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Abstract

We consider amalgamations of finitely generated nilpotent groups of class c. We
show that doubles satisfy a polynomial isoperimetric inequality of degree 2¢%. Gen-
eralising doubles we introduce non-twisted amalgamations and we show that they
satisfy a polynomial isoperimetric inequality as well. We give a sufficient condition
for amalgamations along abelian subgroups to be non-twisted and thereby to sat-
isfy a polynomial isoperimetric inequality. We conclude by giving an example of a
twisted amalgamation along an abelian subgroup having an exponential isoperimetric
function.



1 Introduction

1.1 Isoperimetric Functions

The isoperimetric function of a finitely presented group G limits the number of defin-
ing relators needed to show that a word represents the identity in (G. Hence the
isoperimetric function is a measure for the complexity of the word problem. Suppose
G = F/R where F is a free group freely generated by the finite set F and R is the
normal closure of a finite set of relators R C F. Thus P = (F|R) is a finite presen-
tation of (G. For short we identify words w € F' with their residue classes wR € G.
A word w is equal to 1 in G if and only if w is freely equal to a word of the form

H u,i_lrgui with u; € F, r; € R and ¢; = +1.
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Let Ap: R — N be the so-called area function defined by

Ap(w) =min{m € N |w = Hu_lr?ui foru; € Fyr, € R,e; = £1}

i=1
for a word w € R. We denote by |w| the length of w. Associated with Ap is the
isoperimetric function ®p of the finite presentation P defined by
Op(n) = max{Ap(w)|w € R and |w| < n}.

A partial ordering = on functions on the natural numbers is used to compare
isoperimetric functions. For f,g : N — N let [ =< ¢ if and only if there exists
a constant K such that f(n) < Kg(Kn)+ Kn for all n € N. Hence we get an
equivalence relation = where f = ¢ if and only if f < ¢ and ¢ < f. If P and @)
are different finite presentations of the same group then ®p = @4, cf. [Alo90]. Any
N — N function equivalent to ®p is called an isoperimetric function of GG, denoted
by ®g. We say that G satisfies a polynomial isoperimetric inequality of degree k if
& is bounded above by a polynomial of degree k.

We note that all finitely generated nilpotent groups are finitely presented. For a
finitely generated free nilpotent group G of class ¢ we have n°t! < ®5 by [BMS93,
Ger93]. Pittet shows in [Pit95], based on [Gro93, 5.A}], that ®¢ < n°t!. Hence the
isoperimetric function of a free nilpotent group of class ¢ is equivalent to n°*'. For
an arbitrary finitely generated nilpotent group G of class ¢ we have ®5 < n?°, cf.

[Hid97].

1.2 Isoperimetric Functions of Amalgamations

Let G for 1 = 1,2 be a group finitely presented by P, = (F;|R;), H; a subgroup of
G; generated by £ = F; N F, and let the canonical map w — w with w € F be an
isomorphism between H; and H;. The group given by the finite presentation P =
(FiUF2 | R1 URy) is called the generalised free product of Gy and Gy amalgamating



Hy and H, or an amalgamation of G1 and Gy along H and is denoted by G xgy G
with H =2 Hy = H,.

Let G = G g GG3. The following results are contained in [BGSS91]: If GGy, G5 are
abelian then ®5 < n?. If GG, G5 are automatic then G is asynchronously automatic
and thus &5 < 2", If (G, (&3 are free and H is cyclic then G is automatic and thus
(I)G j n2.

If H is finite then &5 < éGl + CT)GQ, where CI)GL. is the superadditive closure of @,
cf. [Bri93].

Let P = (F|R) be a finite presentation for a group GG and H a subgroup of G
generated by & C F. Let w be a word in the generators F representing an element in
H and p(w) a word of minimal length in the generators £ such that p(w) =g w. The
function ép.¢(n) defined by the maximum of |p(w)| over all w € H in the generators
F of length < n is called the distortion of H in G. In analogy to the isoperimetric

~/

function, the distortion does not depend up to Z-equivalence on the presentation P,
cf. [Far94].

The following results are contained in [Hid97]: Let G, for ¢ = 1,2 be a finitely
presented group satisfying a polynomial isoperimetric inequality, H a finitely gener-
ated subgroup of GG; and G = Gy *g Gy. If H is linearly distorted then &5 <27, If
H is normal and at most exponentially distorted in G then &5 < 2". If H is central
and at most polynomially distorted in G; then G satisfies a polynomial isoperimetric
inequality. In general, if H is at most polynomially distorted then ®¢ < 22"). Thus
any amalgamation G = G xg Gy of finitely generated nilpotent groups satisfies a dou-
ble exponential isoperimetric inequality. However, if G; is torsionfree and H cyclic,
then (& satisfies a polynomial isoperimetric inequality of degree 4c?. Our goal is to
lower the double exponential upper bound for &4 to a polynomial upper bound for
the case where (7 is a double, a non-twisted amalgamation or an amalgamation along
a suitable abelian subgroup.

1.3 Rewriting Process

Let GG be a finitely presented group, H a finitely presented subgroup of G and w a
word of length n equal to 1 in (G. Suppose that we already know @z or an upper
bound thereof. To compute an upper bound for ®4 we use the following approach:
We rewrite w to a word p(w) in the generators of H. We then compute an upper
bound ®,(n) for the number of relators needed to rewrite w to p(w) and an upper
bound 6,(n) for the length of p(w). Since p(w) =¢ w the word p(w) is equal to 1 in
H as well. The area of p(w) is bounded above by ®x(6,(n)). Therefore the area of
w is bounded above by ®x(6,(n)) plus the number of relators needed to rewrite w to
p(w). Hence @y (6,(n)) + ®,(n) is an upper bound for the isoperimetric function of
G.

Let P = (F|R) be a finite presentation of the group G, F' the free group freely
generated by F and H a finitely generated subgroup of G. We may assume, without



loss of generality, that H is generated by a subset £ C F. Let E be the subgroup of
F generated by €. A rewriting process p from G to H relative to P, £ is a partial
map F % FE defined on all words w € H such that p(w) =g w and p(1) = 1. In
general p is not a homomorphism. Define §,(n) by the maximal length of p(w) for all
w € H with |w| < n. We call §, the distortion of the rewriting process p. In analogy
to ®p, we define ®,(n) to be the function defined by
max{Ap(w™p(w)) |w € H and |w| < n}.

We call @, the wsoperimetric function of the rewriling process p.

Let p; be a rewriting process from (G4 to a subgroup H; C (G relative to some
finite presentation and finite set of generators. Suppose ) is a retraction from G
to a finitely presented group (3. There exists a rewriting process py from G5 to
Hy = v (Hy) relative to a given finite presentation for (3 and finite set of generators
for Hy such that é,, <6, and &, <&, cf. [Hid97]. Since a group is trivially a
retract of itself, upper bounds on the isoperimetric function and the distortion of a
rewriting process do not depend up to =-equivalence on a given presentation.

If a rewriting process p minimises the word length, i.e. |p(w)| = min{|v| for v € £
and v =¢ w} for all w € H, then §, is called the distortion of H in G, c.f. section 1.2.
Analogously, if p minimises the area, i.e. Ap(w™'p(w)) = min{Ap(w™'v) for v € E
and v =g w} for all w € H, then ®, is called the generalised isoperimetric function

of H in G, cf. [Far94].

1.4 Main Results

Let G be a suitable amalgamation Gy *g G5 with G; for ¢ = 1,2 a finitely presented
nilpotent group. Using bracketings introduced in section 2 we construct in section 3
and section 4 a rewriting process p from GG to H such that p has a polynomial upper
bound on its distortion and isoperimetric function. Since H is also a nilpotent group,
&y has a polynomial upper bound as well. Thus ®g(n) < ®,(n) + Px(6,(n)) is then
bounded above by a polynomial. However, this rewriting process p requires a suitable
central series for ¢; and Gs.

Let ¢; : H — G be the injection of H in GG;. We call the amalgamation GG a double
and denote it by G *p ;4 Go, if and only if G; = (3 and ¢; = ¢. In section 5 we show
that for doubles suitable central series of the form required by the rewriting process
p in section 4 exist. Thereby we get:

Theorem 2 Let G be a double of a finitely generated nilpotent group of class ¢. Then
bi(n) < n2e,

We denote the j-th term of the lower central series of G; by ~v,;G;. In section 6 we
introduce non-twisted amalgamations:

Definition 1 We call an amalgamation Gy g (G5 non-twisted if and only if
viG1 N H € .Gy implies Gy N H C ~;Gy
forall 3,k € N.



If Gy *g Gy is non-twisted then v,Gy N H € ~;G also implies v;G1 N H C v;,Gy,
c.f. lemma 4. We note that doubles are examples of non-twisted amalgamations. We
show that if G is non-twisted then there exist central series for (G; and (G5 of the
form required by the rewriting process p constructed in section 4. Thereby we get
our main result:

Theorem 4 Let G be a non-twisted amalgamation of finitely generated nilpotent

groups of class c. Then
CI)G(n) < n2(2c+1)62 .

In section 7 we focus on amalgamations along abelian subgroups:

Theorem 5 Let G = (1 g G5 be an amalgamation of finitely generated nilpotent
groups. Suppose

HC~;Gy and HNvjG,={1}
for some positive integer 3 and ¢ = 1 or ¢ = 2. Hence H is abelian. Then G is
non-twisted and thereby satisfies a polynomial isoperimetric inequality.

We conclude this section by giving an example of a twisted, i.e. not non-twisted,
amalgamation along an abelian subgroup having an exponential isoperimetric func-
tion:

Theorem 7 Let G; for v = 1,2 be the free nilpotent group of class 2 and rank 2.
There exists a twisted amalgamation G = Gy g G5 with H abelian, isolated and
normal such that

2 Bracketings

Given a suitable presentation for an amalgamation, we introduce bracketings for
words representing elements in the amalgamated subgroup. We will use bracketings
in the following sections to construct rewriting processes from an amalgamation to
its amalgamated subgroup.

Let F' be the free group freely generated by F; UF,. A product of words vy --- vy €
Fis called an alternating product if and only if v; € F;, and vjyq & Fi, for 1 <5 <t
and for ¢t > 0 all v; are not empty. In this case  is called the number of alternations
in vg--- vy Clearly any word in F' can be written as an alternating product.

Let G = G xg G where G; for © = 1,2 is a finitely presented group, and H is a
finitely generated subgroup of ;. Let w = vg---vs € H be an alternating product.
Thus v; € H for some j. In the following definition we define a bracketing for w such
that any subword of w enclosed by brackets represents an element of H. By lemma
1 a bracketing exists for a word w if and only if w € H.



Definition 2 Suppose G = G xg Gy where G; for i = 1,2 is generated by F;, and
H is a subgroup of G;. We define bracketings for some words w in the generators
F1 UF, by induction on the number t of alternations in w.

1. Ift =0 then (w) is a bracketing for w if and only if w € H.

Suppose we have defined bracketings for alternating products with less than t al-
ternations and w = vg- - - v; 18 an alternating product.

2. If for some j < t the lwo allernating products vy---v; and vjqq1---v; have
bracketings 1 and [y then (31 By is a bracketing for w.

3. If w = vowguj,wy - - vjwwy € H such that for each w; (0 <1 < 1) there exists
a bracketing B; and vjw;---vjwy s nol in H for 0 <1 < k <[ and jo = 0 then
(vof1vj, -+ - v;,Bive) is a bracketing for w.

Lemma 1 [Hid97, section /] Suppose w € Gy xg Gy is a word in the generators of
G1 and Gy. There exists a bracketing for w if and only if w is an element of H.

3 Collection

Let G xg G5 be an amalgamation of finitely generated nilpotent groups and w € H
a word in the generators of GG; and G2. To construct in section 4 a rewriting process
p from G g Gy to H we will use rewriting processes p; from the G; to H for: = 1,2
and induction on the number of alternations of w. In order to rewrite w to a word
in the generators of H, we only have to consider, by section 2, the following three
cases: 1) w a word either in the generators of G4 or a word in the generators of G,
2) w = wywy for some wq, wy € H and 3) w = v1wyvy - - - wpvg4q with all w; € H and
all v; € G4 or all v; € G In this section we focus on the last case. Let all v; € G;.
Based on lemma 2 we construct in lemma 3 a word z in the generators of G; such
that
W = VWV " WEVE41 =@ W1W2 * + * WEpTVE41,

i.e. we collect the subwords w; to the left. We then derive upper bounds on the
length of z and the area of w™ wiwy -+ WrTVLL:.

For convenience we introduce the following convention: For a finite presentation
P = (F|R) we denote by F' the free group freely generated by F and by R the normal
closure of R in F. Analogously, if £ is a subset of F we denote by F the subgroup of
F generated by €. If U is a set of words we denote by U*' the set {u,u="|u € U}.
For a word w € F' we denote the number of letters in £ by |w|s and call it the relative
length of w with respect to €. For words v,w € F we denote by [v,w] the commutator
v 1w tvw. Let P = (F|R) be a finite presentation for a group ¢ and w, v words in
the generators F. By w = v we denote equality in the word-monoid generated by F,
by w =p v equality in the free group F and by w =¢ v equality in G.

Let m; for y = 1,...,d be non-negative integers. By
S mlemr
Ef=1 rpr<J



we denote the finite sum of mi' -+ m’? over all d-tuples (p1,...,ps) of non-negative
integers p, such that 3%, rp, < j.

Lemma 2 Let G be a nilpotent group finitely presented by P = (F|R) and
G=Ni DNy D...2N;2 Ny ={1}
a central series of G such that [N;, N;| C Niy;. Suppose F is the disjoint union of N;
fori=1,...,d such that N; generaltes N;. There exists a mapn: Fx F — F and a
positive integer DD such that
nle,w) =g wlew and ne,w) € F; foree N;, weF.
Moreover, n(e,w) satisfies the following inequalities

n(e,w)ly, < D730 mpteny (1)
 _ rpr<i—i
Ap(w—l e—lwr](e, w)) < D2d—i Z nzlh . nsd (2)

Zi:l rpr<2d—t
with n; = |w|y, forjg=1,...,d.

Proof: Let w € F, n = |w| and ¢ € F*'. We define 5(e,w) by induction on n.

For n = 0 we have w = 1. Hence we define (e, 1) by e.

Suppose n > 0 and 7 is defined for all words of length < n. Let w € F' such that
lw| = n. Let e € N;, w = fo with f € N, and v € F. Let u.; = g1---¢g¢ with
gs € Nigr for s = 1,...,1. By the induction hypothesis we have

wlew =p vlee 'flefv=¢ v_leu&fv =vleqr v

=G 77(67 0)77(917 U) T 7](9t, v)'

We define n(e, w) by n(e,v)n(g1,v)---n(g:,v).

Since [N;, N;] € Ny, there exists, for any letter e € N; and f € N}, a word u, ;
in the generators V1 such that u. ; =g [e, f]. Let D be a positive integer such that
lue ;| and Ap([e, f]  ue ) < D for all e,f € F*'. We prove the inequalities (1) and
(2) by induction on n.

For n = 0 the inequalities hold.

Suppose n > 0 and the inequalities hold for all words v of length < n. Let
e € N&', w e Fand f € NE' such that |w| = n and w = fv. Let uef = g1--- g
with ¢, € ./\/ilk for s =1,...,t. By the definition of (e, w) we have

n(e,w)lw, = Inle; fo)ly, < In(e,v)lw; + oy (1095, v)ly;-
Let n; = |w|y;, for j =1,...,d. Since |v|y;, = nx — 1 and |v|y; = n; for § # k we get
by e € N;, gs € Niyr and the induction hypothesis

m(e,w)ly, < D70 30 ntnli (ny — DPERE b

d PR
2oy TPrSi—

1
DTS Y e (g = 1),

=1 d .
ey rar<j—i—k
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Since t < D and &£ > 1 we have

11
L D S T Lt
SN rar<j—iek
< DTN (= 1y (3
Yoy rarsi=i

a1

because if a d-tupel (qi,. .., qq) satisfies S0_, rq, < j—i—kthen (q1,...,q+1,...,q4)
satisfies Y°°_, r¢, < j —i. Thus we get

|77(67w)|/\/] < piT Z Rl (ng — 1)PF - nh 4

pr=0
D7y —1) Y nftee (g = )Pt 4
pr21
DY (g e
k21

< DYl
Ef=1 rpr<j—i
Hence inequality (1) holds.

We note that if z7'yz =g 1 then Ap(z~'yz) = Ap(y) and if 2y =¢ 1 =g y ™'z
then Ap(zz) < Ap(ay)+ Ap(y~'2). As above, let n(e,w) = g1 -+ g; =¢ w™ ew with
gs E./\/Zf_lk fors=1,...,tand t < D. Thus we get

Ap(w™ e Twn(e, w))
Ap(v™ f e feu, pv) + Ap(v_lu;}e_lvn(e, w))
D+ Ap(v7g g e on(e, v)n(gr,v) - 1(ge, v)
D+ Ap(vTlgt - gy vvT e on(e,v)v g ge) +
Ap(vlg gy vn(giv) o n(gev).

VAN VAN VAN

Since n(gs,v) =¢ v 'gsv we get
Ap(w™ e twn(e,w)) < +Ap(v e ton(e,v)) + XL Ap(v™ g on(gs, v)).
Because |v|y, = ny — 1 and |v|y, = n; for j # k we get by the induction hypothesis

Ap(w e twn(e,w)) < D+ D Z nit e (np — 1)PFondt 4
Ei:l rpr<2d—1

t
DQd—i—kZ Z n%l (nk _ 1)% ...ngd.

= d .
s=1 2r=1 rqr<2d—i—k
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By t < D we get as in (3)

d X

qr>1
2d—1 a1 Pk Pd
S D Z nl PETEEY nk- PECEEY nd .

Z:l:l rpr<2d—t
Hence inequality (2) holds as well. O

Lemma 3 Let GG be a nilpotent group finitely presented by P = (F|R) and
G=N2DN; D...DON; 2D Nyyy = {1}

a central series of G such that [N;, N;] C N,y;. Suppose F is the disjoint union of

N; fori=1,...,d such that N; generates N;. Fors=1,...,t lel v, be a word in the

generators N7, n = Y !_, v and wy € F such that Y\, |w|x, < m? for a positive

integer m. There exists a word x € F' such thal wyw, - - - wx =g VW VWy . . . VWY,

2|y, < Kjnm/™ and (4)

AP((vlwl"'vtwt)_lwl---wtx) < Anm2d-1 (5)

with A and K; for y =1,...,d suitable posilive integers.

Proof: By lemma 2 there exists a map n : Ny X F' — F and a positive integer D
such that n(v, w) =¢ w™'vw for v a word in the generators Ny, w € F and

(v, w)lx, < lD770 0wl [wl (6)

i=1 rpr<y—l

Ap(w™ v wn(v,w)) < o] D*! > [wli, - |wlid (7)

J
1 rpr<2d—1

Let v, for s = 1,...,1 be a word in the generators Ny, n = S!_, |v,| and w, € F
such that $¢_, lws|a;, < m? for a positive integer m. By induction on ¢ we define a

word x such that (4) holds.

For t = 1 we define z by n(vy,wy) since vywy =g win(vy, wy).



Suppose t > 1 and a word y € F exists such that
WoW3** - Wil =@ VaWoUV3W3 ... VW4
and y satisfies (4). Hence
V1W1VW3a * + - VW =@ V1W1WaW3 - WY
=c wiwy - Wi (vi, Wiwy Wy )y.
We define © by n(vy, wiws - - - wy)y.
We prove inequality (4) by induction on t.
For ¢ = 1 inequality (6) yields
|«’1?|NJ — |77(Ul,w1)|N] < npDi™! Z mlPl. .. mdrd
2o TPl
< nDi7! E m’1 < Dj_ljj_lnmj_l.
2o Pl
We define K; by D’~15i=1. Thus inequality (4) holds for ¢ = 1.
Suppose ¢ > 1 and (4) holds for y. By |wjw; - - w|x; < m? and inequality (6) we
get

—

lz|n, < |n(vr, wiws - we) |, + [y
< fu|DT 3T m P m P K — oy
Eileprsj—l
< |v1|Dj_1 Z mj_l—l—[(j(n—|vl|)mj_1

2oy TPl
< o DTN T T 4 K (n = oy )md T < Ky nomd T
Thus inequality (4) holds.
We prove inequality (5) by induction on ¢. Let A = D?*¥=1(2d)%*-1.
For ¢ = 1 inequality (5) holds by (7).
Suppose ¢ > 1 and (5) holds for y. Since
Ap((v1w109wy - + - V) T wywg - - wix)
< Ap((viwvgwy - - vtwt)_lvlw1w2w3 cwgy) +
AP((U1wlw2w3 s wty)_lwlwg s ’wt??(vb wiwsy - - - wt)y)
< Ap((vawgvsws - - viwy) T waws - - wey) +

Ap((wiwg -+ - wy) T oy wiwaws - - - wim(vr, wiwg - wy))
we get by the induction hypothesis and (7)

Aln — |vi|)m**7! 4+ Aloy |m? !
2d—1

Ap((viwivgwy - - vpwg) " hwgwy - - - wyr)

IAIA

Anm

Hence inequality (5) holds as well. O



4 Rewriting along a Central Series

Let G = G1%g G be an amalgamation of finitely presented nilpotent groups. Suppose
there exists a central series N; ; for : = 1,2 of length < d for &; such that

NL] NH= NQJ NnH and [NZ'J», NZ'75] g Ni,r-}—s (8)

for all positive integers r and s. The goal of this section is to construct in proposition
1 a rewriting process p from GG to H and to derive upper bounds on the distortion and
the isoperimetric function of p. We show in the following sections that central series of
the form (8) exist for doubles, non-twisted amalgamations and some amalgamations
along abelian subgroups.

We give an outline of the construction of p: Let P, = (F;|R;) be a finite presen-
tation for G; of the following form (see the figure below): F; is the disjoint union of
N;jfor j =1,...,d such that N;; generates N;;. Since Ny; N H = N,; N H each
N ; contains a subset &; generating H N N;; and & = U;-lzl &; generates H.

Hence there exits a finite presentation P = (F|R) for G with F = F; U Fy,
R = Ry U Ry such that &€ = FyNFy and & = N;; NNy, Let p; be a rewriting
process from (G; to H relative to P;, £. Let w € F represent an element in H. Using p;
we construct p(w), our rewriting process p from G to H relative to P, £, by induction
on the number of alternations of w.

Suppose w has no alternations: Thus w is an element of F; for 2 =1 or 2 = 2. We
define p(w) as p;(w), an element in .

Suppose w has t > 1 alternations: Since w represents an element in H there exists
by section 2, lemma 1 a bracketing # for w. If 3 is of the form 3;3;, then w = wyw,
with wy, wy representing words in H having < ¢ alternations. Hence we define p(w)
as p(wy)p(ws) by the induction hypothesis. If 5 is of the form (v151v2- - Brvrt1),
then w = vjwy vy wivEy with all v; € Fy or all v; € F; and all w; € H having
< 1 alternations. Let all v; € F;. By section 3, lemma 3 there exists a word z € F;
such that w =g wiws - wirvE4q. Since all w; represent elements in H, the word
Vg1 € F; is also an element of H. We define p(w) as p(ws)p(ws) - - - p(wg) pi(2vp41),
a word in the generators of H. To compute upper bounds on the distortion and
the isoperimetric function of p we use the corresponding upper bounds on z given
by lemma 3 and on p; given by the following theorem. It is crucial for the proof of

proposition 1 to express these upper bounds in terms of | -
with respect to N; ;, and not in the full wordlength | - |.

N;,» the relative length
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Theorem 1 [Hid97, Section 3.2] Let G be a finitely presented nilpotent group, H a
subgroup of G and let

G=NDON; D...2N; D Nyyy = {1}
be a central series of G such that [N,, N;| C N,y for all posilive integers r and s.

o There exists a finite presentation P = (F | R) for G such that F is the disjoint
union of Nj for j = 1,...,d and N; generates N;. Fach N; contains a subset
E;, which generates H N N;.

o Let & = U;l:1 E;. Thus &€ generates H. There exists a rewriling process p from
G to H relative to P, £ and a positive integer K such that for j =1,....d

p(w)ly, <K S nkronke )
Zf:l rpr<j

and
Ap(w ' p(w)) <K > nft-onlt (10)
ElerpTSQd

with w € H and n; = Zi:l w7 -

Remark 1 We note that for G a finitely generated nilpotent group of class ¢ theorem
1 implies ®g(n) < n*: Let N; = v;G forj =1,...,c+ 1. Hence N.yy = {1} and
[N, Ng] € N,y for all v and s. By theorem 1 there exists a rewriting process p from
G to {1} with respect to some finite presentation P such that

Ap(w™lp(w)) <K 3 nteonre

c
ZT:I TpTSQC

Jor all words w =g 1, n = |w| and some constant K. Hence
Ap(w™p(w)) < K Ln*
for some constant L, yielding ®c(n) X n*, c.f. [Hid97].

Proposition 1 Let G = Gixg Gy where G; fori = 1,2 is a finitely presented nilpotent
group and H a subgroup of G;. Suppose
Gi =Ni1 DN;22D...0N; gD Ny = {1}
a central series of G; such that [N;,,N;s] € N;,4s and Ny; N H = Ny; N H for
J,rys=1,...,d. There exists a rewriting process p from G to H such that
§,(n) 2 n? and ®,(n) < n2tl.

Proof: Let P, = (F;|R;) for ¢« = 1,2 be the finite presentation for G; given by
theorem 1. Let P = (F|R) with F = F; UF,, R = R1 UR; be a finite presentation
for G such that & = F; N F; generates H. Since Ny ;N H = N, ;N H we may assume,
without loss of generality, that & = N, ; N N, generates Ny ; N H = N, ; N H and
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&= U;l:l E;. Let p; be the rewriting process from G; to H relative to P;, £ given by
theorem 1.

Suppose w € H is a word in F' and [ a bracketing for w. We may assume, without
loss of generality, that w is a word in the generators Ny ; UN3 ;. We define p(w) by
induction on the number ¢ of alternations in w.

For t = 0 we have 8 = (w) with w € F;. We define p(w) by p;(w).

Suppose t > 0 and p is defined for all words with less than ¢ alternations.

Suppose = [133. Let w = wywy with gy for [ = 1,... )k a bracketing for w;. We
define p(w) by p(w:)p(ws).

Suppose = (V151 Brvgs1). Let w = vywy - - wipvrer with 5; a bracketing for
wy and v; € N; 1. Because p(w;) are words in ' C F;, there exists by lemma 3 a word
z € F; such that

plwi) -+ plwr)r =g vip(wr) - - - vrp(wy). (11)

Hence

w=viwy - WEVE1 =g v1p(wr) - - vpp(WE) Ve

=c plwr) - plwp)zvep =6 plwi) - plwg)pi(zvpgr).

Since zvgy, € H 1s a word in F; the rewriting process p; is defined on zviy. We
define p(w) by p(w1) -+ p(ws)pi(Tvr41).

Let w € H be a word in the generators Ny 1 U N1, n = |w| and ¢ the number of
alternations in w. By induction on ¢ we prove

[p(w)le, < D7’ (12)

for a suitable positive integer D. This implies §,(n) =< n?, since 5 < d.

For ¢t = 0 we have w € F; and p(w) = p;(w). Since w is a word in the generators
N1 we have Eizl lw|y;, = nforj=1,...,d. Hence we get by theorem 1, inequality
(9) ,

p(w)le, = lpi(w)le, <Ly >, n"eonP <L Y0 !
2y TPr< 271 Pr<
for some constant L.

For any j < d the number of j-tuples (pi,...,p;) such that S _rpe < j s

bounded above by a constant. Hence there exists a positive integer L, such that

Z n? < Lyn’ (13)

2oy TPr<i

for all j < d. Let D = Ly[LyL4 with Ly a positive integer which we will construct
below. Thus |p(w)le, < LiLyn? < Dn? and inequality (12) holds for ¢ = 0.

Suppose (12) holds for all words w € H in the generators N;; U Ny with less
than ¢ alternations. Let w be a word with ¢ > 1 alternations representing an element
in H, n = |w| and 3 a bracketing for w.

12



If 8 = 3152 then w = wywy with wy € H for £ = 1,2. Hence
o(w)le, < lp(wn)le, + lp(w2)le, < Dilanld + Dilunfh < Dind
by the induction hypothesis (12).

If 8= (v1P1 - Brvrs1) let w = viwy - - - wivpyr such that F; is a bracketing for w;.
Let m = Y}, |w|. Since w; € H we have Y, |p(w;)|e, < D’m’ by the induction
hypothesis. Let = € F; be the word given in (11). By lemma 3 and Y/, |v| <
n —m — |vgy1| we have

|2 |w, + lvelv, < Ls(n —m — [ogga ) D71 ™ 4 fog
LDt (n— m)mj_1 (14)

|:L”Uk+1 Ni,]

<
<

for a suitable positive integer Ls. By Eizl |zvpsr|n;, < jL3D’"Y(n — m)m?~! and

(9) we get

J
pi(zvis)le, <L Y0 I (gLaD* (n — m)ms=1)"™ . (15)
S e !
By 21:1 rp, < j < d and m < n we have

J

[I(qLa) < d'Lg,
[T(prYye < DXami071ra) < pit - and

[I(n — m)Prmte=Pe < (n — m)(EfFl pa) (D ams 9Pa=) 4y Pa)

S (n2f1=1 Pq meFl pq)m(j—zézl Pq) g nj . m]'.

Let Ly = d*L4. Note that Lz does not depend on z or vyy;. By (15) and (13) we get
|pi(zvrgr)e, < Dj_1L1L2L4(nj — mj) < Dj(nj — mj).

By the definition of p, the induction hypothesis and "5, D’ |w|’ < D'm’ we get

lp(w)le; < 7 Ip(wi)le, + [p(zvrs)le

=1
k

< ZDj|w;|j +Dj(nj —mj) < D'n’.
=1

Therefore inequality (12) holds.
Let w € H be a word in the generators Ny 1 U N1, n = |w| and ¢ the number of
alternations in w. By induction on ¢ we prove

Ap(w™ plw)) < A(t + D) (16)

13



for a suitable positive integer A. By ¢ + 1 < n we then have ®,(n) < n2+1,
For t = 0 we have w € F; and p(w) = p;(w). Since w is a word in the generators
Nix we have Yo, |wly,, =n for j =1,...,d. By (10) we get

Ap(w™'p(w)) = Ap(w™pi(w))
< Qo Y, e <@ >, P <™

Z]r=1 rpr<2d Zi:l rpr<2d

with @1, Q3 suitable positive integers as in (13). Let A = Q1Q2Q3Q%Qs with Q3,Q4
and @5 positive integers which we will define below. Hence for ¢ = 0 inequality (16)
holds.

Suppose (16) holds for all words in the generators N;; U N, representing an
element in H with less than ¢ alternations. Let w be a word with ¢ > 1 alternations
representing an element in H, n = |w| and  a bracketing for w.

If 3 = B16; then w = wywy with w, € H for kK = 1,2. Let ¢, be the number of
alternations in wy. Hence

Ap(w™p(w)) < Ap(wy p(wr)) + Ap(w; " p(ws))

<
S A(tl + 1)|w1|2d + A(tg + 1)|w2|2d S A(t + 1)n2d

by (t1 4+ 1)+ (t2+ 1) < t; 4+ 1 and the induction hypothesis (12).

If 8= (1B Brvrs1) let w = vywy - - wpvpr such that G, for [ = 1,...,k is
a bracketing for w;. Let m = Y/, |wy| and = € F; the word given in (11). Since
Ele |p(w;)|gj < D'm? by (12), we get by lemma 3 and Ele o] <n—m

Qs(n —m)m**~!

Qsn?? (17)

Ap((vip(wr) -+ p(wi)vess) ™ p(wr) -+ p(wk)T0k41)

IA A

for a suitable positive integer (J3. Also by lemma 3 we have

Zi:l |$vk+1 Nir < Q4(n - m)m]_l
for a suitable positive integer Q4. Thus we get by m < n and inequality (10) of
theorem 1

d
Ap(vilzpi(zops)) < Qv D, T[(Qa(n — m)ym!~")»

d (=1
Zr:l TpTSZd

< Z 3 < Q1Q3°Qsn™

d
Zr:l TpTSZd

for a suitable positive integer (J5. We note that ()5 as well as ()3 and Q)4 do net
depend on w. By A = Q1Q2Q30Q2’Q5 we have

Ap(vigiz ™ pi(xves)) < An®. (18)
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Let ¢; be the number of alternations in w;. By the induction hypothesis and the
inequalities (10) of theorem 1, (17) and (18) we get

Ap(w™ip(w)) < Ap(w tvip(wr) - plwr)vesr) +
Ap((v1p(wr) - - plwr)vrgr) ™ plwr) - - p(wp)xvrsr) +
Ap(veiz 7" pi(xv4s1))

k
< Z At + 1)|w1|2d + Q3n2d + An?,

=1
Since S8, (t1+1) =t —1 we eventually have
Ap(w™ ' p(w)) < A(t — 1)m2d + Qsn? 4+ An? < At + 1)n2d.

Thus inequality (16) holds. a

5 Doubles

Let G be a double of a finitely generated nilpotent group A. Hence the lower central
series of A already satisfies the condition of proposition 1, yielding:

Theorem 2 Let G be a double of a finitely generated nilpotent group of class ¢. Then
bu(n) < n2e,

Proof: Let A be a finitely generated nilpotent group of class ¢ and H a subgroup
of A. Let G = Axp g A. Let N;; =~;Afor 2 =1,2. Hence N;; is a central series of
A of length ¢ with [N;,, N;s] € N;,4+s and Ny ; N H =¢ Ny ; N H. By proposition 1
there exists a rewriting process p from G to H such that §, < n® and ®, < n*. Since
H is also nilpotent of class < ¢ we have ®g(n) < n*, cf. remark 1. Thus we get

Ba(n) = B,(n) + Gu(6,(n) < 0¥ + (n°) < n**.
O

6 Non-Twisted Amalgamations

We first introduce and illustrate non-twisted amalgamations. We then give in section
6.1 an outline of the proof that non-twisted amalgamations of finitely generated nilpo-
tent groups satisfy a polynomial isoperimetric inequality. After proving preparatory
lemmata in the following sections we get in section 6.5, theorem 4 our result.

We recall the definition of non-twisted amalgamations:
Let G; #g G2 be an amalgamation and ~;G, for ¢ = 1,2 the j-th term of the lower
central series of GG,. We call G non-lwisted if and only if

7iG1 N H € v;Gy implies v;Gy N H C ~vGy

for all 2,5 € N.
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Lemma 4 Let GGy g G5 be a non-twisted amalgamation. Then
viGaNH L Gy implies Gy N H C ;G
for all positive integers ¢ and j.

Proof: Let GGy *g GGy be a non-twisted amalgamation and let v;G, N H € ~;G4 for
some positive integers ¢ and j. Suppose
%’Gl N H Z ’}/]'GQ.
Thus we have by definition v;G3 N H C 7;G4, since Gy g (i3 is non-twisted, in con-
tradiction to v;G2 N H € ~;G1. Hence v,G; N H C ~;GY. O

Let w € ~;G; N H be a word in the generators of (G such that w #¢, 1 and let
v be a word in the generators of Gy such that [w,v] € H. There exists a positive
integer k such that

v;G1 N H C .Gy and v;G1 N H € 141G

Hence [w,v] € 4x41G2 N H, but [w,v] is in general not an element of v;Gq N H
anymore. However, if G1 *g (i3 is non-twisted then [w, v] is an element of v;G1 N H.
Thus, commutators in non-twisted amalgamations “respect” the lower central series
of its factors. Note that not all amalgamations are non-twisted, c.f. the example in
section T.

6.1 Outline

Let G = G xg (G5 be a non-twisted amalgamation of finitely generated nilpotent
groups. We give an outline of the proof that (G satisfies a polynomial isoperimetric
inequality: The idea is to construct central series (N, x)ren for G, for ¢ = 1,2 such
that

NipgNH =Ny, NH and [Ny, Nys] C Nyrgs (19)

holds for all positive integers k, r and s. By applying proposition 1 we then get a
polynomial upper bound on ®4 in theorem 4.

We proceed as follows: In section 6.2, lemma 5 we construct a refinement (N, i )ren
of the lower central series of G, such that

NigNH=Ny;: NH for all . (20)

In lemma 6 of section 6.3 we show that some condition on (N, x)ien, i.e. that
(N, x)ken contains a sufficient number of copies of ;G for each j, implies
[NQJ’? Nq,s] g Nq,r-i-s-

In section 6.4, lemma 7 we refine (V; x)ken such that the condition is satisfied for all
J less or equal to the minimum of the length of (N z)ren and (Nag)ken, while pre-
serving property (20). In lemma 8 we further refine the resulting central series such
that the condition is satisfied for all k. Thereby we get in section 6.5, proposition 2
a refinement (N, ;)ren of the lower central series of (7, satisfying (19). We then get
in theorem 3 by section 4, proposition 1 a rewriting process from GG to H having a
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polynomial upper bound on its distortion and isoperimetric function. Since H is also
a nilpotent group, H satisfies polynomial isoperimetric inequality as well. Hence we
get in theorem 4 a polynomial upper bound on the isoperimetric function of G.

6.2 Intersection

Let A g B be a non-twisted amalgamation of nilpotent groups. In lemma 5 we
construct refinments (Ag)ren, (Bk)ren of the lower central series of A and B where
Ap 1s of the form

(AN B)yit A
for some positive integers ¢ and j and By is of the form (v;B8 N ~;A)y;+1 B for some ¢
and j. Exploiting the non-twistedness of A g B we show that

ArNH=BNH
for all k.

Lemma 5 Let Axy B be a non-twisted amalgamation of finitely generated nilpotent
groups of class < c¢. There exist refinements (Ap)ren and (Br)ren of length < 2¢ of
the lower central series of A and B such that

ArNH=B.NH for all k € N.

Proof: The proof proceeds in 3 steps. In step 1) we define (Ag)ren and (Bg)ren.
In step 2) we show that they refine the lower central series of A and B respectively
and in step 3) that A, N H = By N H for all & > 1.

1) We define (Ap)ren and (Bg)ren by induction on k. For k =1 let

Ak = A, Bk = B, Zk = 1, and ]k = 1. (21)

Suppose k > 1 and we have defined A;, B, 1; and j; for all [ < k. We define A, By,

1 and j; as follows:

Ar = (Vi AN Y1 B) i1 4 (22)
Br = (Yip_, 1A N Y5 B) Vi 11 B; (23)
if i, . +1ANH Crj,_ 41BN H then 2, = 141, i = Jp—1 + 1; (24)
iy, .1 BNHC~,_,+1AN H then 2, = 141 + 1, Jx = Jr—1; (25)
if vy, 1 ANH=7~;,_ BN Hthen iy =11+ 1, jg =61+ 1;  (26)

Since Axg B is non-twisted either condition (24), (25) or (26) holds always. Hence
we have

k1 1 20 2051, Jr—1+12>gk > k-1 and
e+ 9k > the_1 + Je_1, tr+gr >k forall k> 1. (27)
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2) In order to prove that (Ag)ren and (Bg)ren are refinements of length < 2¢ of
the lower central series of A and B it suffices to show that i) Ay C Ax_1, By C Bi_1
for all & > 1, that ii) As.y1 = {1} = Baet1 and that i) for each j there exist indices
m and n such that v,4 = A,, and v;,B = B,,.

i) A C Ag_q for k > 1: For k =2 we have A; C A = A; by (21). For k > 2 we
have tx_1 > t3_2 and jx_1 > jr—2 by (27). Hence we get by (22)
Ay = (%k—1A N 7]k-1+1B)%k—1+1A C (%k—2A N 7]k-2+1B)%k—2+1A = Ag-1.
By C By for all £ > 1: follows analogously.

ii) Ager1 = {1} = Baeg1: Since iz, + ja. > 2¢ by (27) we have 15, > ¢ or ja. > c.
Suppose iz, > ¢. By (27) there exists an index p < 2¢ such that 7, = ¢. Since A
is nilpotent of class < ¢ we have
Yigor 1A = Y1 A = {1} for all ¢ > p.
Hence {1} = v;,_,+1ANH C v; _, 41 B yielding j, = j,_1 + 1 for all ¢ > p by (24) and
(26). Thus we have
J2e = Jpt(2e-p) = Jp + (2¢ = p). (28)

By (27) we have ¢, + j, > p and thereby j, > p — ¢ since ¢, = ¢. By (28) we get
J2c = (p— ¢) + (2¢ — p) = ¢. Thus we have

29 > ¢ and  jo. > ¢ (29)

yielding Azcp1 = (7, A N Yjpo41 B) i 414 = {1} and
Bae1 = (Vipet1 AN Vjoe B) Vi1 B = {1}
because A and B are nilpotent groups of class < c.
For j,. > ¢ we analogously get Ay.p1 = {1} = Baeyr -

iii) For each j there exists an index m such that v;A4 = A,,: For j = 1 we have
Ay =1 A by (21). For j > ¢+ 1 we have v;A = {1} = Ay.q1 by ii).

Suppose 2 < j < ¢ Since 14—1 + 1 > 0 > ix_q for all & > 2 by (27) and 3. > ¢
by (29), there exists an index m > 1 such that ¢, = j and ¢,, = t,,_1 + 1. Because
im = tm-1+ 1 wehavey;, 41BN HCx, _+1ANH by (25) or (26). Hence

A = Viar AN Y 1 BV Vi 1A = Vi1 A = 75, A = 7, A
For each j there exists an index n such that v;B = B,,: follows analogously.

By i), ii) and iii) we now have that (Aj)ren and (Bg)ren are refinements of length
< 2c¢ of the lower central series of A and B respectively.

3) In the last step we show by induction on k that A,N H = By N H for all k > 1.
k = 1: By definition we have AANH=ANH=H=BNH=BNH.
k = 2: By definition we have

AyNH = (mAN:2B)2ANH = (BN H)(vANH)
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and
Hence A, N H =B, N H.

k > 2: Since A xg B is non-twisted we have by lemma 4

Viroa 1 ANH C v B or v, i BNH C iy A
Suppose v, _,+1ANH C~;,_,+1B: By (22) we have
AN H = (%k—rA N 7]k—1+1B)(7ik—1+1A N H) C 7]k-1+1B NHCB.NH
and by (23) we have ByN H = v;,_,+1BN H. To prove Ay N H = By N H it therefore
suffices to show that
7jk—1+1B NHC A

By the induction hypothesis we have Ay_1 N H = By_1 N H. Thus we get by (22) and
(23)

(Yira AN Y1 B)Yir o1 AN H = (%3, 1 AN, B)vju_,n BN H. (30)

By (24), (25) or (26) we either have i5_1 = tj_3 Or t}_1 = i4_2 + 1.
Suppose t5_1 = ix_2: With jr_1 > jr—2 and (30) we have
71k-1+1B NHC 7jk—2+1B NHC (%k—1A N 7jk—2+1B)%k—1+1A C %k—1A'
Thus we get by (22)
71k-1+1B NHC %k—1A N 71k-1+1B C Ag.
Suppose t5_1 = tx—2 + 1: By (25) and (26) we have
’7jk—2+1B NHC r}/ik—2+1A = ryik—lA'
Since jr_1 > Jr—2 we get by (22)
71k-1+1B NHC %k—1A N 71k-1+1B C Ay.
The case vj,_,+1BN H C~;,_, +1A follows analogously. O

6.3 Additivity

In the following lemma 6 we show that if a refinement (Aj)ren of the lower central
series of a nilpotent group contains a sufficient number of copies of each term of the
lower central series then

[A,, As] € Arps for all r and s.
To navigate in (Ag)ren we need the auxiliary functions 7™ 7™M : N' — N which we
define as follows: Let 7™(0) = 0 and

Tmax(j) — max{r € N | AT = "y]A and r S l} (32)
where [ = min{r € N [A, = {1}} and j and r are positive integers. Thus 7™"(j) is

the index of the first and 7™**(7) is the index of the last term in (Ag)ren which is
equal to v;A.

Lemma 6 Let A be a nilpotent group of class ¢ and (Ap)ren a refinement of the
lower central series of A. Suppose
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Tmin(j) o 7_min(j o 1) g Tmax(j) o Tmin(j) + 1
holds for all positive integers § < c. Then

[Ara As] g AT+S
for all positive integers r and s.

Proof: Let r and s be positive integers. We may assume, without loss of generality,

that r > s. With
o(r)=max{j € N|A, Cvy;Aand j <c+1}
we have
[Ars As] € Do) As20(5) Al © V()40 A = Armox(o(r) o (s))-
Suppose o(r) + o(s) > c. Since A is nilpotent of class < ¢ we have v,()10(5A4 = {1}
and therefore [A,, As] = {1} C A,4s. In order to prove lemma 6 it therefore suffices
to show that
™ (o(r)4+o(s)) >r+s

for all positive integers r and s with o(r) + o(s) < c.

Let j1, 72 and k be positive integers such that 53 + £ < 75 + k£ < ¢. We first show
that

PR j,) — TG < TG, k) - 7y ) (3)
holds. Since 7™2%(7) < 7™i%(; 4 1) for all 2 < ¢ we have by the hypothesis
Tmin(i) — Tmm( 1) < Tmm(z +1)— mm( ) < Tmm(z + k) — mm(z +k—1)
for all positive integers £ < ¢+ 1 — 2. Hence
J2
P() < TG <SS ) - )
1=j1+1
J2
< N M k) -+ k1)
1=j1+1
< Py ) = Ty 4 )

Thus inequality (33) holds for all k such that j; + & < j, + k < c.

Let r be a positive integer such that o(r) < ¢. By the definition of o we have
A, # {1}, Thus A mino(ry41) = Yo(r)+1 A C Ar € Y5(r) A yielding r < O (o (r)41)—1,

Let 7, s be positive integers such that o(r) + o(s) < ¢: By (33) and 7™2(1) = 1
we now have

rs < m(o(r) +1) = 1+ m"(o(s)
™o (r) +1) = 1+ 7" (o (r)
= mo(r) + 1) = 7™ (o (r)) + (o (r ) ( )) - L

Again by (33) and the hypothesis we get

< +1
< +o

r+s < Tmin(a(r) +o(s)) — Tmin(a(r) +o(s)—1)+ Tmin(a(r) +o(s))—1
< (o (r) + o(s)).
Hence lemma 6 holds. O
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6.4 Refining a Central Series

Let G = G *pg G2 be an amalgamation of nilpotent groups of class < ¢ and (Cy x)ken
for ¢ = 1,2 a refinement of the lower central series of G, such that Cy ;N H = Cy ;N H
for all &, c.f. section 6.2. Define T;“in and T for (Cyk)ren as in section 6.3. Let

o = max{j < et 1]
Tmin(z') — Tmin(i —1) < 7" (1) — mm( )+ 1 foralli<j}. (34)

q q q

Thus if g, < ¢ then p, is the index of the first term of the lower central series
of G, for which (C,x)ren does not contain enough copies to satisfy the condition
in lemma 6. We may assume, without loss of generality that 7™%(yzy) < 7n(y,).
Suppose mm(pl) < ¢. Hence (C’l k) ken does not satisfy the condition of lemma 6. We
refine in lemma 7 and lemma 8 the central series (Cy 1 )ren by inserting the required

number of copies of Cy rmin(,,) = Y4, G1 after €y ;min(, ) and the same number of copies

Of 027Tlrnin(lul
that 1 > pq while preserving Ch ;N H = Cy; N H. In proposition 2 of section 6.5
we will iteratively refine the central series until i, = ¢+ 1 for ¢ = 1,2. Thereby the

resulting central series will satsify the condition in lemma 6. Let [, be the length of
(Cyx)ren plus 1. In lemma 7 we construct the refinements for the case 7% (u;) < [,

p1)
) after 027,7_1rnin(#1). Thereby we get refinements (Cy x)ren of (Cyk)ren such

for ¢ = 1,2 and in lemma 8 for the case Tmm(m) =1L <.

Lemma 7 Lel G = Gy xg Gy with Gy for ¢ = 1,2 a non-trivial nilpotent group of
class < ¢ and H a subgroup of Gy. Let (Cyr)ken be a refinement of the lower central
series of Gy such thal Ciy N H = Cyp N H for all k. Define ;nin, T, and pg for
(Cok)ken as in (31), (5’2) and (34) respectively. Let t = min{r™" (), 7% (puy)},
l,=min{k € N|C,r={1}} and | = max{ly,l}. Suppose
0<l,—t<2c and 1[< 92e=(I=t) ¢

There exists a refinement (CN'M)keN for ¢ = 1,2 of (Cyr)ken such thal CN'L;C NH =
CN’QJC N H for all k and

0< lN 1< l[,—1<2c and ZNS 92e—(1-1)
with t, l defined for ( qk)kEN as t, I for (Cyr)ren above.

min ( min (

ﬂl) <7

Proof: We may assume, without loss of generality, that ¢t = 7] he).

Let
mm(ﬂ ) _ mln(ﬂ _ 1) _ Tmax(luq) _ 1 |q — 1’2}
Since TM(py) = ¢ < I; we have y; < ¢ and therefore
) — T — 1) > ) — ) £ 1
by the definition of y;. Hence s > 0. We construct the new refinement (C x)ren by
inserting s copies of C,; after C,

s = max{2r,

CN'M =Cyr for k=1,...,1
Cor = Cyy for k=t+1,....t1+s
Cop=Chp—s for k=14+s+1,...
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ThusC’lJCmH:CN’kaHSinCGClka CorNH.
We define %;“i T g t and [, for (CN'M)keN as above.
First, we show 7M%(fi;) > ¢ + s: Since CN'M = C, 1 for k <1 we have fi; > pq. By
construction we have
Hi) = i) for i < g and HS(n) = () 4+ o
Thus we get

() — T (pn — 1)
s = () + T () + 1
() = 7 () + 1.

A () — H(pn — 1)

IA N

Hence fi; > pp. Since I; > t we have C1; # {1} and thereby 7™y + 1) > 708%(yy).
Thus
() > F (i) = T0(p) + 5 2 T () +s =1+ s,
Next, we show mm(,ug) > 1+ s:
Suppose T(;,) = ¢: By the definition of s we get 7"(jiy) > ¢ + s as above.
Suppose mln(,ug) > t: By construction we have 7%(jiy) > ¢ yielding 720(jiy) > ¢+ s
since Cy = =, tse
We now have Tmm( g) >t+ s for g =1,2 yielding
I = min{7"" (i), Nmm(ﬂz)} > 1+ s.
Since ¢ < Iy we have 'y # {1} and thereby [, = I, + s. Hence we get
0<l —t—l —|—5—t<l — 1< 2c and l —t<l —1<—1.
Together with
5 < max {2 () — 7 () | g = 1,2} < max{r (), 79 ()} < |
and the hypothesis we eventually have
[=1+s<20<2. 220 < 920D,
O

Lemma 8 Lel G = Gy xy Gy with Gy for ¢ = 1,2 a non-trivial nilpotent group of
class < ¢ and H a subgroup of Gy. Let (Cyr)ken be a refinement of the lower central
series of G, such that Cypy N H = Cy N H for all k. Define T;“in, py and I, for
(Cyr)ren as in lemma 7. Suppose l; = 70 (1) < 70 (15), 0 < I — 7% (py) < 2¢
and [y < 2% (=75 (p2)) ¢
There exists a refinement (C’g Kren of (02 k)ken such that
CixNH= C, RN H forallk, 0<ly—7M(y) < Iy — 70(1y) < 2¢

and 1y < 92e= (1 =7 (2)) ¢ qpith, Fmin g, and I defined for (027;6);66]\; as in lemma 7.

Proof: Let s = 270 (yy) — 7i0(yy — 1) — 709%(p5) — 1. Since 7%(pug) < Iy we
have uy < ¢ and therefore s > 0 by the definition of py. We construct the refinement
(CN’QJC)]CEN of (Cax)ken by inserting s copies of Uy, after Cyy as in lemma 7. Hence
CixyNH=Cy;NH= CN’QJC N H for all k < 70(py). Since I = 7% (py) < 7800 (1)
we have for all k > 70(y,)
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CrxNH ={1} C Cop N H C Cy pinyyy N H = Cy ming,yy N H = {1}

Hence Ch N H = C’2,k N H for all k. )

We define 7/min, 7max 5, and [, for (CQJC);CE]NV as above.

We show 7M0(fi5) > 70%(y,) + s: Since Cyp = Coyp for k < 700(uy) we have
fig > p2. By construction we have

FRnG) = 7)) for ¢ < gy and  FN(pg) = T (uy) + s.

Thus we get
73" (pa) — 5 (2 — 1)
s — 13" () 4 750 (p2) + 1

75 () — M (pa2) + 1.

~min ~min

Ty M (p2) — 7 (g2 — 1)

IAINA

Hence i3 > p9 and therefore
Since Iy > 7M%(;,) we have O rmingu,y # {1} and thereby FMN(y + 1) > F0aX(py).
Thus
T (jiz) > T () = T (p2) + 5 = TN (pn) + s .
Also by 0277.2111&1(#2) # {1} we have [ = I3 + s. Hence we get 0 < [, — 7" (i) =

Iy + 5 — %énin(ﬂg) < Iy — szin(/tz) < 2c and [y — %zmin(ﬂg) < [ly. Together with s <
TIn(45) < Iy and the hypothesis we eventually have

Iy = Iy + s < 2y < 2. 22 (=75 (12) ¢ < 92e=(l2 =" ()
O

6.5 Main Result

Let G = Gy *g G2 be a non-twisted amalgamation of nilpotent groups. Combining
the results of section 6.2, section 6.3 and section 6.4 we construct in proposition 2 a
central series (C x)ren for G, for ¢ = 1,2 such that
Cl,k NH= OQ,k NH and [Cqﬂa, C%S] g Cq77-+5.
By proposition 1 of section 4 we then get in theorem 3 a rewriting process p from
G to H such that ¢, and ®, are bounded above by a polynomial. Since H is also
finitely generated and nilpotent, ®y is bounded above by a polynomial, c.f. remark
1. Thereby we get in theorem 4 that
Ba(n) = B,(n) + ba(s,(n)

is bounded above by a polynomial, our main result.

Proposition 2 Let G = G+ Gy be a non-twisted amalgamation with Gy forq = 1,2

a non-trivial nilpotent group of class < ¢ and H a subgroup of G,. There exists a

refinement (Cyr)ren of length < 2%c of the lower central series of G, such that
CixNH=CyxNH and [Cy,,Chs] CCyrss

for all positive integers k, r and s.

Proof: Since G'1#p (5 is non-twisted there exists by lemmab a refinement (A, x)ren
of length < 2¢ of the lower central series of GG, such that A, N H = Ay, N H for
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all k. By iterated application of lemma 7 we get a further refinement (B, x)ren such
that By N H = By, N H for all k£ and

0 S ZB7q — tB < 20, ZB § 220_(ZB_tB)C and ZBJ = tB or 1372 = tB. (35)

with Ig 4, (g and tp defined for (B, x)ren as in lemma 7. We may assume, without
loss of generality, that [g; = . Let C ; = By for all k. By iterated application of
lemma 8 to (Bak)reny we get a refinement (Co)ren of (B2x)ren such that
CixoNH=Cy,NHforall k, lc, = ngn(ﬂaq) and Ig, < 2%c.
with ngn, toglo,, defined for (Cgx)ren as in lemma 7. Since lg, = ngn(uqq) we
have pc, = ¢+ 1 and therefore
TER(G) — T (g — 1) < TR(g) — () + 1
for all j < pey = ¢+ 1 by the definition of p¢,. Hence we get by lemma 6
[CoryCys] € Cypys forall rand s.
O

Theorem 3 Let G = G *g Gy be a non-twisted amalgamation with G, for g = 1,2
a finitely generaled nilpotent group of class ¢ and H a subgroup of G,. There exists

a rewriting process p from G' to H such that ,
6,(n) = n2*%  and ¢,(n) < p2CetVet1

Proof: We may assume, without loss of generality, that G, for ¢ = 1,2 is not
trivial. By proposition 2 there exists a central series (N, x)ren of G, of length < 2%¢
such that Ny, N H = Ny N H and [Ny, Nys] € Ny ,ys for ¢ = 1,2 and all positive
integers k, r and s. By proposition 1 there exists therefore a rewriting process p from
G to H such that / ,

6,(n) = n27¢  and d,(n) < p2Ztet1

d

Theorem 4 Let G be a non-twisted amalgamation of finitely generated nilpotent
groups of class c. Then

(I)G(n) < n2(2c+1)c2 '

Proof: For ¢ < 1 we have ®g(n) < n?, c.f. [BGSSI1, Hid97]. Let ¢ > 2 and let
G = Gy *xg (5. By theorem 3 there exists a rewriting process p from G to H such
that

6,(n) = n2%7¢  and d,(n) < p2Petet1
Since H C (G, and G, is a finitely generated nilpotent group of class < ¢ the subgroup
H is also finitely generated and nilpotent of class < c¢. Hence @y (n) < n*, c.f. remark
1. We now get
(I)G(n) < CI)p(n) n (I)H(5p(n)) < n2(2c+1)c+1 n n2(2c+1)62 < n2(2c+1)c2

since ¢ > 2. O
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7 Amalgamation along Abelian Subgroups

We show in theorem 5 that an amalgamation of finitely generated nilpotent groups
along a suitable abelian subgroup satisfies a polynomial isoperimetric inequality.
However, there exist amalgamations along abelian subgroups having an exponen-
tial isoperimetric function and we give in theorem 7 an example. Besides being a
twisted amalgamation, i.e. not non-twisted, along an abelian subgroup, the exam-
ple’s subgroup 1s also isolated and normal.

Theorem 5 Let G = Gy xg G be an amalgamation of finitely generated nilpotent
groups. Suppose

HC~;Gy and HNyG,={1}
for some positive integer 3 and ¢ = 1 or ¢ = 2. Hence H is abelian. Then G is
non-twisted and thereby satisfies a polynomial isoperimetric inequality.

Proof: We may assume, without loss of generality, that # C 4;G7 and H N
vi+1G1 = {1} for some j. Let ¢ and k be some positive integers such that v,Gi1NH ¢
v:Go. Hence v;Gy N H # {1} and therefore 7 > 5. Thus

’yngﬂHgH:’}/leﬂHg%GlﬂH.
Thus GG is a non-twisted amalgamation and therefore satisfies a polynomial isoperi-
metric inequality by theorem 4. a

We give in theorem 7 an example of a twisted amalgam of finitely generated nilpo-
tent groups along an abelian, isolated and normal subgroup having an exponential
isoperimetric function. To this end we need the following result due to M. Bridson:

Theorem 6 [Bri95, Main Theorem] The Dehn function for any finile presentation
of a semidirect product of the form Ay F, with A a finitely generated abelian group
and F' a finitely generated free group, is ~ equivalent to either a polynomial or an
exponential function.

The action of F' on A via ¥ induces an action on A modulo its torsion subgroup
and hence a representation o : F' — Gl,,(7Z), where m = rkzA. The Dehn function
of A<y F is polynomial iff there exisls a subgroup of finite index F C F such thal
O'(F) C Gl(7Z) consists entirely of unipotent elements; the degree of the polynomial
is then d, where

d—2=A(imV) := max{r|N1Ny--- N, #0 for some [ + N; € o(F)}.

In particular

d<rkzA+1.

A subgroup H of a group G is called isolated if and only if ¢" € H implies g € H
for all ¢ € G and all non-zero integers n.
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Theorem 7 Let G; for v = 1,2 be the free nilpotent group of class 2 and rank 2.
There exists a twisted amalgamation G = Gy g Gy with H abelian, isolated and
normal such that

Proof: Let Gy = {a,b,c|[b,a]c™*,[b,c],[a,c]), the free nilpotent group of class 2

and rank 2 and H the subgroup generated by b and c. Let Gy = (a’, b, ¢ | [V, a']d7, [V, ], |

and Hy = (V/,c) C G. Note that H; = Z* for i = 1,2 is an abelian, isolated and
normal subgroup of G;. Let ¢ : Hy — H, be the isomorphism given by b — ¢
and ¢ — V. Let G = Gy xg Gy with H = Hy = H, and let ¢ be the amalgamation
isomorphism.

Since 2G1 N H = (¢} = (V') € 2G> N H and

YGe N H = () =(b) LGiNH

the amalgamation G is twisted.

We use the same notation as in theorem 6: Let F' =< a,d’ >C G, a free subgroup
of rank 2. We now have G = FH, H is normal in G and H N F = {e}. Let
U : F — AutH with U(v)(h) = v 'hv forv € F and h € H, hence G = H <y F. For

b"¢® an arbitrary element of H we have
U(a)(b'e’) =a 'V cCa=ga b ac’ =g b

and analogously W(a')(b"c®) =g b"*5c®. Let o be the representation of theorem 6.

Hence o(a) = ( 1 (1) ) and o(a’') = ( (1) 1 ) Let F' C F be a subgroup of finite

index and o = a'a € F. Since F is of finite index there exist n,m > 0 such that o™

and ot are in the same coset of F', yielding o € F. Because ola) = ( 1 ; )

has an eigenvalue > 1, o(a™) also has an eigenvalue > 1. Therefore o(a™) is not
unipotent. Hence we get ®¢(n) = 2" by theorem 6. O

Note that the amalgamated subgroup in theorem 7 is exponentially distorted, i.e.
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