec-
ture in Java integrates a higher level of group-awareness than
on traditional platforms. In this event, the sharing system
sends abstract data about the visual presentation of GUI
components. The GUI is rendered locally on each remote
host. This enables the system to send less data than on chan-
nel #2 and save network bandwidth.
This article presents the Component Model Reflector (CMR)
approach which is designed using the suggestions made
above. More details on this approach can be found under
“Inside the Component Model Reflector”.

Figure. 3. Centralized Java Joint-Working Scenarios

Figure 3 shows three application scenarios with a Java joint-
working service based on the new approach. These scenarios
are thought to show high scalability and flexibility of the
provided joint-working infrastructure. The core of this sys-
tem is a GUI reflector-storage. It collects data on the GUI of
applications assigned to a joint-working session. From a
functional point of view, the Reflector can be considered a
network proxy which provides GUI data for external repre-
sentations. A visualization of these data depends on a given
usage scenario (see Figure 3) and on the capabilities of
remote devices.
In the Thin Access scenario remote clients may be small or
portable devices like PDA. Users of these devices usually
need to access only some GUI elements of an application, for
example, a text in their main office. The Reflector sends a
pre-selected amount of low-bandwidth GUI data, thus
enabling remote clients to save resources and render only the
most important GUI elements. Since remote clients support a
Java environment, the application GUI may even keep its
original look-and-feel.
In numerous collaboration situations it is required to restrict
manipulation of a shared application by remote session par-

GUI

Application

Graphics
System

Native OS

Events

- Related classes

Data #3

Data #2
GUI

Graphics

Native OS

Events
Data #1

Java VM

Application
GUI

Remote
Classes Data

Reflector

Java VM
GUI

Thin Access

Restricted Access

Hetero-Access

Java VM
GUI

UI

4

ticipants. In theRestricted Access scenario the initiator of a
session can block several GUI elements for other session
participants. Using information about component objects,
the Reflector can apply special policies to all (or some) GUI
elements. Users can jointly work on a joint-venture docu-
ment but would not be able to load sensitive data, because,
for example, theLoad andSave menu items are blocked in
the Reflector.

In theHetero-Access scenario users can remotely control or
collaborate in highly heterogeneous environments. Remote
users can, for example, perform actions in an application by
calling from a touch-phone or joining a session from another
UI environment which does not support Java. This is possi-
ble because the Reflector does not contain any fixed visual-
ization data. Remote sites are responsible for the
visualization of GUI and for forwarding event data in the
format defined by the Reflector. In this case, the actual
implementation of the remote UI environment does not make
any difference for the processing flow.

The next section discusses the main principles of CMR. It is
followed by a section about the impacts of Java security on
the realization of synchronous joint-working.

INSIDE THE COMPONENT MODEL REFLECTOR

Swings, the new GUI API in the JDK 1.2, implements the
MCV (Model-Controller-View) approach [6] (see Figure 4).
MVC separates the visual presentation (view) of the GUI
from its logic (model) and event processing procedures (con-
trol). In Swings the combination ofview andcontrol is real-
ized by Look-and-Feel (L&F), a set subclasses of the
ComponentUI class. Themodel is realized in subclasses of
theJComponent class. L&F can either be changed at run
time by the application itself or specified in a configuration
file. Swing provides a rich set of various basic components,
which allow to build complex GUI.

Figure. 4. Swing Look and Feel (JDK 1.2)

In addition to Java-, Motif- and Windows-L&F, a Multiple
L&F (ML&F , also called “Multiplexing UI”) is provided
(see Figure 5). ML&F is able to manage numerous simulta-
neous views of one GUI. This feature is thought for inter-
faces with special (e.g. speech) input devices and for people
with disabilities* .

*. see the JavaSoft web site (www.javasoft.com) for more
information about Swing and JDK 1.2.

Figure. 5. Multiplexing Look-And-Feel

ML&F can be also used to build a CMR which can install a
custom L&F, i.e a new Component UI, and thus gain access
to the model data and GUI rendering of all Java programs
running in the virtual machine. At present this seems to be
the only suitable interface to realize the centralized execu-
tion architecture without having to change the core system
classes.
The main parts of CMR are aModel Mirror module and a
Control Broker module (see Figure 6), which can be imple-
mented in a proxy server. TheModel Mirror module collects
information about models of locally running Swing compo-
nents. When using the property interface of JavaBeans,
Model Mirror is notified each time a parameter in a compo-
nent has been changed. In addition to the data on the compo-
nent model,Model Mirror also stores information about the
layout and GUI hierarchy. Remote clients useModel Con-
structor to create a copy of a component and to feed its
model with current data.Model Constructors receive this
data fromModel Mirror via network or inter-client exchange
channels.

Figure. 6. A Component Model Reflector System

Once a remote instance of a component has been completely
created and installed,Control Sender begins to monitor all
events processed by a remote component. If an event on the
remote site requires changes in the model, it will be sent to
theControl Broker of CMR and forwarded to the local com-
ponent. If the owner of this application has defined special
token passing policies, the forwarding of input events can be
blocked.Control Broker uses the new EventQueueClass
interface to inject remote events into the application event
queue. All other events which do not change the model, such
asPaintEvent, are processed on the remote side without
involvement ofControl Broker, thus saving network band-
width and increasing the rendering performance.
If a remote site does not use Java, it has to provide at least a
Model Constructor and aControl Sender. In this case, a

JComponent
(Model)

View Controller

Component UI

Lightweight Peer

Application
Code

Graphic

JComponent
(Model)

Multiplexing UI

Component UI

Application

C
om

po
ne

nt
 U

I

. . . .

JComponent
(Model)

Model

CMR

Multiplexing UI

Component UI

Mirror

Control
Broker

JComponent
(Model)

Component UI

Model
Constructor

Control
Sender

Application

Proxy

5

remote UI environment is responsible for (e.g. visual, audio,
etc.) presentation of the model data and event processing.

Swing is a set of components. Most applications take advan-
tage of this by composing complex meta-components or
extending standard classes for special purposes. While CMR
does not have any problems processing meta components,
the processing of extended components may become a prob-
lem.

If a new class extends only aJComponent successor, no
problems will occur since the new class must use the inter-
face to a Component UI of the extended class. CMR will still
be able to handle this correctly. If an application also extends
a Component UI, CMR can only function, if these new com-
ponents are JavaBeans-conform and the new extended
classes are available on the remote site. Otherwise CMR will
not be able to detect which data it has to store inModel Mir-
ror andModel Constructor to load appropriate UI classes.

A serious limitation to the current CMR architecture is that it
cannot process direct graphic operations. This occurs if an
application uses a component surface to paint some custom
graphic bypassing the Component UI methods (see Figure
4). The only problem to support this is that theGraphics
object does not provide any hooks or other interfaces which
would be suitable to monitor and replicate graphic rendering.
CMR may provide a multi-user replacement to theGraph-
ics class but this will require changes in the Java core
classes. A simple monitor interface in instances of the
Graphics class might help to provide a solution for this
problem in the future. In this case, CMR will keep its func-
tionality, and broadcast graphic calls only if they do not form
part of the basic GUI rendering.

A simple custom ML&F to test the idea of CMR is realized
in our lab. The implementation supports only theJButton
class and intended to test the basic elements of the CMR
architecture. Tests shown that the approach is feasible to
support synchronous joint-working in Java. The methods of
Swing component classes provide enough information to
collect required data about the model of a component and
GUI layout. There is still a lot of work to do until the first
version of a complete system will be available.

JAVA SECURITY RESTRICTIONS

Java introduced heterogeneous execution of applications
loaded from a network. The use of public networks (particu-
larly, Internet) as main transport mediums for Java code
moved JavaSoft to implement strong security restrictions in
the execution of network code.

Sharing single user applications requires some additional
processing at run-time. Current Java security policiesdo not
allow to implement required processingwithout making any
changes to the Java environment.

All available implementations require a combination of the
following changes in JRE* on each participating host:

• installation of new classes;

• replacement of original classes with new “group-aware”
classes;

• modifications in the local JRE configuration files.
Component Model Reflector requires modifications of AWT
property files only. This must be done only on the host,
where a shared application is running. Remote participants
do not need to change local configuration or install any new
classes; they can download processing applets on-demand
from a CMR site. Nevertheless, in order to support graphic
output processing on component surfaces, installation of new
custom classes in JRE and access to core classes in JRE
could be required in the future.
An ideal environment for synchronous joint-working in Java
must support ad-hoc sessions: “load joint-working service
classes and share any Java application”. This is possible if
the following additional APIs were be integrated in JDK:
• all features below are available for signed Java classes

only;
• an applet API to create a customGraphic class;
• a set of hooks into rendering methods of the standard

Graphics class and its subclasses.
• an applet API to reside custom classes in JRE and replace

system classes, if required.
• an applet API to change JRE configuration files.

JAVA COLLABORATION TOOLKITS AND APIS
Unlike sharing systems, collaboration toolkits provide basic
collaboration APIs. The main goal of these APIs is to hide
the communication and management overhead from the
developer and simplify the development of collaborative
applications and integration of the collaboration paradigm
into single user applications. Applications based on such
APIs are on level one and two of the awareness list in section
“Levels of awareness and transparency”. Sharing systems on
other levels, such as CMR, can also use these APIs to imple-
ment multi-point data transport and basic session manage-
ment. Following subsections give a brief description of the
two most powerful APIs. Promondia (former COMO) [2]
was also a candidate for review but is not presented here due
to its weak API and insufficient documentation.

NCSA Habanero

Habanero (www.ncsa.uiuc.edu/SDG/Software/
Habanero) is probably best know Java development envi-
ronment for joint working applications. Along with an API,
Habanero includes several applications for synchronous col-
laboration: video, audio player, chat, drawing tools, etc.
Habanero’s unique feature is that it provides a set of classes
and interfaces for porting single user applications to multi-
user environments. This is done by using “wrapped objects”.
Single user applications are thought to be executed simulta-
neously by all participants. If a class of an application imple-

*. JRE - Java Run-time Environment, contains all classes and
tools required to execute Java code

6

ments theMarshallable interface, its objects can be sent
across the network. Synchronization of GUI interactions is
supported by theWrapped interface. In addition, it is neces-
sary to replace the event processing loophandleEvent()
with thedoEvent() and add the application to a special
MirrorFrame. Unfortunately, the current release (1.0)
supports only JDK 1.0.x event processing model. JDK 1.1.x
will be supported in an upcoming release.

JavaSoft JSDT
JSDT - Java Shared Data Toolkit (former JSDA) -
(www.javasoft.com/people/richb/jsdt), a new
part of the JavaMedia API suite, JSDT implements a multi-
point data delivery service for use to support highly interac-
tive, collaborative applications.
The primary functionality provided by JSDT is a set of APIs
for collaboration-aware Java code (Client) to send data
(Message) to all (or a part) of the participants (alsoClients)
within a communicationSession. This is accomplished by
implementing the Observer-Observable model with a single
send method. In addition, aToken abstraction provides syn-
chronization and locking mechanisms. JSDT also includes a
simple naming service that is required to locate a session. In
comparison to Habanero, JSDT is a set of APIs only; it does
not provide any ready-to-use applications. JSDT is very flex-
ible and powerful, but unlike Habanero, it does not provide
any guide-lines or APIs for porting single-user applications
to multi-user environments.
For a long time JSDT in an unofficial public review and test-
ing. Version 1.0 of JSDT has recently been moved to the
Java Developer Connection pages on the JavaSoft web site.
In addition to the JSDT API classes and documentation, the
distribution includes some sample applications in source
code: chat tool, sound player, stock viewer, white-board.

CONCLUSION
This article focused on technologies for synchronous joint-
working with Java applications and applets. This part of
CSCW tools is also known as “application sharing”. Appli-
cation sharing systems can be divided in multiple and cen-
tralized execution systems. Multiple execution systems
synchronize multiple instances of shared applications.
Although very advanced prototypes [3] are available, no
common solution for all synchronization problems has been
found. Centralized execution distributes GUI presentation of
one application instance to remote participants and, there-
fore, has no synchronization problems. Classic realization
approaches provide very simple groupware support and
require good network QoS parameters.
The Component Model Reflector (CMR) is a new approach
to enable synchronous joint-working in Java. CMR has sev-
eral features, which were impossible to implement in appli-
cation sharing on traditional platforms. CMR requires only a
few changes in JRE configuration files to be ready to share
applications. Remote participants do not need to make any
changes at all. Additionally, CMR is operational via slow

network links and provides better group-support than tradi-
tional application sharing systems. Further improvements of
CMR in connection with complex graphic applications and
flexible joint-working network services require new APIs in
JDK, if an implementation should require changes in system
classes.

Single-user Java applications and applets can also be modi-
fied to support synchronous joint-working. Habanero pro-
vides a JDK 1.0.x-based environment for porting Java code
to multi-user environments. JSDT by JavaSoft delivers a
powerful API for multi-point communication. JSDT is very
useful for implementing all classes joint-working services.

RELATED PUBLICATIONS AND REFERENCES

1. H. Abdel-Wahab, B. Kvande,An Internet Collaborative
environment for Sharing Java Applications, 5th IEEE
Workshop on Future Trends of Distributed Computing
Systems (FTDCS’97), 1997

2. U. Gall, F-J. Hauck,Promondia: A Java-Based Frame-
work for Real-Time Group Communication in the Web,
Proceedings of WWW6, 1997

3. J. Begole, C. Struble, C. Shaffer, Leveraging Java
Applets: Toward Collaboration Transparency in Java,
IEEE Internet Computing, March-April 1997

4. IEEE Internet Computing,Interview with Tom Malone:
Free on the Range, vol. 1, #3, May/June 1997

5. T. Graham, T. Urnes, R. Nejabi,Efficient Distributed
Implementation of Semi-Replicated Synchronous Group-
ware, Proceedings of UIST 96, 1996

6. G. Krasner, S. Pope,A cookbook for using the model-
view-controller user interface paradigm in Smalltalk-80,
Journal of Object Oriented Programming 1(3), 1988

7. J. Lauwers and K. Lantz,Collaboration Awareness in
Support of Collaboration Transparency: Requirements
for the Next Generation of Shared-Window Systems,
Proceedings of Human Factors in Computing Systems,
ACM Press, New York, 1990

8. J. Lauwers, T. Joseph, K. Lantz and A. Romanow, Rep-
licated Architectures for SharedWindows Systems: A
Critique, Proceedings of Office Information Systems,
SIGOIS Bulletin, (11)2,3, 1990

9. Microsoft,NetMeeting, www.microsoft.com/netmeeting

10. V. Minenko, J. Schweitzer, An Advanced Application
Sharing System for Synchronous Collaboration in Het-
erogeneous Environments, SIGOIS Bulletin, (15)2,
1994

11. V. Minenko, The Application Sharing Technology, The
X Advisor, 1995, re-published in MotifDeveloper, 1998,
www.motifzone.com/tmd/articles/XpleXer/
XpleXer.html

12. Sun Technology Enterprises, Inc,The Complete Guide
to ShowMe, www.sun.com/products-n-solutions/sw/
ShowMe/products/ShowMe_SharedApp.html

