Enabling Synchronous Joint-Working In Java

Vladimir Minenko
International Computer Science Institute (ICSI), Béak CA, U.S.A.

m nenko@ csi . berkel ey. edu
phone: +1 (510) 642 4274te 306

ABSTRACT

This paper gies an outlook on technologies for joinbk-

ing with Jaa-based programs - applets and applications.
Various approaches and APIs applied to the Javiron-
ment are discussed and compared. Av r@&chitecture for
scalable Jaa application sharing is presentedv&al sug-
gestions on possible future features of JKirig synchro-
nous joint-working are presented.

Keywords: collaboration, joint-varking, Swing, Jea, JDK,
conferencing, application sharing, CSCW

INTRODUCTION

This article focuses on design approaches and technological

possibilities of synchronous jointosking with Jaa applica-
tions. In this case, “Jointarking” means tw or more indi-
viduals synchronously evk in the same J¥a-based
application emironment in diferent locations. This &iron-

ment can be either a shared single-usea dpplication or a

Having a joint-working ewironment is useless, if your part-
ners do not hae one. A Jaa program resides on the netk.
Anybody who can access the netl can use this ya pro-
gram. The same isalid for collaboration systems realized in
Java. This feature mas ad-hoc collaboration sessions and
long-term team tilding easier and more fible. In addition,
object-oriented Je run-time and component-based GUI
architecture enable the realization ofwnecalable joint-
working and remote-access services.

This article discusses\sral approaches in the design of syn-
chronous joint-wrking in Jaa. All approaches focus on the
use of single-user va applications in multi-user ewiron-
ments. It also describes basic elements ofva agproach
which realizes presentation independent scalable jaink-w
ing services on a GUI objectvie.

This article also gies a brief verviewv over the tvo most
powerful Java APIs for the design of collabonegi erviron-
ments and multi-user applications.

special multi-user capable data processing application. In this

article the term “application” does not refer toyashat or
document gchange systemsubto an ofice suite, a CAD
system, a softare IDE, etc.

The idea of synchronous jointorking is not ne in the
CSCW field. It mostly left research labs and turned into com-
mercial products. Seral application sharing engines are
available for X Window [11], [12], Apple Quick\Wew and
Microsoft Windows [9] operating erironments. Neerthe-
less, the gneing role of Intranets in theusiness data pro-
cessing and seral peculiarities of the va ewironment
open n& horizons for enabling technologies, especially for
high-level collaboratre framevorks.

The most important impact of\vlon joint-working is that it
solves one of CSCW' key problems [4]: distribtion and
access to softare and services for a group of users. There is

no sense in possessing a telephone, if nobody else has one.

LEVELS OF AWARENESS AND TRANSPARENCY

Applications ivolved in joint-working can be placed on dif-
ferent levels of group-avareness. Theseuels reflect hw to
what etent an application and itsxecution emironment
know about being used by multiple users at same time:

1. Native multi-user. Applications with a data processing
flow and GUI specifically designed for synchronous use

by multiple indviduals.

Multi-user enabled. Originally single-user applications
with some minor internal modifications in theeat pro-
cessing and data synchronization.

Multi-user view. Originally single-user GUI elements of
the execution emironment modified to support the multi-
user metaphorAny single-user application with these
GUI elements can be operated by multiple users.

Shared Input. Modified event processing of the run-time
ervironment, which preides the mouse,egboard and
some system access synchronization vése instances

3.

4.

*. If not indicated diferently, here the term “application” also
includes here Ja applets as well.

of one applicationecuted by each usdevery single-
user application can be operated by multiple users with
some restrictions [3], [8].

Shared Graphic. Modified graphic rendering of the run-
time ewironment preiding multiple graphic outputs of
one application instance. Eny single-user application
can be operated by multiple users. Better ngtwand
graphic performance is required.

The first two levels require either modifications in the appli-
cation code or the gelopment of ne applications with

This work introduces a diérent approach that is based cen-
tralized processing with a kind of reflection of theal&UI
model wer the netwrk. It also preides a higher kel of
group-avareness than kmm systems on el 5. Core ideas
and features of this approach are discussed in sectiong belo

SHARING JAVA

Commonly speaking, there areawwn-time architectures for
enabling synchronous jointewking with single-user appli-
cations: multiple and centralizesezution of shared appli-

build-in multi-user support. The last three approaches do notcations. Both architectures Ve their adantages and

assume anchanges in applications. The required processing
takes place in thexecution emironment. These \@ls are
also knav asapplication sharing.

There are seral works [8], [5] discussing the adrtages
and dravbacks of each el as well as diérent architectures
and implementations. The most important obaston is that
the first level provides the best support of grougne aspects
of joint-working, whereas the last one pides the best inte-
gration of ag single-user application into a multi-usewien
ronment. All currently knen commercial products use
either the first or the last approachv&al run-time and syn-
chronization problems pvent the sailability of stable and
flexible solutions for traditional platforms (X Mdow,
Microsoft Windows, Apple QuickVew) by using other he
els. The netark-centric, object-oriented Ja architecture
enables the design ofwgoint-working services on @l 3,
which would be impossible on traditional platforms. There-
fore the adantage of leel 3 is that it preides a high leel of
group-avareness and yet does not requirg ahanges in
applications.

BALANCING TRANSPARENCY AND AWARENESS

Talking about joint-wrking, a suitable proportion of trans-
pareny and avareness must be found for &gy system in a
given application area. The character of this proportion is
very similar to the “memory”/“access time” problems in data
structures and search algorithms. Finalle want to put a
maximum amount of multi-user kmtedge into an single-
user application with as little changes as possible in the
application itself and in thexecution emironment.

Again, like with the “memory”/“access time” problems,

drawbacks discussed in detail inveeal publications [8],
[5]. When applied to the ya ewironment, these architec-
tures undego some changes and become features.

Figure. 1. Multiple Execution”

| Application Application
Sync. #1
Events ¢« - - -~ - - --—- -7 Events
A
Sync. #2
GUI [~~~ """~ v’ GUI
v Graphics Graphics v
Systemle _ ——__ _Sync.#3_ T ~ySystem
Native OS Native OS

[1- related classes

Multiple execution is knwn to hae to praide sophisticated
synchronization mechanisms whilexeeuting seeral
instances of the same application for each .u&esrch
instance recees input and controlvents from the other
users via a synchronization channel #1 (Figure 1). A man-
agement module of channel #1 also hasdepkthe eent
flow plausible and consistent for each application instance.
Early implementations of this architecture fova&Collabo-
rator Toolset, from Old Dominion Urersity [1]) display
significant problems with arm&ward event processing of
JDK 1.0.x; essentialvent information vas consumed by
natve windav peers and somevents carried unportable
data about its windw peer [3] gives a completeverview of
these problems. The Collaboratmolset partly soled these
problems concerning vent processing by replacing the
entire ANT toolkit with its avn specially modified imple-

some tricks can be applied to reach unreachable. Considering,entation. Collaborates’ ANT classes pnide some addi-
Java, the main idea is to use its object-oriented character angiona| synchronization and tek control on channel #2.

implement the groupveareness on the most abstrageleof
the execution core of the system used by all applications.

An excellent éample of what is possible orvids 3 and 4 is
the AMM system designed by Jamesd®ée, Mrginia Tech
[3]. JAMM applies “relaxed” WYSIWIS (What Yu See Is
What | See) metaphor by puttingiaeness into some GUI
object (i.e. lgel 3 on the list). Basing on the Swing GUI
from JDK 1.2, AMM allows, for xample, seeral users to
synchronously wrk on diferent pieces of onexein a sin-
gle-usemMot epad application. A “radar vie” displays the
working areas of each user

The nev event model and pedess AVT in JDK 1.1 signifi-
cantly improved the situation. A ersion of AMM used
these features for morefiefent event distritution. AMM

also soled another problem of the multiplgezution archi-
tecture: joining latecomers to a running session. The problem
is to create a me instance of an application on the remote
host without playing back all thevents of the session to a
new instance of a shared application. By using the Beri-

*, The structure of the ¥a run-time is simplified in this and all
following figures. Only the most important elements are listed

alization APIl, AMM transfers object information to a we ing policies.

participant and re-constructs the application state by creatingt does not ma& much sense to realize this architecture with
new object instances. processing of Data #1 and Data #2 undeaJdoint-vorking
Nevertheless, te serious problems remain in the multiple on this leel can be diciently done with natie sharing tools
execution emironment, if sharing needs to support comple such as [11], [12] or [9].

Java programs. It is still not possible to synchronize the Nevertheless, ne types of joint-verking services can be
access to system resources (Figure 1, Sync. #3) witheut ha provided in Jaa, if a centralized sharing system will be

ing to change core modules of the run-timeimment. pased on the processing ofvdaGUI component objects.
Mary factors, such as data access times, quality of serviceThis can be done on the data channel #3 (Figure 2).
(QoS) parameters of the nemk, CPU load, etc., cang& gjnce Jaa GUI components contain more information about

tively influence the@cution of an application and Mm@k the gpplication conse, the centralized>@cution architec-
multiple instances of a shared application inconsistentyre in Jaa inteyrates a higher Vel of group-avareness than
among participantsAMM is announced to include special on traditional platforms. In thisvent, the sharing system
wrapping system classes in futurersions in order to#ep sends abstract data about the visual presentation of GUI
those &ctors under control and maintain application components. The GUI is rendered locally on each remote
instances consistent during the whole session. host. This enables the system to send less data than on chan-
Another open issue is the interaction of applications with ne| #2 and sz netvork bandwidth.

data. Sharing an application in a multipkeeution architec- Thjs article presents the Component Model Reflector (CMR)
ture a_Is_o means sharing its data in the session. While SYNapproach which is designed using the suggestions made
chronizing the QoS parameters of data access can help tgpqe. More details on this approach can be found under

keep consisteny the required data replication among ses- «nside the Component Model Reflector”.
sion participants may ke n@ative impacts on data security

However, in numerous cases, such as teleconsulting and tele-
learning, the data replication is not required. Users simply
need to hee a joint viev on the application and malsome
inputs into it. Frequentlythe application data is rent

only for one session and can disappear after closing the ses-
sion. If some participants @ small or portable dees,

data replication is not desired and caarebe impossible.

Figure. 2. Centralized Execution

Figure. 3. Centralized Java Joint-Working Scenarios

e
GUI

Application

Thin Access
E—. S]]
Java VM

Restricted Access

Reflector

| Application | Hetero-Access

ZI
Data #1
Events |« Events Figure 3 shas three application scenarios with aalfoint-
Data #3 4 working service based on thewmapproach. These scenarios
GUI & - GUI are thought to shw high scalability and flebility of the
v |[Graphics] Data #2 » Graphics provided joint-working infrastructure. The core of this sys-
System tem is a GUI reflectestorage. It collects data on the GUI of
applications assigned to a joinbrking session. From a
Native OS Native OS functional point of viey, the Reflector can be considered a

- Related classes network proxy which preides GUI data fordernal repre-

The centralized >&cution architecture Vmlves only one Sentations. A visualization of these data depends ovea gi
instance of the shared application. Remote hostsveecei USag€ scenario (see Figure 3) and on the capabilities of
information about visual presentations of an application on émote deices.

the screen (usually Data #2 on Figure 2) and dodwnput In the Thin Access scenario remote clients may be small or
events back to the shared application (Figure 2, Data #1).portable deices like PDA. Users of these dees usually
Since the application is running in its “original@mnment need to access only some GUI elements of an application, for
synchronization problems do not occAdditionally, remote ~ example, a tet in their main diice. The Reflector sends a
participants need access neither to application classes nor tBre-selected amount of viebandwidth GUI data, thus

its data. These are vmain adantages of the centralized €nabling remote clients tosaresources and render only the
architecture. The dwbacks of implementations on tradi- Mostimportant GUI elements. Since remote clients support a

tional platforms include that a relatly high network Javaervironment, the application GUI mayen leep its
throughput and a ¥ network lateny are required. The original look-and-feel.
multi-user avareness of centralizedexution is also ery In numerous collaboration situations it is required to restrict

simple and praides only a tokn control with seeral pass- manipulation of a shared application by remote session par-

ticipants. In theRestricted Access scenario the initiator of a
session can block geral GUI elements for other session
participants. Using information about component objects,
the Reflector can apply special policies to all (or some) GUI
elements. Users can jointlyork on a joint-enture docu-
ment lut would not be able to load sengdidata, because,
for example, theLoad and Save menu items are bloekl in

the Reflectar

In the Hetero-Access scenario users can remotely control or
collaborate in highly heterogeneousvieonments. Remote
users can, for@mple, perform actions in an application by
calling from a touch-phone or joining a session from another
Ul ervironment which does not supportvda This is possi-
ble because the Reflector does not contaynfixed visual-
ization data. Remote sites are responsible for the
visualization of GUI and for forarding eent data in the
format defined by the Reflectoin this case, the actual
implementation of the remote Uldronment does not mak
ary difference for the processingio

The net section discusses the main principles of CMR. It is
followed by a section about the impacts ofalaecurity on
the realization of synchronous jointrking.

INSIDE THE COMPONENT MODEL REFLECTOR

Swings, the ng GUI API in the JDK 1.2, implements the
MCV (Model-ControllerView) approach [6] (see Figure 4).
MVC separates the visual presentatiorew) of the GUI
from its logic (nodel) and @ent processing proceduresif-
trol). In Swings the combination efew andcontrol is real-
ized by Look-and-Feel (L&F), a set subclasses of the
Conponent Ul class. Thenodd is realized in subclasses of
the JConponent class. L&F can either be changed at run
time by the application itself or specified in a configuration
file. Swing prwides a rich set ofarious basic components,
which allowv to kuild complex GUI.

Figure. 4. Swing Look and Feel (JDK 1.2)

JComponent ¢
((ModeL)\€ Application

Code

)

¥
| View |—>|Contro||er|

Component Ul

Graphic v

| Lightweight Peer |

In addition to Jea-, Motif- and Whdows-L&F, a Multiple
L&F (ML&F, also called “Multiplging UI") is provided
(see Figure 5). ML&F is able to manage numerous simulta-
neous vievs of one GUI. This feature is thought for inter-
faces with special (e.g. speech) inputickes and for people
with disabilities .

*, see the JaSoft web sitevimw. j avasof t . com) for more
information about Swing and JDK 1.2.

Figure. 5. Multiplexing Look-And-Feel

Application
JComponent®
(Model)

Multiplexing Ul

Component Ul

Component Ul

ML&F can be also used taudd a CMR which can install a
custom L&F i.e a nev Component Ul, and thusamn access

to the model data and GUI rendering of alalprograms
running in the virtual machine. At present this seems to be
the only suitable intesfce to realize the centralizegeeu-

tion architecture without wéng to change the core system
classes.

The main parts of CMR are Modd Mirror module and a
Control Broker module (see Figure 6), which can be imple-
mented in a proxy seev TheModel Mirror module collects
information about models of locally running Swing compo-
nents. When using the property intexé of JaaBeans,
Mode Mirror is notified each time a parameter in a compo-
nent has been changed. In addition to the data on the compo-
nent modelModel Mirror also stores information about the
layout and GUI hierargh Remote clients usklodel Con-
structor to create a cgopof a component and to feed its
model with current dataModel Constructors receve this
data fromModel Mirror via network or interclient ecchange
channels.

Figure. 6. A Component Model Reflector System

Model Application
Constructor JComponen
Prox p
Control y (Model)
Sender Model
Mirror
JComponent Control Multiplexing Ul
(Model) Broker
CMR

Component Ul

Component Ul

Once a remote instance of a component has been completely
created and installe@ontrol Sender begins to monitor all
events processed by a remote component. Ifvanteon the
remote site requires changes in the model, it will be sent to
the Control Broker of CMR and forvarded to the local com-
ponent. If the wner of this application has defined special
token passing policies, the foanding of input gents can be
blocked. Control Broker uses the e Event QueueC ass
interface to inject remotevents into the applicationvent
queue. All otherents which do not change the model, such
asPai nt Event , are processed on the remote side without
involvement ofControl Broker, thus saing network band-
width and increasing the rendering performance.

If a remote site does not usevdait has to praide at least a
Model Constructor and aControl Sender. In this case, a

remote Ul emironment is responsible for (e.g. visual, audio,
etc.) presentation of the model data anehe processing.

Swing is a set of components. Most applications &dkan-
tage of this by composing compleneta-components or

« replacement of original classes withanggroup-avare”
classes;

< modifications in the local JRE configuration files.
Component Model Reflector requires modifications BfTA

extending standard classes for special purposes. While CMRproperty files only This must be done only on the host,

does not hee ary problems processing meta components,

the processing ofxtended components may become a prob-

lem.

If a nev class &tends only alConponent successQrno
problems will occur since the weclass must use the inter-
face to a Component Ul of thetended class. CMR will still
be able to handle this correctlffan application alsoxtends

a Component Ul, CMR can only function, if thesavremm-
ponents are JaBeans-conform and the weextended
classes arevailable on the remote site. Otherwise CMR will
not be able to detect which data it has to stoidadel Mir-
ror andModel Constructor to load appropriate Ul classes.

A serious limitation to the current CMR architecture is that it

cannot process direct graphic operations. This occurs if are

application uses a component sgd to paint some custom

graphic bypassing the Component Ul methods (see Figure

4). The only problem to support this is that teaphi cs
object does not puide ary hooks or other inteafces which

would be suitable to monitor and replicate graphic rendering.,

CMR may preide a multi-user replacement to tGeaph-

i cs class bt this will require changes in thevdacore
classes. A simple monitor intade in instances of the
Graphi cs class might help to pwide a solution for this
problem in the future. In this case, CMR wiltdp its func-
tionality, and broadcast graphic calls only ifyteo not form
part of the basic GUI rendering.

A simple custom ML&F to test the idea of CMR is realized
in our lab The implementation supports only thBut t on

where a shared application is running. Remote participants
do not need to change local configuration or instail raaw
classes; the can devnload processing applets on-demand
from a CMR site. Neertheless, in order to support graphic
output processing on component seds, installation of me
custom classes in JRE and access to core classes in JRE
could be required in the future.

An ideal erironment for synchronous jointewking in Jaa

must support ad-hoc sessions: “load joimtrking service
classes and shareyadava application”. This is possible if
the followving additional APIs were be irgeated in JDK:

- all features bele are @ailable for signed Ja classes
only;

an applet API to create a cust@naphi c class;

« a set of hooks into rendering methods of the standard
G aphi cs class and its subclasses.

* an applet API to reside custom classes in JRE and replace
system classes, if required.

an applet API to change JRE configuration files.

JAVA COLLABORATION TOOLKITS AND APIS

Unlike sharing systems, collaboration toolkitsyide basic
collaboration APIs. The main goal of these APIs is to hide
the communication and managemenerbead from the
developer and simplify the delopment of collaborate
applications and inggation of the collaboration paradigm
into single user applications. Applications based on such
APIs are on Ieel one and tw of the avareness list in section

class and intended to test the basic elements of the CMRLevels of avareness and transparghcSharing systems on

architecture. @&sts shan that the approach is feasible to
support synchronous jointewking in Jaa. The methods of
Swing component classes pimde enough information to

other levels, such as CMR, can also use these APIs to imple-
ment multi-point data transport and basic session manage-
ment. llowing subsections gé a brief description of the

collect required data about the model of a component andwo most paverful APls. Promondia (former COMO) [2]

GUI layout. There is still a lot of erk to do until the first
version of a complete system will beadable.

JAVA SECURITY RESTRICTIONS

Java introduced heterogeneougeeution of applications
loaded from a netark. The use of public netwks (particu-
larly, Internet) as main transport mediums fovalaode
moved JaaSoft to implement strong security restrictions in
the execution of netwrk code.

was also a candidate foiview but is not presented here due
to its weak API and insfi€ient documentation.

NCSA Habanero

Habanero vwww. ncsa. ui uc. edu/ SDE Sof t war e/
Habaner o) is probably best ke Java development ewi-
ronment for joint wrking applications. Along with an API,
Habanero includes weral applications for synchronous col-
laboration: video, audio playechat, draving tools, etc.

Sharing single user applications requires some additional@banercs unique feature is that it prdes a set of classes

processing at run-time. Currentassecurity policieslo not
allow to implement required processingthout making any
changes to the Jaa ewironment.

All available implementations require a combination of the
following changes in JRBon each participating host:

» installation of na classes;

and interces for porting single user applications to multi-
user emironments. This is done by using “wrapped objects”.
Single user applications are thought to keceited simulta-

neously by all participants. If a class of an application imple-

*. JRE - Jaa Run-time Ewronment, contains all classes and
tools required toxecute Jea code

ments thévar shal | abl e interface, its objects can be sent network links and preides better group-support than tradi-

across the netwk. Synchronization of GUI interactions is
supported by th@¥ apped interface. In addition, it is neces-

sary to replace thevent processing loopandl eEvent ()

with thedoEvent () and add the application to a special
M rror Frame. Unfortunately the current release (1.0)
supports only JDK 1.0.xvent processing model. JDK 1.1.x

will be supported in an upcoming release.

JavaSoft JSDT
JSDT - Jsa Shared Data oblkit (former JSB) -
(wwv. j avasoft. conf peopl e/ richb/jsdt), a nev

part of the Je&aMedia API suite, JSDT implements a multi-
point data deliery service for use to support highly interac-

tive, collaboratie applications.

The primary functionality pndded by JSDT is a set of APIs
for collaboration-ware Jsa code Clienf) to send data

(Messae) to all (or a part) of the participants (alStienty

within a communicatiorSession This is accomplished by
implementing the ObseerObsenable model with a single
send method. In addition, Twken abstraction prades syn-

tional application sharing systems. Further improents of
CMR in connection with compkegraphic applications and
flexible joint-working netvork services require meAPIs in
JDK, if an implementation should require changes in system
classes.

Single-user Ja applications and applets can also be modi-
fied to support synchronous joinbvking. Habanero pro-
vides a JDK 1.0.x-baseddronment for porting Ja code

to multi-user ewironments. JSDT by vJaSoft delers a
powerful API for multi-point communication. JSDT i®ry
useful for implementing all classes jointiking services.

RELATED PUBLICATIONS AND REFERENCES

1. H. Abdel-Wahab, B. Kande,An Internet Collabaative
ervironment for Sharingala Applications 5th IEEE
Workshop on Future rénds of Distrinted Computing
Systems (FTDCS'97), 1997

2. U. Gall, F-J. HauckPromondia: A ava-Based Fame-
work for Real-ime Gioup Communication in the iy

chronization and locking mechanisms. JSDT also includes a Proceedings of WWW86, 1997

simple naming service that is required to locate a session. Ir3 3 Beyole, C. Struble, C. SHaf, Leveraging Jva
comparison to Habanero, JSDT is a set of APIs only; it does Applets: Bward Collabomtion Transpaency in &va,

not pravide ary ready-to-use applications. JSDT exy flex-
ible and pwverful, but unlike Habanero, it does not pide

ary guide-lines or APIs for porting single-user applications

to multi-user emironments.

For a long time JSDT in an urfimfial public review and test-
ing. Version 1.0 of JSDT has recently beenvewto the
Java Developer Connection pages on thealBoft web site.

IEEE Internet Computing, March-April 1997
IEEE Internet Computingnterview with Tom Malone:
Free on the Rargyvol. 1, #3, May/June 1997

5. T. Graham, T Urnes, R. NejabiEfficient Distrituted
Implementation of Semi-Replicated Synaous Goup-
ware, Proceedings of UIST 96, 1996

In addition to the JSDT API classes and documentation, theb- G- Krasner S. PopeA cookbook for using the model-

distribution includes some sample applications in source

code: chat tool, sound playstock viever, white-board.

CONCLUSION

This article focused on technologies for synchronous joint-
working with Jaa applications and applets. This part of
CSCW tools is also kmwen as “application sharing”. Appli-
cation sharing systems can begidéd in multiple and cen-
tralized eecution systems. Multiple xecution systems
synchronize multiple instances of shared applications.
Although \ery adwanced prototypes [3] arevailable, no
common solution for all synchronization problems has been
found. Centralizedxecution distribites GUI presentation of
one application instance to remote participants and, there10-
fore, has no synchronization problems. Classic realization
approaches prwide ‘ery simple groupare support and

require good netark QoS parameters.

The Component Model Reflector (CMR) is awnapproach

to enable synchronous jointarking in J&a. CMR has se

eral features, which were impossible to implement in appli-
cation sharing on traditional platforms. CMR requires only a

view-contoller user interface padigm in Smalltalk-80
Journal of Object Oriented Programming 1(3), 1988

7. J. Lauwers and K. LantLollaboration Avareness in
Support of Collabation Transpaency: Requiments
for the Net Geneation of Shaed-Wndow Systems
Proceedings of HumanaEtors in Computing Systems,
ACM Press, Ne York, 1990

8. J. Lauwers, TJoseph, K. Lantz and A. Romamdrep-
licated Architectues for ShaadWhndows Systems: A
Critique, Proceedings of @€e Information Systems,
SIGOIS Bulletin, (11)2,3, 1990

Microsoft, NetMeeting www.microsoft.com/netmeeting

V. Minenko, J. SchweitzerAn Advanced Application
Sharing System for Symonous Collabaation in Het-
erogeneous Evironments SIGOIS Bulletin, (15)2,
1994

11. V. Minenko, The Application Sharingethnolagy, The
X Advisor, 1995, re-published in MotifDreloper 1998,
www.motifzone.com/tmd/articles/XpleXer/
XpleXerhtml

few changes in JRE configuration files to be ready to sharel2. Sun Technology Enterprises, Inthe Complete Guide

applications. Remote participants do not need toermaak

changes at all. AdditionallyCMR is operational via sho

to ShowMe www.sun.com/products-n-solutions/sw/
ShovMe/products/ShaMe_SharedApp.html

