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Abstract. The Simplified Adaptive Resonance Theory (SART) class of networks is pro-
posed to handle problems encountered in Adaptive Resonance Theory 1 (ART 1)-based
algorithms when detection of binary and analog patterns is performed. The basic idea of
SART is to substitute ART 1-based “unidirectional” (asymmetric) activation and match
functions with “bidirectional” (symmetric) function pairs. This substitution makes the
class of SART algorithms potentially more robust and less time-consuming than ART 1-
based systems. One SART algorithm, termed Fuzzy SART, is discussed. Fuzzy SART
employs probabilistic and possibilistic fuzzy membership functions to combine soft com-
petitive learning with outlier detection. Its soft competitive strategy relates Fuzzy SART
to the well-known Self-Organizing Map and Neural Gas clustering algorithm. A new Nor-
malized Vector Distance, which can be employed by Fuzzy SART, is also presented. Fuzzy
SART performs better than ART 1-based Carpenter-Grossberg-Rosen Fuzzy ART in the
clustering of a simple two-dimensional data set and the standard four-dimensional IRIS
data set. As expected, Fuzzy SART is less sensitive than Fuzzy ART to small changes in
input parameters and in the order of the presentation sequence. In the clustering of the
IRIS data set, performances of Fuzzy SART are analogous to or better than those of several
clustering models found in the literature.
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template vector

input vector

feature space

dimensionality of the input space (d € ZT)

index of time (¢t € ZT)

current number of output categories (processing elements) (c € Z7)
number of input patterns (n € ZT)

index of template vector or output category (j € {1,c})

index of input vector component (k € {1,d})

index of input vector (i € {1,n})

jth output processing element

kth input unit

jth bottom-up template vector, equivalent to weights

of input-to-output connections converging on processing element
E; at time ¢

input vector at time ¢

connection weight from the kth input unit to the

jth output processing element

kth scalar component of X(®)

activation value of unit E; at time ¢
(t)
J

vigilance threshold (p € [0,1])
Fuzzy ART choice parameter
norm of X(t)

length (modulus) of X(*)
angle between Xt) and WJ@
learning rate (8 € [0,1])

a priori probability of category (pattern’s state) C;

a posteriori conditional probability that the pattern’s state is Cj,
given that the pattern is X;

class conditional probability that the pattern is Xj,

given that the pattern’s state is C}

relative or probabilstic fuzzy membership (typicality) value of X;
with respect to fuzzy concept C; (R;; € [0,1])

absolute or possibilistic fuzzy membership (typicality) value of X;
with respect to fuzzy concept C; (4;; > 0)

Euclidean distance between X; and W;j

resolution parameter of output unit E;

resolution parameter of output unit E;

resolution parameter of output unit E;

picks index j for which g’ is maximum
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local time counter of output unit F;

learning rate of output unit E;

learning coefficient which is monotonically
nonincreasing with e; and monotonically nondecreasing
with R; ; (Gj € [0, 1])

neighborhood-ranking (r; € {0,c — 1})

spread value defined as a monotonically decreasing function
of ej (o > 0)

learning coefficient defined as a monotonically decreasing function
of r; and e; (h; € [0,1])

Processing Element

Unidirectional Degree of Match

Bidirectional Degree of Match

Unidirectional Activation Function

Bidirectional Activation Function

Unidirectional Match Function

Bidirectional Match Function

Normalized Vector Distance

Modulus Degree of Match

Angle Degree of Match

Modulus Degree of Match Threshold

Angle Degree of Match Threshold

Vector Degree of Match
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1 Introduction

All natural systems provided with cognitive capabilities feature feedback interaction with
their external environment. Owing to this environmental feedback, natural systems weaken
or reinforce their behaviors as a function of their success (Serra & Zanarini, 1990; Parisi,
1991). Mimicking the real world, an artificial cognitive system employing reinforcement
learning “is allowed to react to each training case; it is then told whether its reaction was
good or bad” (Masters, 1994), “but no actual desired values are given” (Bishop, 1995). One
example of artificial reinforcement learning is that provided by the Adaptive Resonance
Theory (ART)-based clustering algorithms, where an orienting subsystem models some ex-
ternal evaluation of the pattern-matching reaction of the attentional subsystem to an input
stimulus (Carpenter & Grossberg, 1987a, 1987b; Carpenter, Grossberg & Rosen, 1991; Car-
penter, Grossberg, Markuzon, Reynolds & Rosen, 1992). The a priori knowledge exploited
by the ART orienting subsystem consists of a user-defined vigilance threshold which pro-
vides an upper limit on the size of the nodes’ receptive field in the input space, such that
coarser grouping of input patterns is obtained when the vigilance parameter is lowered.

In recent years, several ART-based models have been presented. ART 1 categorizes
binary patterns but features sensitivity to the order of presentation of the random sequence
(Carpenter & Grossberg, 1987a). This finding led to the development of the Improved
ART 1 system (IART 1), which is less dependent than ART 1 on the order of presentation
of the input sequence (Shih, Moh & Chang, 1992). The Adaptive Hamming Net (AHN),
which is functionally equivalent to ART 1, optimizes ART 1 both in terms of computation
time and storage requirement (Hung & Lin, 1995). ART 2, designed to detect regularities in
analog random sequences, employs a computationally expensive architecture which presents
difficulties in parameter selection (Carpenter & Grossberg, 1987b). To overcome these
difficulties, the Fuzzy ART system was developed as a generalization of ART 1 (Carpenter,
Grossberg & Rosen, 1991; Carpenter, Grossberg, Markuzon, Reynolds & Rosen, 1992).
This means however that ART 1-based structural problems may also affect Fuzzy ART. Our
goal is to provide a new synthesis between properties of Fuzzy ART and other successful
clustering algorithms such as the Self-Organizing Map (SOM) (Kohonen, 1990, 1995) and
Neural Gas (NG) (Martinetz, Berkovich & Schulten, 1993), to extend the abilities of these
separate approaches.

This paper is organized as follows. In Section 2, a general template for ART 1-based
algorithms is presented. In Section 3 Fuzzy ART is discussed, and improvements are recom-
mended. Based on these recommendations, the Simplified ART (SART) class of algorithms
is defined in Section 4. Section 5 presents interpattern similarity measures that can be
employed in SART implementations. Section 6 proposes exploitation of probabilistic and
possibilistic fuzzy membership functions to combine soft competitive learning and outlier de-
tection in SART architectures. Section 7 presents a soft competitive SART implementation,
termed Fuzzy SART. This section gives a brief review of Kohonen’s constraints, developed
for the Kohonen Vector Quantization (VQ) and SOM algorithms and then adopted by the
well-known NG algorithm. In Section 8 the performance of Fuzzy SART is compared with
that of Fuzzy ART on a simple two-dimensional data set and the standard four-dimensional
IRIS data set. Conclusions are reported in Section 9.
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2 The class of ART 1-based models

At least three ART 1-based clustering algorithms can be found in the literature: i) IART
1, which employs a slightly modified ART 1 architecture to extract statistical regularities
from binary samples; ii) Adaptive Hamming Net (AHN), which is a feed-forward network
that optimizes ART 1 in terms of computation time and storage requirement (Hung & Lin,
1995); and iii) Fuzzy ART, which extracts statistical regularities from random samples of
binary as well as analog pattern distributions.

In this section we describe a general framework that covers these algorithms.

2.1 Definitions

Let us consider two generic feature vectors (patterns) W and X belonging to feature space
FS.

Definition 1. The “unidirectional” or “asymmetric” degree to which W matches X
(W — X), VW, X € FS, is a mapping

M(W,X): FS x FS —[0,1],

where M stands for Unidirectional Degree of Match. Scalar function M (W, X) is such that:
(a) it provides an interpattern similarity value, VW, X € F'S;

(b) it provides a relative number, belonging to range [0,1], VW ,X € FS, such that
M(X,X) =1VX € FS; and

(c) it is a “unidirectional” (asymmetric) measure, i.e., at least one pattern pair (W,X)
exists such that: M(W,X) # M(X, W).

Definition 2. The “bidirectional” or “symmetric” degree of match between W and X
(W + X), VW, X € FS, is a mapping

M(W,X): FS x FS — [0,1],

where M stands for Bidirectional Degree of Match. Scalar function M (W, X) is such that:
(a) it provides an interpattern similarity value, VW, X € F'S;

(b) it provides a relative number, belonging to range [0,1], VW,X € F'S, such that
M(W,X) =1 iff W = X; and

(c) it is a “bidirectional” (symmetric) measure such that M(W,X) = M (X, W), YW, X €
FS.

2.2 Processing scheme

Although in its original form the ART 1 attentional subsystem employs bottom-up (feed-
forward) and top-down (feed-backward) connections, it is easy to prove that this module is
mathematically equivalent to an attentional subsystem where feed-forward connections are
adopted exclusively (Baraldi & Parmiggiani, 1995a). For example, the Adaptive Hamming
Net (AHN), shown in Fig. 1, is a feed-forward network functionally equivalent to ART 1
(Hung & Lin, 1995).
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Figure 1: AHN system. For detail on the meaning of threshold 7 and weights
W and W, refer to Hung & Lin (1995).

vi



We can generalize this result by stating that the attentional module of all ART 1-
based systems is functionally equivalent to a feed-forward network featuring no top-down
connection. This simplified view is acknowledged by Carpenter, Grossberg & Rosen when
they state (1991, p. 763): ”[in ART 1-based Fuzzy ART] weight vectors subsume both the
bottom-up and top-down weight vectors of ART 1”.

This simplification yields, as a major consequence, a change in the meaning of the term
“resonance” as traditionally applied to ART 1-based systems. This term should no longer
indicate “the basic feature of all ART systems, notably, pattern-matching between bottom-
up input and top-down learned prototype vectors” (Carpenter, Grossberg & Rosen, 1991, p.
760), just as the term “resonance” has never been used with reference to pattern matching
performed by a feed-forward Kohonen network.

In our view, the term “resonance”, as employed in ART, means rather that all ART
1-based algorithms share the same modular architecture, consisting of:

i) a completely generic (unsupervised), flat (without hidden layers), feed-forward (bottom-
up) network performing pattern recognition (as Kohonen’s networks, e.g., VQ and SOM),
termed attentional subsystem; and

ii) a supervised/unsupervised knowledge interface unit, termed orienting subsystem, where
the quality of unsupervised bottom-up pattern recognition is compared to top-down require-
ments (expectations, or prior knowledge) provided by the external environment (supervisor).
In the orienting subsystem, if unsupervised knowledge matches external expectations, then
“resonance” occurs. This means that the unsupervised pattern recognition activity of the
attentional module is reinforced according to a reinforcement learning mechanism, i.e., pro-
totype adaptation takes place. If resonance does not occur, the orienting subsystem allows
the attentional module to increase its resources (processing elements) to match external
requirements.

To describe the class of ART 1-based clustering algorithms, let us consider the atten-
tional subsystem as a two-layer network. The first layer is termed Feature representation
field (F layer), and consists of input units Fy, k = 1,...,d, where d is the dimensionality of
the input space. An input vector, identified as X®) = (X Y’), ey (gt)), is presented to the
input layer at time ¢, where, in the binary case X € {0,1}, or, in the analog case X € R,
k =1,...,d. The second layer, termed Ezemplar representation field (E layer), stores an
arbitrary number c of Processing Elements (PEs). These PEs, also termed output nodes,
exemplars, categories, components, or clusters, are identified as E;, j = 1,...,c.

At time ¢, each processing unit F; computes an activation value as an interpattern
similarity measure between vectors X®) and W§t), where Wj(t) = (Wl(t]), ey ét])-), termed
template wvector, reference vector or cluster prototype, is the receptz'v,e field center in the
input space of output unit F;. In a feed-forward (bottom-up) network structure, reference
vector components W,Ef]), k =1,...,d, correspond to weights of input-to-output connections
converging on output node E; from input units Fy, k = 1,...,d, at time ¢.

Orienting subsystem supervision of attentional pattern matching causes coarser parti-
tions of the input space when a user-defined vigilance parameter p € [0, 1] is lowered. This is
equivalent to considering this vigilance threshold as an upper limit on the size of the nodes’
receptive field in the input space.

The modular architecture of ART 1-based systems is shown in Fig. 2. The following
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Figure 2: ART 1-based system architecture, where W identifies a matrix of
bottom-up connections and W* is the best-matching template. For more
detail, refer to the text.
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sequential algorithm implements the basic idea behind ART 1-based models.
Step 0. Initialization. PE counter ¢ and pattern counter ¢ are set to 0.

Step 1. Input pattern presentation. The pattern counter is increased by one as
t =t + 1, and a new pattern X() is presented to the input nodes.

Step 2. Activation value computation. Activation values of output PEs are com-
puted as

/‘;t) = A_F(X(t)’wj(t))’ J=1..c (1)

where AF(X®), W_gt)) is a Unidirectional Activation Function, also called choice function.
Function AF(X®), Wj(t)) belongs to the class of M functions (see Subsection 2.1): it mea-
sures the degree to which Xt — Wét) (X®) matches W§t)), but it does not assess the
reverse situation, i.e., the degree to which X®) « W}t) (WJgt) matches X®).

Step 3. Detection of processing units eligible for being resonant. Processing
units that are affected by the arrival of an input pattern at a given time are said to belong
to the resonance domain. ART 1-based models enforce a hard competitive learning mecha-
nism, otherwise called Winner-Take-All (WTA) strategy (Martinetz, Berkovich & Schulten,
1993; Fritzke, 1997a). This means that ART 1-based systems allow only the best-matching
prototype to be attracted by X®) i.e., only the best-matching unit, also termed recognition
category, can belong to the resonace domain. The best-matching unit, identified as Ej«, is
the solution, if any, to the maximization problem (Healy, Caudell & Smith, 1993)

j* = arg max {A_F(X(t),W§t))} , (2)

7j=1,...,c

subject to the vigilance constraint described below. The best-matching weight vector con-
verging on F;« is identified as WJ(f)

Step 4. Resonance domain detection. The orienting subsystem selects among pro-
cessing units candidated by the attentional subsystem for being resonant those that match
external requirements. Only these units are said to belong to the resonance domain. To
select these units, the orienting subsystem employs a vigilance constraint, also termed vigi-
lance test or hypothesis test, combined with a mismatch reset condition and a search process.
The vigilance test applied to the pattern matching activity of the attentional module is

MFWY, X®)>p, pelo,1], (3)
where user-defined vigilance parameter p provides a model of top-down external expectation,
while M. F(W‘gf),X(t)) is a Unidirectional Match Function. This function belongs to the
class of M functions (see Section 2.1): it measures the degree to which Wj(f) — X®, but

it does not assess the reverse situation, i.e., the degree to which X® — WJ(f)
If the vigilance test is not satisfied (i.e., “resonance” does not occur), the mismatch
reset condition is enforced. It inhibits the best-matching node and searches for the second
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best-matching node, which is then submitted to the vigilance test. Note that vigilance test
computes value M. F(W§t),X(t)) while units eligible for being resonant are searched ac-

cording to their AF(X®), Wgt)) value. Since the best-matching template WJgt) in terms of

A?’(X(t), Wj(t)) is not necessarily the best-matching template in terms of M. F(ngt),X(t)),
this justifies the search, to be repeated until either the vigilance test is passed or no more
nodes are available for testing.

Step 5(a). Resonance condition: reinforcement learning. If the vigilance test
is satisfied, i.e., “resonance” occurs, the attentional subsystem is allowed to reinforce its
pattern-matching activity by adjusting template vectors of units belonging to the resonance
domain. These prototypes are modified according to an ART 1-based model-dependent we-
ight adaptation law, so as to be moved closer to input pattern X®) (i.e., the input pattern
is used as an attractor). In hard competitive ART 1-based systems, only the best-matching

prototype Wj(f) is updated by X(®),
Step 5(b). Non-resonance condition: new processing element allocation. If no
solution exists to the maximization problem described above, i.e., the resonance domain is
an empty set, then “resonance” does not occur, and one new processing unit is dynamically
allocated to match external expectations. Thus, the PE counter is increased as ¢ = ¢ + 1,
and a new node E, is allocated to match input pattern X®) such that W& — x(®).
As a consequence, ART 1-based models require no randomization of initial templates since
initial values are data-driven.

Step 6. Goto step 1.

3 Fuzzy ART

Fuzzy ART requires a preprocessing stage where either input pattern normalization or com-
plement coding is used to prevent category proliferation. The latter technique normalizes
input vectors while preserving their amplitude information but it doubles the number of con-
nections (Carpenter, Grossberg & Rosen, 1991; Carpenter, Grossberg, Markuzon, Reynolds
& Rosen, 1992). To simplify our discussion, let us identify the analog input pattern pre-
sented to Fuzzy ART at time ¢ after normalization preprocessing as X(t) = (X £t), X (gt)),
where X € [0,1], k =1,...,d.

3.1 Fuzzy ART-specific features

To fit the processing scheme described in Section 2.2, Fuzzy ART implementation details
are now presented. Whenever necessary, relationships with ART 1 and TART 1 are also
highlighted.



Activation function. The activation function is defined as

d : (t) @)
Ay (XO, W) = Zi=1 mm;{iX’“ ’Z’%J’}
a+ 21 Wi

, i=lewe, XpWel1, (4

where parameter «, ranging in [0.001, 1) (Carpenter, Grossberg, Markuzon, Reynolds &
Rosen, 1992), breaks ties in favor of the longer of two template vectors. It is to be noted
that:

i) A_Fl(X(t),WJgt)) belongs to the class of M functions (see Section 2.1).

ii) In ART 1 and IART 1, the “unidirectional” activation function applied to binary vector
pairs is (Hung & Lin, 1995)

d ®) . y(®
AFH(X®, Wty — Sho W X,

YU et i w)

=l XO WY e {01} (5)

Equation (4) generalizes Equation (5) by substituting the product and norm operators with
operations that resemble those employed in fuzzy set theory (e.g., intersection and cardinal-
ity). As Simpson observed (1993, p. 37): “for these operations to be correctly interpreted
as fuzzy operations, they would have to be applied to membership values, not to the pa-
rameters of the activation function.” This also means that the “degree of fuzzification” of
Fuzzy ART with respect to ART 1 is questionable.

Match function. The match function is defined as
. t t
st mingf. X0}
i X

MF, (W, X®) . X, W € 10,11, (6)

i
It is to be noted that:

i) MFl(W§f), X (®)) belongs to the class of M functions (see Section 2.1).

ii) Parameters p in Equation (3) and « in Equation (4) are interrelated as illustrated by
Huang, Georgiopoulos & Heileman (1995). For example, if a < p/(1 — p), then Fuzzy ART
completes its learning in one list presentation when complement coding is employed for
preprocessing.

iii) In ART 1 and IART 1, the “unidirectional” match function applied to binary vector
pairs is (Hung & Lin, 1995)

= Zg:l Wk(:t]) 'Xi(ct)
Z%:l X]E:t)

Also Equation (6) generalizes Equation (7) by substituting the product and norm operators

with fuzzy-like operators. Equation (7) provides a normalized measure of how many unit-
)

MFy (W, X®) , X0, wl e {01} (7)

valued (informative) components of X*) are matched by those of Wff

the degree to which WJ(E) — X®_ Since Equation (7) applies to binary vectors, it can be

written as (see Appendix A)

, l.e., it measures

| WJ(f) | - cos 0

MW, X0) = X (8)

i
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where 0« is the angle between X®) and WJ(f) and operator | - | is the vector length. The
(t)

numerator in Equation (8) is the projection of W;.” along the direction of X(®),

iv) The only difference between ART 1 and IART 1 is that the latter model applies two
unidirectional and complementary vigilance tests. This is equivalent to stating that TART
1 adopts one bidirectional vigilance test. Besides Equation (7), IART 1 employs match

function (Hung & Lin, 1995)

= Zg:l Wlsty) 'Xi(ct)
Ei:l Wk(::?*

MF3(X®, W)

{ , X0, W e {01} 9)

Equation (9) provides a normalized measure of how many unit-valued components of WJ(f)

are matched by those of X(t). i.e., it measures the degree to which X®) W}f) In analogy
with Equation (8), Equation (9) can be written as
. X®) | . cos B
MF3(X(t),WJ§f)) = w_ (10)

| Wi

The numerator in Equation (10) is the projection of X(*) along the direction of Wj(f) .

Resonance condition. Weight adaptation law is
ey _ | (=0 WG+ Bmin{ W X0}, i) =t k=Tods )
kd W, ifj#55 k=1,..d,

with learning rate 8 € [0,1]. In the fast-learning case, [ is taken as 1. Equation (11) stresses

the fact that only winner template Wét) is allowed to be attracted by input pattern X®),

which makes the model hard competitive.

3.2 Weaknesses of Fuzzy ART

From the analysis of the model and the processing example proposed in Appendix B, we
conclude that:

i) Fuzzy ART is sensitive to the order of presentation of the random sequence. This finding
is consistent with the results of Shih, Moh & Chang (1992) about ART 1.

ii) Fuzzy ART is time-consuming, its search process requiring up to clogc steps to sort
all activation values.

iii) Fuzzy ART may be affected by overfitting, since a single poorly mapped pattern suffices
to initiate the creation of a new unit, and no noise category removal mechanism is employed

by the system. In other words, Fuzzy ART may fit the noise and not just the data.

iv) Since its learning rate is independent of time, Fuzzy ART lacks stability because of
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excessive plasticity, i.e., the processing of a new data set can move templates located by the
system during the previous learning phase.

v) Owing to its hard competitive implementation, Fuzzy ART is expected to be less ro-
bust and more likely to generate dead units than its possible soft competitive implementa-
tions (Fritzke, 1997a; Martinetz, Berkovich & Schulten, 1993; Daveé & Krishnapuram, 1997).

vi) It does not preserve topological information (Martinetz, Berkovich & Schulten, 1994).

vii) Termination is not based on optimizing any model of the process or its data.

3.3 Improvements to Fuzzy ART

Possible solutions to the above weaknesses are proposed:

i) ART 1, TART 1 and Fuzzy ART are all affected by the same structural problem: they all
employ an inherently asymmetric design to perform an inherently symmetric task. The as-
sessment of the interpattern degree of match is an inherently symmetric task. Nonetheless,
ART 1-based systems break this measure into two steps, such that activation and match
functions compute two unidirectional and complementary similarity values. The problem
is that these two complementary similarity values are employed separately by two different
(asymmetric) specialized tasks. The first task selects the best-matching template. The sec-
ond task constrains the input pattern to fall within a bounded hypervolume of acceptance
centered on the best-matching template.

As TART 1 improves ART 1 by replacing the unidirectional match function with a bidi-
rectional match function (Shih, Moh & Chang, 1992), the next step in the evolution of
ART 1-based architectures should replace the pair of unidirectional activation and match
functions with a pair of bidirectional functions.

ii) ART 1-based systems require no searching when an Adaptive Hamming Net (AHN)
approach is applied (Hung & Lin, 1995). The key idea is to convert the sequential search
procedure of ART 1 into an optimization problem (see Section 2.2), which can be solved by
parallel implementation. In a first stage, match function values are computed in parallel and
all the indexes of reference vectors that do not satisfy the vigilance constraint are filtered
out at once. Next, activation values of all surviving candidate categories are computed in
parallel and passed to a MAXNET output layer, which detects the best-matching unit E;«
at once.

iii) Noise point and outlier detection capability must be combined with a noise category
removal mechanism to avoid overfitting.

iv) Learning rates should decrease monotonically with time, according to a cooling sched-
ule, hereafter referred to as the first Kohonen constraint. When a node loses its plasticity
(i.e., its learning rate tends to zero), then it becomes stable, since its response to the same
stimulus does not change with time.
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v) A model transition from soft competitive to hard competitive learning should be driven
through time, e.g., according to what is hereafter referred to as the second Kohonen con-
straint. It requires the degree of overlap among node receptive fields to decrease monotoni-
cally with time until it becomes zero, as receptive fields become Voronoi polyhedra (Fritzke,
1997a).

vi) To guarantee topologically correct mapping, dynamic generation/removal of synaptic
links between node pairs should be enforced according to the competitive Hebbian learning
mechanism (Martinetz, Berkovich & Schulten, 1994; Fritzke, 1997a).

vii) Stronger relationships with other clustering algorithms capable of minimizing a cost
function, such as the Neural Gas algorithm (NG) (Martinetz, Berkovich & Schulten, 1993),
should be pursued.

4 SART framework

To overcome limitations of ART 1-based models, we propose a new class of ART processing
schemes, hereafter referred to as Simplified ART (SART), consisting of a pair of attentional
and orienting subsystems and capable of processing real-valued multidimensional patterns
(Fig. 2). Using the ART 1-based sequential processing scheme of Section 2.2 as the general
framework, a SART algorithm can be summarized as follows.

Given a real and multidimensional input pattern X € R¢ (i.e., no preprocessing constraint
must be enforced), the best-matching unit Ej« is the solution, if any, to the maximization
problem

j* = arg max {ﬁ(w}t),x(t))} ; (12)

Jj=1,...;c

subject to vigilance constraint

MF(WY, X®)>p  pelo,1], (13)

j*

where AF(W|"), X(*)) is a Bidirectional Activation Function and MF(W|", X(®)) is a Bidi-
rectional Match Function, both belonging to the class of M functions (see Section 2.1).

From this definition stems one important corollary.

IFAF(WY, X®) and MF(W", X®)) are chosen such that MF(WS?, X®) > MF(W§), X®

implies that F(W(lt), X)) > H(W(Zt) ,X®), and vice versa, then no mismatch reset con-
dition and search process (or search-like procedure, in case of parallel implementation) are
required to detect the resonance domain (see Step 4 in Section 2.2). This means that when

best-matching template W§f), selected according to ﬁ(WJgt), X(t)), does not satisfy the

vigilance criterion, a new processing unit can be immediately allocated to match X®). For
example, if ﬁ(Wét),X(t)) =MF (W‘gt),X(t)), this corollary is obviously true.
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5 Interpattern similarity measures as relative numbers

Three possible examples of interpattern similarity measures belonging to the class of M
functions are discussed. The first example proposes a new measure termed Vector Degree
of Match (VDM). The latter two examples are rather driven from similarity equations
already discussed in Section 3. If they apply to analog patterns, then these functions can
be employed as AF's and/or M F's in SART implementations, according to the SART general
framework proposed in Section 4.

5.1 VDM measure

Two analog vectors W and X € R? are equal iff they feature the same vector length, direc-
tion and orientation, i.e., (i) the angle between them, identified as @, and (ii) their vector
length difference, are equal to zero. Let us consider these two conditions separately, then
their combination.

i) The Modulus Degree of Match (M DM) is a relative number, belonging to range (0,1],
defined as
MDM(W,X) =min{| W | /[ X[, X[/ W[}, (14)

where | W | and | X | are the moduli of W and X respectively. Equation (14), which is
independent of multiplicative noise, was developed for SAR image processing where speckle
is modeled as multiplicative noise (Baraldi & Parmiggiani, 1995c). Alternative M DM ex-
pressions independent of additive noise may be developed as well.

ii) We can write that
v =cosf = (XoW)/(| X[ |W]), (15)

where (X o W) is the scalar product between X and W, with « ranging from —1 to +1.
Thus, 6 = arccos(vy), where € belongs to range [0, 7]. The Angle Degree of Match (ADM)
is a relative number, also belonging to range [0,1], defined as

ADM(W,X) = (x — ) /. (16)

In line with the two constraints required by the criterion of vector pair equivalence presented
above, a possible nonlinear expression for VDM combines variables M DM and ADM as

VDM(W,X) = MDM(W,X) - ADM(W,X), (17)

so that 0 < VDM < min{ MDM, ADM} < 1. Equation (17) implies that W and X are
the same vector, i.e., they are identical, such that VDM = 1, iff (i) their in-between angle
is zero (ADM = 1); and (ii) their moduli are the same (M DM = 1).

Note that VDM (W,X) = VDM (X, W). Then VDM satisfies all conditions required
to belong to the class of M functions (see Section 2.1), i.e.,

M,(W,X) = VDM(W,X). (18)

Since it applies to analog vector pairs, this equation can be employed as AF and/or M F
in SART models (see Section 4). An example of PE employing Equation (18) as its AF
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Figure 3: A processing unit employingEquation (17) as its activation func-
tion.
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Figure 4: The “traditional” perceptron model (Masters, 1994; Pao, 1989).



is shown in Fig. 3, to be compared with Fig. 4 showing a traditional perceptron which
computes its output activation level as a two-step operation: first, the scalar (dot) product
between the set of synaptic weights and the input pattern is computed as the net input
to the node, then the net input is acted on by an activation function (Masters, 1994; Pao,
1989).

5.1.1 Normalized Vector Distance metric

The intervector difference (dissimilarity or contrast) between W and X, YW, X € R¢, is
traditionally computed by means of the £! or £? norm whose range is (0, +00). The
Normalized Vector Distance metric (NV D) rather assesses the distance between W and X
as a relative number, YW, X € R%. NV D is defined as

NVD(W,X) =1-VDM(W,X), (19)

where VDM (W, X) is computed according to Equation (17). If NVD =0 (VDM = 1),
then W and X are the same vector. If NVD — 1 (VDM — 0), then the two vectors are
maximally different. It can be demonstrated that R? is a metric space (Pao, 1989) with
metric NV D, where the following relationships hold true (Baraldi & Parmiggiani, 1995a,
b, ¢, 1996)

1. NV D is a mapping from the metric space R? to range [0,1], i.e., NVD : R x R% —
[0,1] (normalized positivity);

2. NVD(X,Y)=0iff X = Y;
3. NVD(X,W) = NVD(W,X), VX,W € R¢ (symmetry);
4. NVD(X,W) < NVD(X,G) + NVD(G,W), ¥X,G, W € R? (triangle inequality).

5.1.2 VDM and NV D properties

It is important to stress that, while the Euclidean distance is invariant with respect to both
translation and rotation, NV D (VDM) is: i) invariant with respect to rotation; ii) not
invariant with respect to change of scale; and iii) not invariant with respect to translation.
As an elementary example of these properties, let us consider, in a 1-D space, two pair of
points, e.g., 5 and 10 vs. 20 and 25, where the second pair is obtained by translation of
the first. The Euclidean distance between the two points of each pair is 5, while the NV D
value is 0.5 and 0.2 respectively. This means that NV D (VDM) is not appropriate for
assessing interpattern dissimilarities (similarities) in the Euclidean space (for an example,
refer to Section 9). !

! An additional interesting relationship can be established between NV D computation and the way in
which the mammalian visual system performs independent detection of achromatic and chromatic color
contrasts (Boynton, 1990); in fact, M DM is inversely related to achromatic color differences, while ADM
is inversely related to chromatic color differences.
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5.2 More examples of M functions

A second example of M function can be obtained by applying a binary operator, e.g., sum
or product, to the unidirectional activation and match function pair of Fuzzy ART. For
example, the product between Equations (4) and (6) can be applied to analog vector pairs

such that 4
(X ey min{ Wy, X })?

Yo Wi - o X
Note that, unlike Equation (20), Equation (18) processes vector-length and vector-angle
information independently. In ART 1, the product between unidirectional activation and
match functions, computed as Equations (8) and (10), gives

(o Wi - X)?
Yo Wi - Tioy Xi
where 6 is the angle between binary vectors W and X. Equation (21) states that two binary
vectors are the same vector iff their in-between angle 0 is zero, regardless of their moduli.

MQ(W,X.) = , Wi, X €R. (20)

M3(W,X) = = cos®(#), Wi, Xy € {0,1}, (21)

6 Fuzzy memberships, mixture probabilities and outlier de-
tection in SART systems

This section proposes exploitation of probabilistic and possibilistic fuzzy membership func-
tions to combine soft competitive learning and outlier detection in SART models. These
two properties refer to recommendations iii) and v) proposed in Section 3.3 to improve ART
1-based systems.

6.1 Absolute and relative fuzzy memberships

Let X; be instance ¢ of input variable X, ¢ = 1,...,n, where n is the total number of input
instances, such that X; may belong to a generic state (also termed category or component)
Cj, 3 = 1,...,c, where c is the total number of possible states. The extent to which Xj
is compatible with a vague (fuzzy) concept associated with generic state C; can be inter-
preted “more in terms of a possibility (compatibility) distribution rather than in terms of a
probability distribution” (Pao, 1989, p. 58). This legitimizes some possibility distributions,
called fuzzy membership functions, that “we believe are useful, but might find difficult to
justify on the basis of objective probabilities” (Pao, 1989, p. 57). Depending on the con-
ditions required to state that c fuzzy states C;, 7 = 1,...,c, are a fuzzy c-partition of the
input data set, membership functions can be divided into two categories (Krishnapuram &
Keller, 1993; Dave & Krishnapuram, 1997):

1. relative or probabilistic or constrained fuzzy membership (typicality) values R; j; and

2. absolute or possibilistic fuzzy membership (typicality) values A; ;,

where index 7 ranges over patterns and index j over concepts. Absolute and relative mem-
bership types are related by the following equation:

A
b i=1,..,n, j=1,..c (22)

Rij= <t
»J 7
2 oh=1Ain



Relative typicality values, R; ;, must satisfy the following three conditions (Tsao, Bezdek
& Pal, 1994; Pao, 1989):

i)R;;€01,i=1,..,n,5j=1,...,c
ii) 35 Rij =1,i=1,..,n; and
i) 0< Y Rij <m,j=1,..c

Constraint (ii) is an inherently probabilistic constraint (Krishnapuram & Keller, 1993),
relating R; ; values to posterior probability estimates in a Bayesian framework. Because of
condition (ii), R; ; values are relative numbers dependent on the absolute membership of the
pattern in all other classes, thus indirectly on the total number of classes. This also means
that PEs exploiting a relative membership function as their activation function are context-
sensitive, i.e., R;; provides a tool for modeling network-wide internode communication
by subsuming that PEs are coupled through feed-sideways (lateral) connections (Ancona,
Ridella, Rovetta & Zunino, 1997).

Possibilistic membership functions relax condition (ii) to satisfy the following constraints
(Krishnapuram and Keller, 1993):

iv) 4;;€[01],i=1,..,n,5=1,...,¢
v) max; {4;;} >0,i=1,...,n; and
Vi) 0< E?:l AZ'J' <n,j=1,..c

Owing to condition (v), the sum of absolute memberships of a noise point in all the “good”
categories need not be equal to one. In this paper the definition of absolute membership
function is further relaxed to satisfy constraint (v) exclusively, i.e., a fuzzy set employing
absolute membership values may not be normal as its membership values may feature no
least upper bound equal to one (Pao, 1989). Term A;; is an absolute similarity value
depending on fuzzy state C; exclusively, given input pattern X;. In other words, A, ; is
context-insensitive, since it is not affected by any other state. Thus, PEs exploiting an
absolute membership as their activation function are independent, i.e., they feature no
lateral connection.

Both probabilistic and possibilistic fuzzy clustering are affected by some well-known
drawbacks. On one hand in probabilistic fuzzy clustering, owing to condition (ii), noise
points and outliers, featuring low possibilistic typicalities with respect to all templates,
may have significantly high probabilistic membership values and may severely affect the
prototype parameter estimate (e.g., refer to Dave & Krishnapuram, 1997). On the other
hand in possibilistic fuzzy clustering, learning rates computed from absolute typicalities tend
to produce coincident clusters (Barni, Cappellini & Mecocci, 1996; Davé and Krishnapuram,
1997). This poor behavior can be explained by the fact that cluster prototype are uncoupled
in possibilistic clustering, i.e., possibilistic clustering algorithms try to minimize an objective
function by operating on each cluster independently. This leads to an increase in the number
of local minima.

Different A; ; expressions, consistent with the definition provided above, were found to
be useful in the existing literature. These include the following:
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( W € (0,1] (Krishnapuram & Keller, 1993), (23)

2
_diy

Aij =< Gaussian;j=e 5 ¢ (0,1] (Gaussian mixtures; Williamson, 1996, 1997), (24)

ﬁ € (0,00) (Bezdek & Pal, 1993), (25)
5]
L m S (1, OO) (Baraldi & Parmiggiani, 1997), (26)

where d; ; = d(X;, Wj) is assumed to be the Euclidean distance between input pattern
X; and prototype (receptive field center) Wj of the j-th category. Variables o}, n; and p;
are all resolution parameters belonging to range (0,00) (refer to Dave & Krishnapuram,
1997). It is to be noted that Equations (23) and (24) belong to the class of M functions
(see Section 2.1). For any A;; expression chosen among Equations (23) to (26), relative
membership function (22) also belongs to the class of M functions.

6.2 Fuzzy memberships and mixture probabilities

Note that absolute membership function (24) relates probabilistic membership (22) to Gaus-
sian mixture models, which are widely employed in the framework of optimization problems
featuring a firm statistic foundation (Dempster, Laird & Rubin, 1977; Martinetz, Berkovich
& Schulten, 1993; Buhmann, 1995; Alpaydin, 1998). In a mixture probability model con-
sisting of ¢ mixture components Cj, j = 1,...,¢, let p(C;) be the a priori probability that
a patterns belongs to mixture component Cj;, and p(X;|C;) be the class conditional prob-
ability that the pattern is Xj, given that the pattern’s state is C;. If these statistics are
known, a posteriori conditional probability p(C;|X;) can be estimated using Bayes’ rule as

e p(Xil|Cj) - p(Cy)
PO = S G-l

If p(Ch) = 1/¢,Vh € {1,c}, i.e., all states are assumed to be equally likely, then Equation
(27) becomes

i=1,.,n, j=1,..,c (27)

p(XilCj)
p(Ci|X}) = =——F<~~>
(G51%s) > h=1P(Xi[Ch)
The following relationships hold true:

=1,..,n, j=1,..c (28)

i) p(C;|X;5), p(X;|C;) and p(C;) belong to range [0, 1];

ii) Y51 p(Ch|X;) = 1,4 = 1,...,n, ie., mixture components C;, j = 1,...,¢, provide a
complete partition of the input space; and

iii) 3251 p(Ch) = 1.

From the comparison of Equation (22) with Equation (28) and properties (i)-(vi) in Section
6.1 with properties (i)-(iii) above we can write that,

if priors are considered the same (i.e., they are ignored), then {p(X;|C;)} C {4;;}, thus,
{p(C;|X;)} C {R;;}; in other words, (objective) probability distributions are a subset
of (useful) possibility distributions.
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6.3 Useful properties of fuzzy memberhips

Depending on the application, one absolute membership among Equations (23) to (26)
may be preferred in the computation of Equation (22). As an example, let us consider
a fuzzy clustering algorithm, where the distributed system consists of ¢ PEs employing
a relative membership function as their activation function. We intend to demonstrate
that, under the hypothesis that learning rate §;(R;;) € [0,1], i = 1,...,n, j = 1,...,¢, is
a monotonically increasing function of R;; (e.g., Bezdek & Pal, 1993), if Equation (22)
computes absolute typicality as either Equation (25) or Equation (26) then the network
may reach convergence faster than by exploiting a relative membership function featuring
Equation (23) or Equation (24) as its absolute typicality. Substituting Equation (25) in
Equation (22) we obtain
1/d3;

Yot 1/dZ,
where resolution parameters p; are ignored to simplify the discussion. Substituting Equation
(26) in Equation (22) we obtain

R;; = (29)

_ 1/(1 = Gaussian;j)*  1/(1— i)
chZ:]_ 1/(]- - Gaussianiyh)Q) 2221 1/(1 . eid?,h)’

R (30)
where resolution parameters o; are ignored to simplify the discussion. Let us consider an
initial situation in which, by randomization, template vectors (receptive field centers) of PEs
match input patterns perfectly: this situation is characterized by an ideal requantization
error equal to a global minimum (zero), i.e., the clustering system is expected to leave cluster
centers unchanged from their initial position and reach termination after one processing
cycle of the input data set (epoch). According to Equations (29) and (30), if for a given
pattern X; condition (d; ; = 0) holds true, then R; ; = 1 while R; ;, = 0, Vh # j. Therefore,
no template vector Wy, # Wj is moved by a fraction 8, o< R; ), toward attractor Xj, since
this is already perfectly matched by template Wj, i.e., no adaptation of receptive field
centers takes place, as expected (since the initial condition is already optimal). Conversely,
it is easy to demonstrate that receptive field centers are moved when the clustering net
employs a relative membership (22) computing absolute typicality as either Equation (23)
or Equation (24).

6.4 Fuzzy memberships and outlier detection in SART systems

To satisfy the soft competitive learning requirement (v) in Section 3.3, a clustering algo-
rithm can compute activation values according to Equation (22), that guarantees context
sensitivity (see Section 6.1). To pursue fast convergence, Equation (22) can be implemented
as either Equation (29) or Equation (30) (see Section 6.3). However, Equations (29) and
(30) are unable to detect noise points and outliers (see Section 6.1), as required by constraint
(iii) in Section 3.3.

To summarize, our problem is: how can a clustering algorithm compute Equation (29)
or Equation (30) while noise point and outlier detection is simultaneously guaranteed?

One possible solution consists of validating one node’s activation R;; iff its absolute
membership term A; ; has passed a SART vigilance test, i.e., A; ; is above a given vigilance
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threshold. In other words, “a node’s activation represents its credit for the current input,
and match provides a criterion for deciding if an input is an outlier for that category, and
should be ignored” (anonymous referee).

For example, when Equation (30) is employed, outliers are detected by requiring that

—d?.
Ai;=1/(1—e %) > p*, p* e (1,00). (31)
This is equivalent to constraining
Gaussian; j = e % > p= (" =1)/p", pe(0,1), p"e(l,00). (32)

Since Gaussian; j belongs to the class of M functions and p € (0,1), then vigilance test
(32) is consistent with inequality (13) employed in SART framework (see Section 4).

One example of ART-based network that exploits a Gaussian mixture model of the
input space and provides an a posteriori probability estimate iff class conditional likelihood
satisfies a (S)ART-based bidirectional vigilance test is the Gaussian ARTMAP (GAM)
model (Williamson, 1996, 1997).

7 Fuzzy SART

Two SART implementations can be found in the literature, employing a hard (WTA) and
a soft competitive learning strategy respectively (Baraldi & Parmiggiani, 1995a, 1995b).
In agreement with theoretical expectations (see Section 3.2), the soft competitive version
performed better than the hard competitive one (Baraldi & Parmiggiani, 1995b). This
development is quite similar to that regarding GAM, which was originally proposed as
a hard competitive incremental algorithm (Williamson, 1996), then as a soft competitive
(distributed learning) incremental algorithm (Williamson, 1997).

In this section we present a soft competitive SART implementation, termed Fuzzy SART,
based on recommendations suggested in Section 3.3 to improve Fuzzy ART. This also means
that Fuzzy SART combines SART architecture with probabilistic and possibilistic fuzzy
membership functions as outlined in Section 6.4. This “fuzzification” process justifies ex-
ploitation of the name Fuzzy SART. With regard to learning strategy, Fuzzy SART is
intended to combine useful properties driven from successful clustering algorithms, such as
SOM and Neural Gas (NG, Martinetz, Berkovich & Schulten, 1993). To summarize, Fuzzy
SART aims to provide a new synthesis between properties of ART, SOM and NG, to extend
abilities of these separate approaches. While limitations of Fuzzy ART and improvements
to this algorithm have been detailed in Sections 3.2 and 3.3, a brief review of SOM and NG
is presented below.

7.1 Review of SOM and NG

Both SOM and NG satisfy the two Kohonen’s constraints, introduced in Section 3.3, that
should be met by the proposed Fuzzy SART algorithm as well. These two contraints derive
from neurophysiological studies and provide an annealing schedule (Martinetz, Berkovich &
Schulten, 1993; Ancona, Ridella, Rovetta & Zunino, 1997). They consist of two empirical
functions of time, which must be user defined (Kohonen, 1990, 1995). The first Kohonen
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heuristic rule requires that learning rates decrease monotonically with time according to a
cooling scheme, i.e., as the number of processing epochs increases, all learning rates (winner
as well as non-winner) decrease towards zero. Important properties of this cooling schedule
have been analyzed by Bezdek & Pal (1993), Karayannis, Bezdek, Pal, Hathaway & Pai
(1996), Ritter, Martinetz & Schulten (1992), Fritzke (1997a), Mulier & Cherkassky (1995a).

The second Kohonen heuristic rule requires that the size of the update (resonance)
neighborhood centered on the winner node must decrease monotonically with time, such
that a soft competitive learning strategy converges into a hard competitive (WTA) learning
paradigm. This model transition is equivalent to stating that the initial overlap between
nodes’ receptive fields must decrease monotonically with time until it is reduced to zero, as
hard competitive learning renders receptive fields equivalent to Voronoi polyhedra (Fritzke,
1997a). Interpretations of this second Kohonen heuristic rule, and relationships between
SOM and other optimization techniques such as deterministic annealing (Rose, Guerewitz &
Fox, 1995) and the Expectation-Maximization (EM) approach (Dempster, Laird & Rubin,
1977) are proposed in Luttrell (1990), Martinetz, Berkovich & Schulten (1993), Buhmann
(1995), Mulier & Cherkassky (1995b), Alpaydin (1998). From a general perspective, it
is important to remember that, compared to hard competitive learning, soft competitive
learning not only decreases dependency on initialization (Martinetz, Berkovich & Schulten,
1993), but also reduces the presence of dead units (Fritzke, 1997a).

Despite its many successes in practical applications, SOM contains some major deficien-
cies (many of which are acknowledged in Kohonen, 1995), as listed below:

i) Termination is not based on optimizing any model of the process or its data (Tsao, Bezdek
& Pal, 1994). Indeed, it has been shown that an objective function cannot exist for the
SOM algorithm, i.e., there exists no cost function yielding Kohonen’s adaptation rule as
its gradient (Erwin, Obermayer & Schulten, 1992; Bishop, Svensen & C. Williams, 1996).
SOM instead features a set of potential functions, one for each node, to be independently
minimized following a stochastic (on-line) gradient descent (Erwin, Obermayer & Schulten,
1992).

ii) The size of the output lattice, the learning rate and the size of the resonance neigh-
borhood must be varied empirically from one data set to another to achieve useful results
(Tsao, Bezdek & Pal, 1994).

iii) Topology preserving mapping as defined by Martinetz, Berkovich & Schulten (1994) is
not guaranteed.

iv) Prototype parameter estimates may be severely affected by noise points and outliers.
This is due to the fact that learning rates in SOM are computed as a function of the number
of processing epochs and node position in the grid, while they are independent of the actual
distance separating the input pattern from the cluster template.

It is important to stress that while Kohonen’s Vector Quantization (VQ) and SOM
represent two important paradigms for information representation both in theory and in
practice (Kohonen, 1995), another clustering algorithm, termed Neural Gas (NG, Martinetz,
Berkovich & Schulten, 1993), has quickly gained popularity as a successful on-line vector
quantizer (Fritzke, 1997a). NG implements a stochastic gradient descent of an analytical
cost function, as opposed to SOM. Moreover, NG satisfies Kohonen’s two constraints. In
detail, NG implements model transitions from soft to hard competitive learning by: (a)
employing metrical neighbors in the input space rather than topological neighbors belonging
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to an output lattice as in SOM; and (b) sorting the activation values of processing elements
as the only network-wide internode communication (Ancona, Ridella, Rovetta & Zunino,
1997). The main deficiencies of NG are that:

i) It employs a fixed user-defined number of clusters (this problem is closely linked to that
of robustness, Dave & Krishnapuram, 1997).

ii) It does not preserve topological information.

iii) Prototype parameter estimates may be severely affected by noise points and outliers
since learning rates in NG are computed as a function of the number of processing epochs
and the rank of the reference vector, while they are independent of the actual distance
separating the input pattern from the cluster template.

7.2 Fuzzy SART-specific features

To simplify the discussion, our hypothesis is to deal with a finite data set {X}, consisting
of n input patterns Xj, i = 1,...,n, where X; € R¢, which is repeatedly presented to the
network until a termination criterion is satisfied. Each presentation sequence is termed a
training epoch.

To run Fuzzy SART, the user specifies vigilance threshold p € [0,1], and a lower limit
for the number of epochs each node has to live through, e,,;, > 1, this parameter affecting
the time required by the algorithm to reach termination.

The following steps characterize Fuzzy SART implementation, to be fit into the general
SART framework proposed in Section 4.

Initialization. When output unit E. is generated, its local (PE-based) time counter e,
is initialized to 0. Fuzzy SART employs PE-based time counters to compute PE-based
plasticities (learning rates). In Fuzzy SART, the “age” (local time) of processing unit E,
is an integer value e, > 0, equal to the number of times the finite input data set has been
iteratively presented to the system while E. exists. Although the presence of PE-based
variables has never been stressed in the development of clustering algorithms featuring a
fixed number of units, e.g., SOM and NG, it has been employed in Kohonen-based grow-
ing networks (Fritzke, 1994, 1995), as well as in GAM (to estimate priors, Williamson, 1997).

Activation function. The activation function is a relative membership defined as (22),
ie.,

(1)

ar, (WY x®) = r{") = _ A
3 42 7, c DK
: Ry BV

employs Equation (18) according to Equations (25) and

i=1,.,n, j=1,..,c, (33)

(1)

where absolute membership A;

(26) as

A0 = 1 _ 1
Yo wvpw X 1 - vbomMw xR’

i=1,.un, j=1,.,c (34)

such that AE? € (1, 00) since VDM(WJgt),th)) € (0,1] (see Section 5.1).
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Detection of processing units eligible for being resonant. In line with NG, Fuzzy
SART applies a soft competitive learning mechanism based on neighborhood-ranking of met-

rical neighbors in the input space (Martinetz, Berkovich & Schulten, 1993; Fritzke, 1997a).
()

Best ranking rji = 0 is assigned to the best-matching unit E;« detected as (see Section 4)

j* = arg max {AFy(W,X{)} = arg max (R},

(ke

which is equivalent to conditions

%
= arg max
J g, m

{vomwi), x{")}. (35)

Einkes |

. {A%} = arg hinax

ety 5--5C

Next, r](-t) =1if AF; (WJgt), th)) is second largest, etc. Both empirical evidence and the-
oretical predictions indicate that a few (five to ten) ”top” positions in the list of sorted
(t)

activation values (i.e., r;” € {0,9}) are sufficient to attain almost ideal results (Ancona,

Ridella, Rovetta & Zunino, 1997).

Resonance domain detection. Given Equation (34), Equation (31) applied to the winner
unit F;« becomes

1
Ast)* = Z p*7 p* € ].,OO ’
7 -vDMWE, X®)2 (1, 0)

which is equivalent to constraint (see also Equation (32))
(t) 5 (t) — (p x *
VDM(Wj* aXi ) >p= (p _1)/p y PE (Oa 1)a pE (l,OO). (36)

Owing to Equations (13) and (36), Fuzzy SART match function is defined as Equation (17),
ie.,
MF (W, X)) = vDMWP, X{").

This value has already been computed when Equation (34) is processed. Note that condi-
tion MF1(W1,X) > MF{(W3,X) implies that AF;(Wy,X;) > AF1(W2,Xj), and vice
versa, YW1, W3 and X € R?. This means that the corollary presented in Section 4 applies
to Fuzzy SART, i.e., to detect the resonance domain, Fuzzy SART requires no mismatch
reset condition and search process.

Resonance condition: weight updating. A Kohonen weight adaptation law is applied
to all processing units belonging to the resonance domain as

t+1 t t t t . . t
Wi =wh 4 a0 (xU-w), k=1,.,d, i=1,..,n, Vje{lc:rle {oz?s))%.
In line with the NG algorithm, processing unit E;, whose local epoch counter is e;, features

learning rate ﬁ](-t) defined as
A = h0 vie{1,c}:r € 0,9}, (38)
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where ﬂ , ] , and h( ) all belong to range [0,1], such that ﬁ < mln{e g-t)}. In detail,
&) = e(ej, BY)) = €milegim/emi)/ i, (39)

where e,,;, is the user-defined decay parameter described above, while variables ¢;,; and
€rin are computed as

1> € = max{R €} > €fin = mln{R €} >0, (40)

l]’ Z]’
where parameter ¢ is the maximum lower limit for the learning rate (e.g., ¢ = 0.005 is

(t)

fixed by the application developer). Coefficient €;’ is monotonically nonincreasing with e;

J
(t)

and monotonically nondecreasing with R( ) Owing to the exploitation of R;; in Equation

(40), eg) depends on the entire set of dlstances between prototypes and the input pattern.

Experimental evidence shows that if the term Rl(f]) is replaced by AS? in the computation

of €;n; and €y;y,, then Fuzzy SART shows a tendency to produce coincident clusters, in line

(®)

with possibilistic clustering algorithms (see Section 6.1). In Equation (38), term h;” reduces
the overlap between node receptive fields according to the following expression
®) ) (.
h() _ h(t)[r Loi(ef)] = e_Tjt /03(61)’ (41)

®)

where 77 is the neighborhood ranking of node E; and o/(e;) is a spread value computed
as a monotonically decreasing function of time, e.g.,

oj(ej) = Uim(afm/ami)e"/emm, (42)

where 0;,; > 0yin. Widely employed settings for these parameters are o;,; = 5, and
ofin = 0.01 (Martinetz, Berkovich & Schulten, 1993; Ancona, Ridella, Rovetta & Zunino,

1997). Thus, learning coefficient hg-t) is monotonically decreasing with neighborhood rank-
ing rj(-t) and time e; if j # j*.

Controls at epoch termination. When the entire input data set is presented to the
system, i.e, if [(t%n) = 0], where operator % computes the remainder of ¢ divided by n,
then the following operations occur: a) PE-based time (epoch) counters are incremented by
one as e; =ej+1,j=1,...,c; and b) superfluous cells are removed, such that, Vj € {1,c},
if processing element E; has not been the best-matching unit for any pattern assignment
during the last processing epoch, then it is removed, and PE counter is decreased as ¢ = c—1.

7.3 Fuzzy SART complexity

As with the NG algorithm, the computationally expensive part of Fuzzy SART is the de-
termination of “neighborhood-ranking”, whose computation time increases as clogc (Mar-
tinetz, Berkovich & Schulten, 1993). The same ranking mechanism is employed by the
Fuzzy ART mismatch reset condition and search process to detect the winner node (see
Section 3.1). We conclude that serial implementations of NG, Fuzzy SART and Fuzzy ART
share the same computational complexity. About this conclusion, several considerations
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can be made. If Fuzzy ART employs normalization preprocessing, it loses vector-length
information. If Fuzzy ART employs complement coding, it doubles its storage requirement
and computation time with respect to that of Fuzzy SART. Finally, Fuzzy ART is hard
competitive while Fuzzy SART is soft competitive, i.e., the latter system is more efficient,
performing more complex learning activities in the same number of steps.

7.4 Advantages of Fuzzy SART

The simple example given in Appendix C shows that Fuzzy SART features several proper-
ties of interest:

i) It is less sensitive than Fuzzy ART to the order of presentation of the random sequence.
ii) It improves processing time of Fuzzy ART by employing no search process.

iii) Its vigilance scale is more sensitive than the one employed by Fuzzy ART (to obtain the
same number of clusters, Fuzzy ART requires a larger value of the vigilance threshold).

iv) It is both stable and plastic, owing to the combination of its update strategy and
dynamic allocation and removal of processing resources (once a template has reached ter-
mination, it is not moved by subsequent training sessions).

v) It avoids input data pre-processing such as normalization or complement coding.

vi) In line with recommendation (iv) of Section 3.3, it satisfies the first Kohonen constraint
(®)

as learning coefficient €;” (e;, R; ;) decreases monotonically with time e;, see Equations (38)

and (39).

vii) In line with recommendation (v) of Section 3.3, it satisfies the second Kohonen con-
straint, so that a model transition scheme from soft to hard competitive learning is pursued,
as learning rate coefficient hg-t) [rj(-t) ,0;(e;)] decreases monotonically with e; and r](-t) ifj # j*,
see Equations (38), (41) and (42).

viii) It features enhanced robustness against noise by means of coordinated actions which
are summarized as follows. a) Noise points do not affect existing prototypes. b) Since a
detected noise pattern (i.e., a pattern that does not pass the vigilance test) is sufficient to
generate one new category, a category removal mechanism is provided to avoid overfitting.

7.5 Weaknesses and possible developments of Fuzzy SART
The main deficiencies of Fuzzy SART are that:
i) Since metric NV D is not invariant to translation (see Section 5.1.2), it does not ap-

ply successfully to the Euclidean space, as shown in Section 9. If Fuzzy SART is applied to
the Euclidean space, then its PEs should not employ Equation (17) in their activation func-
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tion, but rather employ the Euclidean norm, as in Equation (26) (Baraldi & Parmiggiani,
1997).

ii) It does not preserve topological information. To overcome this problem, Fuzzy SART can
be provided with the Competitive Hebbian Learning mechanism (CHL) that introduces com-
petition among synaptic links (Martinetz, Berkovich & Schulten, 1994). According to CHL,
during on-line processing of an input pattern the two template vectors closest to the pattern
must be detected, then the two output nodes providing these templates must be connected by
an edge (synaptic link). This rule generates an output graph, termed the induced Delaunay
triangulation, which preserves topology optimally in a very general sense. Fuzzy SART
provided with CHL is termed Fully self-Organizing SART (FOSART). Note that FOSART
requires no ranking of the set of output values provided by the battery of attentional nodes,
since the update neighborhood is identified as the set of nodes topologically connected to
the winner unit (Fritzke, 1997a). To summarize, exploitation of the competitive Hebbian
learning mechanism allows FOSART to: (a) develop an output map (grid) providing a topo-
logically correct mapping of input patterns; and (b) reduce the computational complexity
of Fuzzy SART by employing no ranking mechanism to perform soft competitive learning
(Baraldi & Parmiggiani, 1997).

iii) Termination is not based on optimizing any model of the process or its data, although
some relationships with the learning policy of the NG algorithm, which performs stochastic
gradient descent of an analytical cost function, have been established.

8 Experimental comparison of Fuzzy ART and Fuzzy SART

Our aim is to assess the functional consequences of the different Fuzzy ART and Fuzzy
SART architectures. Applications to simple data sets are sufficient to let these functional
differences emerge naturally.

The Fuzzy SART and Fuzzy ART systems belong to the class of squared-error clustering
programs (Dubes & Jain, 1976). To compare their performances, these two systems must
be applied to several data sets to detect the same number of output categories while the
following features are considered (Dubes & Jain, 1976): i) the value of their squared error
criterion; ii) the number of misclassified input patterns; iii) the number of iterations before
reaching termination (epochs); iv) the sensitivity (stability) of the two algorithms to the
order of the training sequence; and v) the sensitivity (stability) of the two algorithms to
their input parameters.

Since squared-error clustering algorithms detect groups of patterns that are hyperspher-
ical or hyperellipsoidal in shape, two simple data sets are selected from the literature. The
first data set, shown in Fig. 5, is two-dimensional and consists of 24 points (Simpson, 1993).
The second data set is the 4-dimensional standard IRIS data set, consisting of 50 vectors
for each of 3 classes (Fisher, 1936). Exploitation of the IRIS data set allows comparison of
Fuzzy SART and Fuzzy ART with other clustering models found in the literature. Typical
error rates for unsupervised categorization of the IRIS data set are 10-16 mistakes (Bezdek
& Pal, 1995; Tsao, Bezdek & Pal, 1994). Despite their simplicity, these two data sets are
sufficient to reveal the different functional properties characterizing Fuzzy ART and Fuzzy
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Figure 5: Two-dimensional data set employed for testing (Simpson, 1993).

SART.

8.1 Experimental set up

Although Fuzzy ART requires normalization of input patterns to avoid category prolifera-
tion (see Section 3), we employ Fuzzy ART without any normalization step because: i) no
category proliferation affects Fuzzy ART in the clustering of either the Simpson or the IRIS
data set; and ii) no normalization has been employed in several clustering examples of the
IRIS data set to be found in the literature for performance comparison.

When Fuzzy ART is employed with no normalization preprocessing, experimental evi-
dence reveals that weight adaptation law (11) becomes completely inadequate and is then
replaced by the Kohonen law (37), where learning rate (; is derived from Equation (39) as

B = eini(ffin/fmi)ej/emm , (43)

where variable e; and parameter e, are defined as in Equation (39), parameter €, is
fixed to 0.005 as parameter ¢ in Equation (39), and parameter €;,; is user-defined such
that inequality €;,; > €fi, holds true. Owing to the proposed substitutions, the Mean
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Square Quantization Error (MSE) of the Fuzzy ART algorithm in the clustering of both
the Simpson and IRIS data set decreased by a factor of up to 70 %. At the same time,
in line with Fuzzy ART, we force Fuzzy SART to employ a hard competitive strategy
exclusively by setting parameters o;n; = 0, = 0.0001 in (42), so that, in (38), coefficient
hj+ = 1 for the winner node Ej«, while hg-t) =0, Vj # j*. Since these choices reduce the
degree of difference between learning and termination strategies adopted by Fuzzy ART
and Fuzzy SART, we expect functional differences between these two clustering models, if
any, to emerge naturally as a consequence of their alternative solutions in the choice of the
activation and match function pair.

Each system was tested several times with different values for free parameters chosen
within reasonable ranges. The Fuzzy SART input parameters are p € (0,1) and e €
[1,400). The three Fuzzy ART input parameters are vigilance threshold p € (0,1), €in; €
(0.0005,1] (see above) and e, € [1,400). Parameter a in Equation (4) is set to 0.001
(Huang, Georgiopoulos & Heileman, 1995).

8.2 Two-dimensional data clustering

Ten different sequences of the Simpson data set are iteratively presented to the Fuzzy SART
and the modified Fuzzy ART systems. The number of detected clusters is constrained to
vary from 2 to 5, values considered reasonable in light of a visual inspection of Fig. 5, while
emin 1S sequentially fixed at 10, 20 and 100. Parameter €;,; employed by Fuzzy ART is
set to 0.05 and 0.2. Overall, Fuzzy SART was run 30 times for each number of clusters,
while Fuzzy ART was run 60 times. Fig. 6 shows the average, best and worst MSE values
obtained with the two clustering systems. For the same combination of input parameters
and by changing the list presentation, Fuzzy ART detected a varying number of clusters in
30.5 % of the measured cases, with an average standard deviation of 0.217 clusters, while
Fuzzy SART detected a varying number of clusters in 25 % of the measured cases, with an
average standard deviation of 0.125 clusters. Our conclusion is that Fuzzy ART is more
sensitive than Fuzzy SART to small changes in input parameters and in the order of the
presentation sequence in the clustering of the Simpson data set.

8.3 IRIS data clustering

To relate unsupervised categories to the IRIS labeled classes of patterns, a relabeling al-
gorithm is employed as follows: each category is associated with the class providing the
majority of category activation patterns. Input parameters are adjusted until the number
of detected categories is equal to 3, 5, 8 and 12 respectively. Tables 1 and 2 shows the best
performance of Fuzzy ART and Fuzzy SART respectively in terms of MSE minimization.
Overall, Fuzzy SART is superior to Fuzzy ART with respect to both MSE minimization
and pattern misclassification. When the number of detected clusters is 3, the value of
misclassified patterns makes Fuzzy SART competitive with other clustering models found
in the literature (Bezdek & Pal, 1995), (Kim & Mitra, 1993), while Fuzzy ART is by no
means competitive. For example, Fuzzy SART performs better than: i) the Fuzzy Min-Max
clustering model (see Fig. 10 in Simpson (1993), where the smallest number of misclassified
patterns is 18 when the number of clusters is 3); ii) the Fuzzy c-means algorithm, affected
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Figure 6: Clustering of the Simpson data set. (a) Fuzzy ART performance
with average, maximum and minimum MSE values. Codebooks from size 2
to 5 were generated. Sixty simulations were performed for each codebook
size. (b) Fuzzy SART performance with average, maximum and minimum
MSE values. Codebooks from size 2 to 5 were generated. Thirdy simulations
were performed for each codebook size.
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Table 1: Input parameters and output values of the best Fuzzy ART performance in the
categorization of the IRIS data set.

Free parameter No. of | MSE | Misclassified | No. of
values™ clusters patterns iterations
p=0.82, €n; =0.05, enin =950 3 0.804 43 50
p=0.90, €pn; =020, enin =10 5 0.377 16 10
p=0.935, €n; =0.20, emnim =10 8 0.246 17 10
p=0.944, €;n; = 0.20, enmin =50 12 0.210 16 50

* a = 0.001; €f;, = 0.005.

Table 2: Input parameters and output values of the best Fuzzy SART performance in the
categorization of the IRIS data set.

Free parameter No. of | MSE | Misclassified | No. of
values* clusters patterns iterations
p=0.36, €nin =250 3 0.555 11 50
p=0.60, €nip =10 5 0.333 18 10
p=0.75, €min = 10 8 0.204 4 10
p=0.78, €min = 10 12 0.174 3 10

* Oini = 0 fin, = 0.0001; €fin, = 0.005.

by 15 misclassifications (Kim & Mitra, 1993); and iii) the Kohonen VQ algorithm, affected
by 17 misclassifications (Kim & Mitra, 1993). Table 3 gives the numerical values of the
physically labeled IRIS subsample means. Tables 4 and 5 report Fuzzy SART and Fuzzy
ART terminal centroids when the number of detected categories is equal to 3. Tables 6 and
7 present the confusion matrices of Fuzzy ART and Fuzzy SART respectively, when the
number of detected categories is equal to 3.

9 Conclusions

When applied to simple data sets, the ART 1-based Fuzzy ART system is not stable with
respect to small changes in input parameters and in the order of the training sequence. This
experimental evidence is in line with what is found in the literature concerning the ART
1 system. Our work is focused on detecting structural problems that affect ART 1-based
system design. One potential problem is identified in the sequential exploitation of two
complementary unidirectional (asymmetric) functions to compute an inherently symmetric
interpattern similarity value. An alternative ART-based general framework, termed SART,
is then presented to extract statistical regularities from analog samples. This new frame-
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Table 3: Numerical values of the centers of the IRIS classes.

\ |Band 1 | Band 2 | Band 3 | Band 4 |
Class 1 5.006 3.428 1.462 0.246
Class 2| 5.936 | 2.770 | 4.260 | 1.326
Class 3 6.588 2.974 5.5562 2.026

Table 4: Numerical values of the reference vectors detected by Fuzzy ART in the processing
of the IRIS data set. p = 0.82, eini = 0.05, e, = 50. No. of clusters = 3.

\ |Band 1 | Band 2 | Band 3 | Band 4 |
Class 1 5.004 3.426 1.462 0.246
Class 2 | 6.185 | 2.857 | 4.854 | 1.680
Class 3| 7.619 | 3.222 | 6.484 | 2.196

Table 5: Numerical values of the reference vectors detected by Fuzzy SART in the processing
of the IRIS data set. p = 0.36, emin = 50. No. of clusters = 3.

\ |Band 1 | Band 2 | Band 3 | Band 4 |
Class 1 5.003 3.425 1.461 0.245
Class 2 | 5.802 | 2.733 | 4.230 | 1.348
Class 3| 6.762 | 3.036 | 5.613 | 2.020

work employs bidirectional activation and match functions computing interpattern similar-
ity values as relative numbers. A specific SART implementation, termed Fuzzy SART, is
developed to take advantage of the combination between the SART framework and useful
absolute and relative fuzzy membership functions.

According to theoretical and experimental considerations, Fuzzy SART features several
interesting properties when compared to existing clustering algorithms: i) the system is
easy to use, requiring only two main parameters having an intuitive physical meaning; ii)
unlike Fuzzy ART, the system requires no input data preprocessing; iii) unlike SOM and
NG, the system requires no a priori knowledge of the size of the network; iv) unlike SOM,
the system requires no a priori knowledge of the topology of the network; v) unlike SOM
and NG, the system requires no randomization of the initial templates; vi) unlike SOM
and NG, the system is capable of detecting outliers; vii) unlike Fuzzy ART, the system
is capable of removing noise categories to avoid overfitting; viii) unlike Fuzzy ART, the
system is fairly stable with respect to small changes in input parameters and in the order of
the presentation sequence; and ix) the number of misclassified patterns detected by Fuzzy
SART in the processing of the IRIS data set is competitive with that of other clustering
models found in the literature.

Failure modes of the proposed algorithm are that: i) Fuzzy SART does not manage
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Table 6: Confusion matrix generated by Fuzzy ART clustering of the TRIS data set. p =
0.82, emin = 50, €;,; = 0.05. No. of clusters = 3.

‘ ‘ Category 1 ‘ Category 2 ‘ Category 3 ‘

Class 1 50
Class 2 50
Class 3 43 7

Table 7: Confusion matrix generated by Fuzzy SART clustering of the IRIS data set.
p = 0.36, e = 50. No. of clusters = 3.

‘ ‘ Category 1 ‘ Category 2 ‘ Category 3 ‘

Class 1 50
Class 2 42 8
Class 3 3 47

topological information, i.e., it cannot provide topologically correct mapping, although this
property is incorporated in FOSART (see Section 7.5); ii) if it employs similarity measure
VDM, then Fuzzy SART should not be applied to data sets belonging to the Euclidean
space, as shown in Figs. 7 and 8, where an input 3-D digitized human face (Borghese,
Ferrigno, Baroni, Savare, Ferrari & Pedotti, 1998), and the output resampled data set are
shown respectively; and ii) Fuzzy SART does not minimize any known objective function.

Preliminary results of the new version of Fuzzy SART, termed FOSART (see Section
7.5), are encouraging, as shown in Figs. 9 and 10 (Baraldi & Parmiggiani, 1997).

Both Fuzzy SART and FOSART can be employed as the hidden layer in any two-layer
supervised system computing function approximation through scatter-partitioning (Fritzke,
1994, 1997b). In these systems, supervised errors at the output are taken into account to
determine number and scatter position of PEs belonging to the hidden clustering layer
(Alpaydin, 1998; Bishop, 1995; Fritzke, 1994, 1997b).
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Figure 7: 3-D digitized human face consisting of 9371 vectors.

Appendix A

Let us consider two binary vectors X() and WJ(I‘) Since X ,(:) € {0,1}, k=1,...,d, we can
write

d d
IX®O) =3 x0 =3 (x")? = X® 2, (44)
k=1 k=1

where || X®)|| is the norm of the input vector and

| X®) |= (45)
is the modulus of X(*). In line with Equation (44) we can also write
W= Wi T (46)
Substituting (44) and (46) in (7), then
J\/fF(Wéf),X(t)) _ X®) o J(t) CXE WJ(t) | -cos O | WJ(t) | - cos 0« (47)

x® > X () | B | X® |
| | | |
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Figure 8: Reference vectors detected by Fuzzy SART when the digitized human face data
set is processed. Output information is: No. of nodes = 1775, MSE = 5.810, No. of
iterations = 69.

where X®) o Wj(f) is the scalar (dot) product between X® and W(t), and 6;- is the angle

j*
between X() and WJ(f)

Appendix B

As is true for ART 1 (see Section 1), Fuzzy ART, which is ART 1-based, is also expected
to be sensitive to changes in the order of presentation of the random sequence.

Let us consider the following example. The input parameters are p = 0.55, o = 0.001,
B = 1 (see Section 3.1). The presentation list is X(1) = (0,0,1,0,0), X = (0,1,1,1,1),
and X®) = (1,1,1,0,0). This is submitted to the Fuzzy ART preprocessing normalization
step. The presentation list becomes X(1) = (0,0, 1,0,0), X(2) = (0,1/2,1/2,1/2,1/2), and
X®) = (1/v/3,1/v/3,1//3,0,0).

Patterns X() and X(?) generate two categories W(ls) = W(lz) =X and W(zs) =X®
respectively (since vigilance test (3) is such that MF, (W(lz), X)) = 0.5/ (4-0.5) = 0.25 <
p). The winner template for pattern X(®) is chosen according to Equations (2) and (4) as

j* = arg max{o.lo/o\f-p 0_0021'3_'20_5} = argmax{0.576,0.499} = 1, ie., WJ(,?) = W(ls). The

vigilance test (3) is such that: J\/fFl(Wgs),X(?’)) = (1/v/3)/(3-(1/+/3)) = 0.33 < p. Thus,
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Figure 9: Reference vectors detected by FOSART when the digitized human face data
set is processed. Qutput information is: No. of nodes = 3370, No. of submaps = 60,
MSE = 1.44, No. of iterations = 10.

the reset condition and search process is started. The second-best template is Wgs). Then,
MFl(Wg3),X(3)) = (2-0.5)/(3 - (1/+/3)) = 0.577 > p. Since the vigilance test is satisfied,
then fast category adaptation (11) leads to W(24) = (0,0.5,0.5,0,0). Thus, final templates
are W = X1, while W = (0,0.5, 0.5,0,0).

Let us consider a different order of the input sequence where the input vectors described
above are presented as follows: X1 = (0, 0, 1, 0, 0), X® = (1,1,1,0,0), and X® =
(0,1,1,1,1). Due to input pattern normalization, the presentation list becomes X(1) =
(0,0,1,0,0), X = (1/4/3,1/4/3,1/1/3,0,0), and X(3) = = (0, 1/2, 1/2, 1/2, 1/2). Patterns
X™ and X2 ) generate two categories W:(l ) = W(lz) = X® and W(23) = X@ respec-
tively (since vigilance test (3) is such that MFl(Wgz),X(Z)) = (1/V3)/(3//3) = 0.33
< p). The winner template for pattern X®) is chosen according to (2) and (4) as j* =

. 3 3) 1o
arg max{o 001+1’ ) 00113?(51/\0} = arg max{0.499,0.576} = 2, i.e., W‘g*) = Wg ). Vigilance

test (3) is such that: MF{ (WS, X®) = (2-0.5)/(4-0.5) = 0.5 < p. Thus, the reset
condition and search process are started. The second-best template is W(13) . In this case,
MFl(Wgs),X(3)) = 0.5/(4-0.5) = 0.25 < p. Since the vigilance test is not satisfied, then
a new category is dynamically allocated so that final templates are W(14) = XM, W(24)
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Figure 10: Projection onto input space of synaptic links detected by FOSART in the output
map of the digitized human face data set.

=X® and WY = X©®
Clustering results obtained when Fuzzy ART processes the two presentation sequences
are inconsistent in terms of number of clusters.

Appendix C

Let us consider the same example employed to test Fuzzy ART in Appendix B. Note that
since Fuzzy ART has employed a normalized input data set, then differences in vector
length between input pattern pairs are lost, i.e., term M DM, which is equal to 1 according
to Equation (14), is useless in the computation of similarity value VDM employed in
Equations (34) and (36). The input parameter is set to p = 0.4. This value is sufficiently
large to guarantee detection of more than one cluster. Nonetheless, the results of this
experiment will be easy to generalize.

The presentation list is X = (0, 0, 1, 0, 0), X® = (0, 1/2, 1/2, 1/2, 1/2), and
X®) = (1/v/3, 1/v/3, 1/v/3, 0, 0). Patterns X and X generate two categories,
W(13) = WgZ) = XM and W(23) = X respectively (since H(W(lz), X)) = arc cos
(0.5) = 60°, then ADM(W® X2) = (90 — 60)/90 = 0.333 = MF, (W, X@) <
p). The winner template for pattern X®) is chosen according to Equation (35) as j* =
argmax{%farc%oosu/\/g)’907arcc9008(1/\/§)} = argmax{0.392,0.392} = {1,2}, i.e., ij’) _
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W(13) or Wﬁ” = W(23). Let us consider that Wﬁ” = W(ls). Since Wl(W?), X(3))
= 0.392 < p, then a new template is allocated (see Section 7.2), such that final templates
are W = XO W = X® and WV = X©®.

Let us consider, as in the Fuzzy ART example proposed in Appendix B, a different order
of the input sequence where the input vectors described above are presented as follows:
XM = (0, 0, 1, 0, 0), X = (1//3, 1//3, 1/V/3, 0, 0), and X&) = (0, 1/2, 1/2, 1/2,
1/2). Patterns X(1) and X(2) generate two categories W(ls) = Wgz) = X™ and W(23) =
X(2) respectively (since H(W:(lz), X®)) = arc cos (1/v/3) = 54.73°, then ADM(W(12), X(2)
= (90 — 54.73)/90 = 0.392 = Wl(w(f), X)) < p). The winner template for pattern

X is chosen according to Equation (35) as j* = arg max{ 90_“7;)%0050-5’ 90—“’”009%3(1/\/5)}

= argmax{0.333,0.392} = 2, ie, W = W5, Since MF1 (W5, X®) = 0.392 < p,

then a new template is allocated (see Section 7.2), such that final templates are W(14) =X@),
W = X® and W = X®),

Clustering results obtained when Fuzzy SART processes the two presentation sequences
are consistent in terms of number of clusters. Note that when the third input instance is
processed, the match value computed by match function (17) is the same for the two input
sequences (equal to 0.392). We can conclude that in this example Fuzzy SART is insensitive
to the change in the presentation order of the input sequence.
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