
Type-Safety and Overloading
in Sather

B. Gomes, D. Stoutamire and B. Weissman

TR-97-055

December 1997

Abstract

Method overloading is a form of statically resolved multi-methods which may be used to express
specialization in a type hierarchy[GSWF97]. The design of the overloading rule in Sather is
constrained by the presence of multiple-subtyping, and the ability to add supertyping edges to the
type graph after-the-fact [SO96]. We describe the design of overloading rules which permit method
specialization while allowing separate type-checking i.e. existing code cannot be broken by after-the-
fact addition of supertyping edges.

Type-Safety and Overloading in Sather April 24, 1998 2

1.0 Introduction

Method overloading is used in singly dispatched object-oriented lan-
guages to achieve a form of statically resolved, type-safe multi-methods.
Overloading permits interfaces and to support more than one method of
the same name but with declared arguments of different types - calls to the
method are resolved based on the types of the arguments in the call. In the
course of the design of the Sather libraries, it was discovered that over-
loading was needed to support type-safe specialization [GSWF97], a point
whose theoretical underpinnings were described in [Cas95].

Sather [Omo95] originally supported a minimal form of method overload-
ing - two methods of the same name were permitted to coexist in an inter-
face if they had:

• different numbers of arguments, or

• differred in the presence/absence of a return type

We will take these two trivial forms of overloading for granted, and will
confine our attention to considering methods with the same numbers of
arguments/return value. The original Sather also supported a limited form
of overloading based on monomorphic types, which is subsumed by the
more general rules described here.

We start by making a case for the two features of Sather that make the overloading rule
described necessary, namely parametric polymorphism based on subtyping constraints.
We argue that these are desirable features in an object-oriented language and have
advantages over the alternatives. We describe the goals of our overloading rule, and how
permitting general overloading violates these goals. We then describe the chosen over-
loading resolution rule, and some alternatives which might also be accept-
able.

1.1 Constrained Parametric Polymorphism

Most modern object oriented languages permit a form of parametric poly-
morphism, in which a parametrized class (sometimes called a generic or
template class) may be described using one or more type parameters.
When the class is actually used, these type parameters must be instantiated
with actual ty[pes. In order to permit the separate type-checking and com-
pilation of parametrized classes, it is necessary to constrain the type
bounds [DGLM95]. There are two common methods used to constrain the
type bounds:

• Implicit conformance bounds, as with the the where clauses of Theta
[DGLM95], the type maching clauses of Emerald [JLHB88] and the
property classes of Sather-K [Goo97]. In this case, the type bound
states the signatures of the methods that must be provided by any
instantiating type. However, the type bound itself is not a type, and is

Type-Safety and Overloading in Sather April 24, 1998 3

outside the type system. Hence, the type parameter may be instanti-
ated by any class that supports the methods specified in the type bound.

• Explicit subtyping bounds, as in Sather and Rapide [KLMM94]. Here,
the type bound on the parameter refers to an actual type; all instantia-
tions of the parameter must be subtypes of the typebound.

There are pros and cons to both choices; some of the deficiencies of
explicit subtyping are described in [DGLM95]. However, there are advan-
tages to explicit subtyping as well:

• Subtyping bounds make it possible to constrain a parameter based on
the semantics of the methods involved (provided subtyping relation-
ships preserve class invariants), rather than on the (potentially co-inci-
dental) naming of methods.

• Contrary to the claims in [DGLM95], we have found in the design of
the Sather libraries that subtyping bounds are frequently (large) regular
classes and may well be used in contexts other than the type bounds.
For instance, in an algorithm class that deals with vectors and matrices,
it is quite reasonable to have the whole matrix and vector abstractions
as type bounds. Forcing the use of a separate mechanim to express
these constraints essentially requires duplicating class interfaces for
the sake of type bounds.

The implicit conformance approach may be seen as a variant of the sub-
typing approach in which all possible subtyping edges between type
bounds and actual classes are present and cannot be avoided. By contrast,
the explicit subtyping approach allows the programmer to specify exactly
which subtyping edges are permissible, thus providing the programmer
with the ability to more tightly control (and thereby better ensure the
safety and correctness of) the behavior of a parametrized class.

1.2 Supertyping

A problem with using explicit subtyping to specify parameter constraints
arises when using code that may not be modified. For the sake of simplic-
ity, we will refer to an (arbitrary) body of stand-alone, unmodifiable code
as a “library”. Consider writing a parametrized class that makes use of the
“size” method of a type parameter.

With conformance:
class VECTOR{T}
 where T is plus(T):T; minus(T):T; ... etc;

With explicit subtyping:
class VECTOR{T < CPX}

abstract class HAS_SIZE is
size:INT;

end;
class BAR_ALG{T < HAS_SIZE} is

foo(a:T) is i:INT := a.size;... end;
end;

Type-Safety and Overloading in Sather April 24, 1998 4

Suppose we now wished to parametrize BAR_ALG using an library class
which supports the size method, such as STR. Since the user cannot
change the library directly, it is not possible to have STR subtype from
HAS_SIZE.

To get around this problem, Sather permits the user to add subtyping
edges, where valid, after the fact. A supertyping clause achieves this effect

The only edge additions permitted are those that are guaranteed to be type-
safe i.e. the parent and child that are related by the supertyping clause
must be already contravariantly conformant. If this conformance relation-
ship does not hold, the supertyping statement is not permitted.

By contrast, the implicit conformance based approach may be viewed as
automatically adding all possible supertying edges to the type graph when-
ever a type bound is encountered.

1.3 Call SIgnatures

Since this report deals mainly with the resolution of calls, and there are
many different call signatures involved, we define our terminology as fol-
lows:

Declared signature or Interface signature. This is the signature of the
method as it is declared in an interface. We refer to the types of the argu-
ments in the interface signature as the declared argument types.

Call signature. This method signature is determined by the declared types
of the arguments in a call to a method.

Execution signature. This signature is determined by the types of the
actual object used in the call. The dynamic signature of a method is not
available at compile time.

The dynamic signature of a method is not available at compile time and is
not relevant to the resolution of overloading. Overloading resolution, in

abstract class STR_HAS_SIZE
 subtype of HAS_SIZE
supertype of STR;

class EXAMPLE is
bar(arg:SUPER_FOO);

sub_foo:SUB_FOO;
foo:FOO := sub_foo;
-- The declared type of foo is FOO
-- the dynamic type is SUB_FOO
example:EXAMPLE;
example.bar(foo);

STR_HAS_SIZE

HAS_SIZE

STR

SUPER_FOO

FOO

SUB_FOO

Type-Safety and Overloading in Sather April 24, 1998 5

general, involves the matching of a call signature to one of many interface
signatures. In the above piece of code, consider the signature of exam-
ple.bar(foo)

• The declared signature isEXAMPLE::bar(SUPER_FOO)

• The call signature isEXAMPLE::bar(FOO)

• The execution signature isEXAMPLE::bar(SUB_FOO)

2.0 Goals

A general goal of the Sather type system is that type safety must be stati-
cally guaranteed and locally checkable. By local checkability we mean
that if any module of code is type-checked, its typesafety cannot be vio-
lated when it is combined with other, similiarly type-checked, code (mod-
ulo trivial class-level naming conflicts, since Sather has no module
mechanism).

The design of the Sather overloading rule was mainly driven by the need
to support consistent specialization, as described in [GSWF97]. It was
essential that a method A be able to coexist with a B, if B is a specializa-
tion of method A. Method B is a specialization of method A if the precon-
dition of method B implies the precondition of method A [FNZ97], and
the postcondition of method A imply the postcondition of method B. In
terms of argument types - B is a specialization of A if its argument types
are subtypes of the argument types of A. Thus, specialization may be seen
to be the converse of the usual conformant rule for substitutability.

We present a brief example that illustrates the kind of overloading we wish
to support

We wish to support the specialization relation (real numbers are a special-
ized form of complex numbers) between a subtype and a supertype. Spe-
cialization requires the support of covariant overloading, where the
argument types in the specialized method are subtypes (i.e. specialized
versions) of the arguments in the more general method.

3.0 The Problem

The straightforward solution is to permit overloading based on any argu-
ment types, as is done in C++ and Java. Calls are then resolved by requir-
ing that there be a single, most specific method that matches the call
signature - ambiguity is prohibited. This approach will not work in a lan-
guage such as Sather, which permits type-safe supertyping.The addition
of such supertyping edges may cause existing code to break (method over-
loading in existing code that was unambiguous may become ambiguous
due to the addition of such supertyping edges).

class CPX
plus(arg:CPX):CPX;

class REAL subtype of CPX
plus(arg:CPX):CPX;
plus(arg:REAL):REAL; -- Specialization of plus(arg:CPX):CPX

Type-Safety and Overloading in Sather April 24, 1998 6

3.1 Supertyping may breaking existing overloaded calls

To illustrate the problem, consider the following example. :

The following calls onFOO may be unambigously resolved:

Having assured ourselves of the typesafety of the above code, we now add
a supertyping clause that makesSUB_A a subtype of B as well (this is only
permitted if the interface ofSUB_A actually conforms to the interface of
B):

The addition of this supertyping edge, causes our original piece of code to
break. The second overloaded call (with argument of typeSUB_B) still has
a single most specific method, but the first overloaded call with argument
of typeSUB_A is now ambiguous.

The real problem is not that the overloading resolution is ambiguous, but
rather that, after code has been deemed correct, typing errors may be intro-
duced by unrelated code. This renders type-checking a non-local problem,
and destroys the compositionality of code.

3.2 Supertyping may violate separate type-checking of overloaded

class FOO is
foo(a:A);
foo(b:B);

f:FOO
sub_a:SUB_A;
sub_b:SUB_B;
f.foo(sub_a); -- overloading resolves to call FOO::foo(A);
f.foo(sub_b); -- overloading resolves to call FOO::foo(B)

class A_SUB_B
supertype of B
subtype of SUB_A

f:FOO
sub_a:SUB_A;
sub_b:SUB_B;
f.foo(sub_a); -- overloading resolves to call FOO::foo(A);
f.foo(sub_b); -- overloading is ambiuous resolves to call FOO::foo(B)

A B

SUB_A SUB_B

A B

SUB_A SUB_B

A_SUB_B

Type-Safety and Overloading in Sather April 24, 1998 7

calls

Another way to look at the above problem is that compositionality is lost;
errors may occur when two pieces of code are combined, even though
each was individually typesafe.

In the diagram above, both module 1 and module 2 will type check inde-
pendantly (the definitions of the classesA andB arise from some common
source, such as the general libraries). However, when module 1 and mod-
ule 2 are combined, the overloading resolution of module 1 is broken - the
call foo(sub_a) is ambiguous and therefore forbidden.

3.3 Restricting Supertyping

There are several possible solutions to the above dilemma that involve
restricting supertyping.

A drastic solution is to eliminate supertyping from the language. How-
ever, as we havepointed out in Section1.2, supertyping is necessary for
reuse of unmodifiable library code when parametrized type constraints are
based on explicit subtyping.

A less drastic solution is to permit either a supertyping or a subtyping
clause in a class, but not both. This will eliminate the problems described
in the previous section, but also prohibits useful subtyping relationships.
Consider acquiring two separate libraries, for instance a library of param-
etrized container classes and a library of classes which we may wish to
insert into the containers. Inserting objects into the containers requires
placing them under the type-bounds specified in the container classes; this
may be achieved by an intermediate classes that are under the type bound
and over the contained classes.

We have taken the approach of determining judicious limitations on the
kinds of overloading permitted, rather than limiting supertyping. Note that
overloading is statically resolved and a functionally equivalent effect may
be obtained by distinguishing between method names that would other-

class FOO
foo(A);
foo(B);

f.foo(sub_a);
f.foo(sub_b);

A B

SUB_A SUB_B

class A_SUB_B
supertype of B
subtype of SUB_A

Module 1
Module 2

Type-Safety and Overloading in Sather April 24, 1998 8

wise be overloaded. Supertyping, however, has deeper semantic conse-
quences, making it harder to work around limitations.

4.0 The Overloading Rule in Sather

Instead of restricting supertyping, we restrict the overloading rule to per-
mit exactly the overloading required for specialization.

4.1 Conflict and Conf ormance

Permissible overloading in an interface is constrained by the rule forcon-
flict, which defines when a method f and g may not coexist in an interface.
We assume that both methods have the same number of arguments, and
that both either have a return value or neither does1.

Method signature f conflicts with g when each argument type in f is
neither a subtype nor a supertype of the corresponding argument type in
g.

The other half of the overloading rule is matching a call signature to a par-
ticular interface signature. There must exist a method in the interface with
the specified method name such that for each argument, the type of each
expression in the call is a subtype of the declared type of the correspond-
ing argument. If there is more than one such method, there must be a
unique one which is most specific, conforming to all the others. This
definition is completed by the definition of conformance, which is the
standard contravariant-argument, covariant return type rule.

Method signaturef conforms to g when for every argument, the type
of the argument in g is a subtype of the corresponding argument type in
f; and if it has one, the return type of f is a subtype of the return type of g.

In other words, the rule for conflict ensures a total order on each argument
position in overloaded methods that coexist. The rule for conformance
demands a total order on all matching methods (which is more restrictive
than just an order on each argument position).

4.2 Why does this solve the pr oblem?

We first note that all the problems with permitting overloading based on
any difference in arguments arose because two argument types that were
initially unrelated, were later made related through an edge introduced by
supertyping. The above definition forces the corresponding arguments of
any two methods in the interface to always have a subtyping relationship.
As a consequence, any addition of supertyping edges between argument

1. These rules are from the specification [SO96], minus details regarding the
mode of the arguments and special cases when the argument types happen to be
concrete.

Type-Safety and Overloading in Sather April 24, 1998 9

types after-the-fact cannot change the existing subtyping relationship
between the arguments

More formally, we wish to show that the later addition of supertyping
edges to the type graph can never change the resolution of a call to an
overloaded method.

We start with a call on an overloaded method has been unambiguously
resolved with a single method whose declared signature has the most spe-
cific match to the call signature in every argument position. We proceed by
showing that the most specific match in each argument position cannot be
changed by the addition of supertyping edges. We proceed by showing
that the rule for conflict ensures a total order between the argument types
in each argument position which cannot be affected by the addition of
supertyping edges; the subtyping ordering between the types in each argu-
ment position cannot change, then neither can the choice of most specific
method.

To show that our rule for conflict ensures a total order on the types in every
argument position, consider a set of overloded methods:

Consider the set of types,S, that occur in a particular argument position
among all the overloaded methods. The conflict rule enforces a subtyping
relationship, or partial order, between any pair of types in S. Since there
is a partial order between every pair of types inS, there is a total order on
S.

Assume that the addition of a supertyping edge introduces a new relation-
ship between two types inS. That is, for a pair of typesS1 and S2, where
initially S1 < S2, after introducing a supertyping edge,S2 < S1. But the
original typing relationship betweenS1 and S2 must still hold (typing
edges can never be deleted from the type graph). Hence, sinceS1 < S2
and S2 < S1, the supertyping edge has introduced a cycle into the type
graph. Defining a class which introduces a cycle into the existing type-
graph is prohibited. Therefore we have a contradiction. Therefore, we can-
not add a supertyping edge that introduces a new relationship between the
types inS.

Hence, there is a total order on the types in every argument position of the
overloaded methods which cannot be changed by any later addition of
supertyping edges.

class CPX
plus(arg:CPX):CPX;

class REAL subtype of CPX
plus(arg:CPX):CPX;
plus(arg:REAL):REAL;

class COMP_NUMBER
supertype of REAL;
subtype of CPX;

CPX

REAL

plus(CPX):CPX

plus(CPX):CPX

plus(REAL):REAL

Type-Safety and Overloading in Sather April 24, 1998 10

4.3 Why not also use the return type to resolve conflicts?

According to the current overloading rules, the type of the return value and
out arguments cannot be used to differentiate between methods in the
interface. There is no theoretical reason to disallow this possibility. How-
ever, permitting overloading based on such return values involved addi-
tional implementation work and was not required for the usages we
envisaged (the interface signature with the most general return type must
be chosen, in addition to picking the interface sigature with the most spe-
cific arguments). Thus, overloading is not permitted based on differences
in the return type (or out arguments, which are equivalent to return types)
of a method

5.0 Under standing Overloading Resolution

To clarify our overloading rules, we can visualize the overloaded resolu-
tion with the aid of a simple example of special units of weight. These
units of weight can provide methods such as addition to other units of
height and weight.]

It is easy to see that the above hierarchy may be extended with other units
of weight such as grams and ounces, and by units of height such as inches.
Weights and heights may be used in a method which determines the post-
age for a package

Though the postage may be directly computed using kilograms and
meters, it is possible to compute the postage in the more general case by
performing either converting the weight or the length from other units, at
some cost in efficiency1.

The above methods do not conflict, and there is therefore a total order
between the argument types in each argument position. If we start out by

1. Admittedly, efficiency is an odd concern in this small example. However, effi-
ciency may be of significant concern in other real library classes such as matri-
ces and vectors, where conversion between different types can be expensive.

[1]postage(weight:KG, maximum_side:METER):DOLLARS;

[2]postage(weight:WEIGHT,length:METRIC_LEN):DOLLARS;
[3]postage(weight:METRIC_WT,length:LENGTH):DOLLARS;
(4)postage(weight:WEIGHT,length:LENGTH):DOLLARS;

WEIGHT

METRIC_WT

KG

LENGTH

METRIC_LEN

METER

BRIT_WT

POUND

BRIT_LEN

FOOT

Type-Safety and Overloading in Sather April 24, 1998 11

considering the total order in each argument position, we may visualize
the above set of methods as shown below.

Consider the following variables

These variables may be used in overloaded calls as shown below

The first three of the above calls can be resolved unambiguously, by
choosing the most specific method. In the diagram below, the matching
methods for each call are highlighted. In all cases except D, there is single
unambiguously lowest match. In D, however, there are two matching
methods (2) and (3), neither of which conforms to the other. The ambigu-
ity in D can be resolved if the programmer upcasts one of the argument
types to a more general type (for instance, by assigning wt:WEIGHT := kg
and then performing the call using wt).

6.0 An Alternative: Preventing Ambiguity at the Point
of Call

The rule we have described so far meets all our design criteria. However, it
is possible to run into situations where ambiguities in resolving an over-
loaded call occur. These ambiguities may be avoided if we change the def-
inition of conflict in our overloading rule.

Two methods f and g conflict in an interface iff neither f conforms to g
nor g conforms to f.

meter:METER := METER::create(1.0);
kg:KG := KG::create(1.0);
weight:WEIGHT := kg;
length:LENGTH := meter;
metric_len:METRIC_LEN := foot;
metric_wt:METRIC_WT := kg;

Call Call Signature Most Specific Match

A (kg,meter) (KG,METER) (KG,METER)

B (weight,meter) (WEIGHT,METER) (WEIGHT,METRIC_LEN)

C (kg,length) (KG,LENGTH) (METRIC_WT,LENGTH)

D (kg,metric_len) (KG,METRIC_LEN) (METRIC_WT,LENGTH)
(WEIGHT,METRIC_LEN)

Argument 1 Argument 2

WEIGHT

METRIC_WT

KG

LENGTH

METRIC_LEN

METER[1]

[2][3]

(4)

Type-Safety and Overloading in Sather April 24, 1998 12

With this new definition of conflict, which forces a conformance relation-
ship between every pair of overloaded methods, we have a total order on
all the overloaded methods. Overloading resolution at the point of call
now amounts to picking the most specific method, rather than the a set of
methods which are most specific in each argument position. The ambigu-
ity mentioned in the previous section cannot now occur, since the declara-
tions of (2)postage and (3)postage (3) would conflict. This second choice
actually permits exponentially fewer overloaded methods than then previ-
ously mentioned overloading rule.

There are trade-offs between these two choices:

Our original choice of overloading permits certain, potentially useful,
cases of overloading to occur. Furthermore, any conflict at the point of call
can always be resolved by a suitable upcasting of one or more of the call
argument types.

The overloading rule presented in this section results in no overloading
conflict errors at the point of call, essentially prohibiting all such conflicts
at the point of definition of the interface. These errors of conflict may be
somewhat hard for the user of a class to understand.

Other variants of the rule are also possible, such as using the lexicographic
order of the arguments to decide disambiguation.

For the rest of this report, we will confine our attention to the overloading
rule presented in Section 5.0, since that is the rule that was adopted and
implemented by Sather, though all the choices mentioned above would be
quite reasonable.

WEIGHT

METRIC_WT

KG

LENGTH

METRIC_LEN

METER[1]

[2][3]

A: postage(KG,METER)

WEIGHT

METRIC_WT

KG

LENGTH

METRIC_LEN

METER[1]

[2][3]

B: postage(WEIGHT,METER)

WEIGHT

METRIC_WT

KG

LENGTH

METRIC_LEN

METER[1]

[2][3]

C: postage(KG,LENGTH)

WEIGHT

METRIC_WT

KG

LENGTH

METRIC_LEN

METER[1]

[2][3]

D: postage(KG,METRIC_LEN)

[4][4]

[4]
[4]

Type-Safety and Overloading in Sather April 24, 1998 13

7.0 An Example

The above overloading rule provides a clean implementation of the stan-
dard hierarchy of numerical entities.

The commented out methods are obtained by subtyping and need not be
explicitly mentioned (though mentioning them in the subtype is not pro-
hibited). Using this type structure and the overloading rule from Section
5.0, we can perform additions within a particular domain, say the domain
of real numbers.

The methods plus(CPX):CPX andplus(REAL):REAL both match, and the
latter method is more specific. However, operations between real and com-
plex numbers are also permitted

In this case, onlyREAL::plus(CPX):CPX matches the call, and is chosen. In
the process of the addition, the real number is viewed as a complex num-
ber with a zero imaginary part.

a:REAL;
 b:REAL;
c:REAL := a.plus(b); -- chooses REAL::plus(REAL):REAL

a:REAL;
c:CPX;
d:CPX := a.plus(c); -- chooses REAL::plus(CPX):CPX

CPX
plus(arg:CPX):CPX;
magnitude:REAL;

REAL
-- magnitude:REAL;
-- plus(arg:CPX):CPX;
plus(arg:REAL):REAL;
is_lt(arg:REAL):BOOL;

INT
-- magnitude:REAL;
-- plus(arg:CPX):CPX
-- plus(arg:REAL):REAL;
plus(arg:INT):INT;
-- is_lt(arg:REAL):BOOL;
is_lt(arg:INT):BOOL;

Type-Safety and Overloading in Sather April 24, 1998 14

8.0 Overloading Resolution in Parametrized Classes

Within parametrized classes, the types of arguments within a signature are
sometimes determined by the types of class parameters. A method in a
parametrized class has arguments whose types are type parameters. In
order to permit the separate typechecking and compilation, the overload-
ing resolution of such methods is done with respect to the type bounds,
rather than the instantiated types.

9.0 Other Language Interactions

We have omitted any discussion of how other language features enter into
the overloading rule. The more complete overloading rule for Sather is
presented in Appendix A. While these interactions are important in
Sather, they do not add any extra complexity to the rule.

Classes which are guaranteed to be leaf classes (implementation classes in
Sather, final classes in Java) may be safely used while overloading, as per-
mitted in the old overloading rule. A method with an implementation
class as a declared argument type may only be used when there is an exact
match between the call argument type and the declared argument type. No
later addition of supertyping edges can change this exact match. In prac-
tice, overloading based on implementation types is extremely common
and useful in Sather code.

Argument modes also interact with the issue of overloading. In general,
overloading is not permitted based on out or inout arguments, since they
behave like return values. Overloading is only permitted based on once
and in arguments. However, the presence or absence of out or inout mode
specifiers may be used to permit overloading.

10.0 Implementation

The overloading rule, as describe here, has been implemented in the cur-
rent release of the Sather compiler. It has been successfully used in the
current (internal) Sather libraries in the design of the container abstrac-
tions. A rewriting of the Sather container, graph and math libraries is cur-
rently underway, which will more fully exploit the potential for
specialization as supported by the overloading rule.

11.0 Conclusions

Sather supports subtyping based parameteric polymorphism, in conjunc-
tion with supertyping. An overly permissive overloading rule would result
in an inability to type check code separately. We describe a design in
which overloading for specialization is supported, while still maintaining
compositional type-checking in the presence of supertyping. We also
describe an alternative, more restrictive, overloading rule in which ambi-
guities cannot arise at the point of call. The overloading rule described in
Section 5.0 has been implemented in the Sather compiler, and is in use in
the Sather libraries.

Type-Safety and Overloading in Sather April 24, 1998 15

Appendix A The Specification of Overloading

For the sake of convenience, we gather here the various portions of the
Sather specification [SO96] that, taken together, define the overloading
rules for Sather. The definitions below take into account other complexi-
ties of the overloading rule that arise from the presence of argument
modes and leaf (implementation or concrete) classes in the type graph.

11.1 Signatures (section 2.3.2)

 We say that the method signature f conflicts with gwhen:

• f and g have the same name and number of arguments,

• f and g either both return a value or neither does,

• each argument mode in f is the same as the corresponding mode in g,
or the mode in
one is ‘in’ while the other is ‘once’,

• and each argument type in f is neither a subtype nor a supertype of the
corresponding
argument type in g, unless both are concrete.

This rule for signature conflict defines which methods may be overloaded.
Sather permits overloading based on the number, type and mode of argu-
ments, as well as whether or not a return value is present. However, over-
loading is not permitted between ‘in’ and ‘once’ modes.

We say that the method signaturef conforms to g when

• f and g have the same name and number of arguments,

• f and g either both return a value or neither does,

• the mode of each argument is the same (in, out, inout or once),

• contravariant conformance:
for any ‘in’ or ‘once’ arguments, the type in g is a subtype of the type
in f;
for any ‘inout’ arguments, the type in f is the same type as in g;
for any ‘out’ arguments, the type in f is a subtype of the type in g; and
if it has one, the return type of f is a subtype of the return type of g.

11.2 Method call e xpressions (section 2.7.3c)

Sather supports routine and iterator overloading. In addition to the name,
the number,types, and modes of arguments in a call and whether a return
value is used all contribute to the selection of the method. The modal_list
portion of a call must supply an expression corresponding to each declared

Type-Safety and Overloading in Sather April 24, 1998 16

argument of the method. There must exist a method with the specified
name such that:

• for each ‘in’ and ‘once’ argument, the type of each expression is a sub-
type of the declared type of the corresponding argument, and

• for each ‘out’ argument, the type of each expression is a supertype of
the correspond
ing argument, and

• for each ‘inout’ argument, the type of each expression is the exact type
of the corresponding argument.

If there is more than one such method, there must be aunique one which
is most specific, conforming to all others.

11.3 Overloading in parametrized classes (section 2.7.3c)

When argument expressions have the type of a class parameter, the type
constraint of that parameter is used to select the most specific method,
rather than the realized type of the parameter. Overloading may not occur
solely by the type of out arguments or return type; there must be at least
one non-out argument of differing type between the most specific method
and any others.

11.4 void expressions (section 2.7.4)

[void expressions may be used] as an argument value in a method call or in
a creation expression. In this last case, the argument is ignored in resolv-
ing overloading

References

y [Cas95]Guiseppe Castagna. Covariance and contravariance: Con-
flict without a cause. ACM Transactions on Programming Lan-
guages and Systems, 17(3):431–447, March 1995.

 [DGLM95] Mark Day, Robert Gruber, Barbara Liskov, and Andrew
Myers. Subtyping vs. where clauses: Constraining parametric
polymorophism. In OOPSLA95, 1995.

 [FNZ97] Jozsef Frigo, Rainer Neumann, and Wolf Zimmermann. Me-
chanical generation of robust class hierarchies. In TOOLS97,
1997.

 [Gom97]Benedict Gomes. A proposal for safe covariant type speci-
fiers in abstract types. Technical Report Unknown, International
Computer Science Institute, July 1997.

 [Goo97]Gerhard Goos. Sather-k, the language.Software - Concepts
and Tools, 1997. To appear.

 [GSWF97]Benedict Gomes, David Stoutamire, Boris Weissman, and
Jerome Feldman. Using value semantic abstractions to guide
strongly typed library design. Technical Report Unknown, Inter-

Type-Safety and Overloading in Sather April 24, 1998 17

national Computer Science Institute, July 1997.

 [JLHB88] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew
Black. Fine-grained mobility in the Emerald system. ACM
Transactions on Computer Systems, 6(1), February 1988.

 [KLMM94] Dinesh Katiyar, David Luckham, John Mitchell, and Sigurd
Melda. Polymorphism and subtyping in interfaces. ACM SIG-
PLAN Notices, 29(9):22–34, Aug 1994.

 [Omo95]Steven Omohundro. The Sather 1.0 specification. Technical
Report TR-95-057, The International Computer Science Institue,
1995.

 [SO96]David Stoutamire and Steven Omohundro. The Sather 1.1
specification. Technical Report TR-96-012, The International
Computer Science Institue, 1996.

